

Walter C. Pettus

Searches for Neutrinoless Double Beta Decay

30 September 2021

Neutrino Mass Problem Opportunity

- What is the neutrino mass?
- Why is the neutrino mass so much smaller than other fermion masses?
- How much CP violation in lepton sector?
- Other new physics hiding with neutrinos?

.

Neutrinoless Double Beta Decay (0vββ)

Searching for theoretical process:

- $(A, Z) \rightarrow (A, Z + 2) + 2e^{-1}$
 - Contrast with $(A, Z) \rightarrow (A, Z + 2) + 2e^- + 2\bar{v}_e$, observed

 $0\nu\beta\beta$ always implies new physics

- Lepton number violating process ($\Delta L=2$)
- Majorana neutrinos generate $0\nu\beta\beta$
- Majorana neutrinos help explain small observed neutrino masses via see-saw mechanism
- Leptogenesis as ingredient for explaining matter-antimatter asymmetry

n

 $v_{\rm M}$

Sensitivity to Neutrino Mass

• Half-life of $0\nu\beta\beta$ related to neutrino mass scale

•
$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} |M_{0\nu}|^2 \left(\frac{\langle m_{\beta\beta} \rangle}{m_e}\right)^2$$

• $\langle m_{\beta\beta} \rangle = \left| \sum U_{ei}^2 m_i \right|$

חר

Current 0vββ limits

Experimental Sensitivity

Experimental Backgrounds

Experimental goal is to measure monoenergetic peak at Q_{ββ}

Experimental Considerations

- Maximize exposure
 - Larger source
 - Higher enrichment*
 - Higher efficiency
- Minimize background
 - Deep underground
 - Material purity
 - **Energy resolution**
 - Decay Q-value*
 - Background rejection via cuts**

KamLAND: Fiducialization

INDIANA UNIVERSITY

KamLAND-Zen

- Builds on successful KamLAND detector and physics program
- ¹³⁶Xe dissolved in liquid scintillator inner volume
- First experiment to reach $T_{1/2} > 10^{26}$ yr exclusion

KamLAND-Zen Upgrades

Past

KamLAND-Zen 400:

- Mini-balloon Radius = 1.54 m
- Xenon mass = 320 ~ 380 kg
- Duration: 2011 ~ 2015

KamLAND-Zen 800:

- Mini-balloon Radius = 1.90 m
- Xenon mass = 745 kg
- Data taking starts Jan. 2019

Adapted from Aobo Li, TAUP21

- Stay tuned for results soon from KamLAND-Zen 800
 - x10 reduction in balloon backgrounds
 - x2 exposure available

KamLAND2-Zen:

- Xenon mass ~ 1ton
- Aiming at 100% Photocoverage
- PEN scintillation balloon film

INDIANA UNIVERSITY

30 September 2021

Walter C. Pettus

SNO+

- Builds on successful SNO detector and physics program
 - Liquid scintillator active volume replaces heavy water
 - Tellurium compound dissolved in LS
 - >1.3 tonne ¹³⁰Te at 0.5% ^{nat}Te loading

• Water phase 2017-2019, LS fill complete April 2021

Further proposals for liquid scintillator based searches include THEIA, ZICOS New technologies for background rejection like NuDot, CROSS

• Target sensitivity of $T_{1/2} = 2 \cdot 10^{26} \text{ yr}$

• Future upgrade to 3% loading

Adapted from Mark Chen, TAUP21

nEXO

NEXT & PandaX-III

Adapted from Alberto Usón Andrés, TAUP21

- Distinct R&D programs focused on highpressure gaseous xenon TPC technologies
 - Centered at Canfranc (Spain) and CJPL (China)
 - Evolving from O(10) to O(100) kg in next ~5 years
- Topological information provides powerful background rejection

Barium-tagging technologies being pursued

CUORE & CUPID

- Array of cryogenic TeO₂ bolometers operated at 10 mK
 - 988 channels with 206 kg ¹³⁰Te
- R&D towards ZnSe and LiMoO₄ scintillating bolometers
- Best half-life sensitivity for 3 isotopes in program!
- Proposed path to tonne-scale sensitivity with LiMoO₄ technology
- See Miriam Olmi's talk, next

MAJORANA DEMONSTRATOR

- Array of point-contact germanium detectors in vacuum cryostat
 - Low-background materials and lownoise electronics developed
- 30 kg enriched to 88% in ⁷⁶Ge
- Best energy resolution at Q_{ββ}, 0.12%
 Leading sensitivity to excited states decay, BSM physics

GERDA

Adapted from Luigi Pertoldi, PANIC21

- Array of point-contact germanium detectors immersed in liquid argon active veto
 - Critical background-reduction technology validated and characterized
- ~40 kg enriched in ⁷⁶Ge
- Achieved $T_{1/2} > 1.8 \cdot 10^{26}$ yr sensitivity
- Background index $5 \cdot 10^{-4}$ cts / (keV kg yr)
 - Achieved quasi-background free operation
 - No background observed in ROI in exposure

INDIANA UNIVERSITY

LEGEND-200

- 200 kg of enriched point-contact detectors in GERDA LAr cryostat
 - Point-contact detectors from both predecessors
 - Plus new larger mass (2+ kg) detectors
- Successor to MAJORANA and GERDA
 - Leverages advances from separate programs
- Commissioning now at LNGS, datataking this year
- Sensitivity goal of 10²⁷ yr in 5 yr run

LEGEND-1000

- Proposed tonne-scale continuation of ⁷⁶Ge program
- Independent payloads for phased deployment
- Underground argon volumes reduce surface bg
 - Developed by DarkSide dark matter experiment
- Proposes lowest background, best resolution

LEGEND Strategy

- Signal is single-site bulk events with no coincidence
- Pulse shape discrimination (PSD) for multisite and surface events
- Ge detector anti-coincidence veto
- Scintillating PEN plate
- LAr veto: Ar scintillation light read by fibers + PMT's
- Muon veto: Cherenkov light & plastic scintillator

Plus Many Other Technologies

CANDLES: exploit high ⁴⁸Ca Q-value

INDIANA UNIVERSITY

ור

Summary

- Several current experiments have achieved 10²⁶ yr results, experiments in preparation target 10²⁷ yr
- Community driving towards next-generation sensitivity to ~10²⁸ yr, covering inverted mass ordering space
- Proposing experiments capable of discovery, not just limit setting
- Technologies exploit diverse strategies, non-overlapping systematics
- Different isotopes mature and will address underlying physics
- Theory advancing in step to interpret results

Outlook

- Continued results coming from operating experiments
 - KamLAND-Zen 800, CUORE...
- Promising new experiments coming online soon
 - LEGEND-200, SNO+...
- Vibrant R&D into game-changing technologies
 - CUPID, NEXT, SELENA...
- Mature experiments proposed for next-generation sensitivity with strong funding support
 - US DOE portfolio review, July 2021
 - North America-European Summit, now
 - Independent programming in Asia