Muon g - 2/EDM measurement at J-PARC

G. P. Razuvaev on behalf of E34

BUDKER INSTITUTE OF NUCLEAR PHYSICS NOVOSIBIRSK STATE UNIVERSITY

> TAU 2021 1 October 2021

Muon g - 2

 μ is coupled to a magnetic field through a dipole moment with the Lande's g factor. g = 2 in the tree level or in Dirac equation. a = g - 2 is comes from corrections: QED, EW and

QCD, and, maybe, some BSM physics.

The world average a_{μ} precision is 0.35 ppm. The SM prediction is 4.2 σ away from the measurement.

The muon EDM SM expectation is $\sim 2\times 10^{-38}\,e\,{\rm cm}.$ The current experimental limit is $|d_{\mu}|<1.8\times 10^{-19}\,e\,{\rm cm}$ by the BNL E821 experiment. If non-zero EDM exists, it means T-violation.

The spin precission frequency around momentum in *EB*-field is described by the BMT equation:

$$\vec{\omega} = \vec{\omega}_{a} + \vec{\omega}_{\eta} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(\frac{a_{\mu}}{\gamma^{2} - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$

The FNAL E989 and BNL E821 employ the electric focusing in a storage ring. The *E*-field effect is cancelled because of working at "magic" momentum $p_{\mu} = 3094 \text{ MeV}/c$.

To cross-check the result it would be great to have an independent measurements based on another experimental technique.

Idea: move from the "magic" momentum to absence of E-field.

$$\vec{\omega} = \vec{\omega}_{a} + \vec{\omega}_{\eta} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$

That would require a low emittance beam to be confided on the orbit by weak magnetic focusing.

Hadron Beam Facility

500m

Materials and Life Science Experimental Facility

Nuclear Transmutation (Phase 2)

> 3 GeV Rapid Cycle Synch. (25 Hz, 1MW)

۱q

Tokyo

IVV

Linac

(330m)

E34 at J-PARC

MLF and H-line

Fig. 2. The H-line layout.

- Construction of H-line has been started.
- The minimum construction of the H1-area is finished. The beginning of a beam commissioning is planed by the end of this year.
- The extension building to accommodate the H2-canal is designed. The construction area is under preparation.

Muon thermolisation

- $\bullet\,$ The surface muon beam from the H-line is used as the source. Monochromatic and $\sim\,100\,\%$ polarised beam.
- The muon beam is stopped at a target and muoniums (μ^+e^- bind state) are produced.
- Diffused Mu are ionised by laser beams.

A double side laser-ablated silica aerogel target is used to thermolise μ^+ and form Mu. Various hole patterns have been studied and several day Mu emission stability was confirmed.

The current design Mu emission efficiency is \sim 0.34 %, that is enough for Phase-I, but Phase-II requires improvements \rightarrow multi-layer target, Mu-focusing, *etc.*

Muonium ionisation

- $1.\,$ Excitation, two options are considered:
 - 1.1 1S–2P 1-photon excitation with a Lyman- α 122 nm \sim 100 µJ-power laser should cover 73 % of Mu.
 - 1.2 1S–2S 2-photon excitation with 244 nm 200 mJ laser.
- 2. Dissociation 440 mJ 355 nm laser.

Muon acceleration

Energy	212 MeV		
Intensity	$10^6\mu^+/{ m s}$		
Repetition	25 Hz		
Pulse length	10 ns		
Normailised ε_t	$1.5\pi\cdotmm\cdotmrad$		
$\Delta p/p$	0.1 %		

- Acceleration of Mu^- in 2018 by RFQ. Acceleration of thermal μ in 2022 in the RFQ.
- The short (1/3) prototype of IH-DTL is under a test. Full production by the end of 2021 FY.
- Production of the DAW-CCL 1st tank in 2021 FY.
- Finalising design of DLS.

3D spiral injection

To inject the 300 MeV/c muon beam into 666 mm storage region, a 3D spiral injection scheme was developed.

Prototypes of kicker were fabricated and the injection scheme is validated using a low momentum e^- beam.

R[m]

Storage magnet

3 T MRI-type solenoid magnet will be used to store a muon beam. Weak focusing magnetic field is also applied to keep muon beam size.

Magnetic field measurement

- High uniformity of *B*-field is achieved by shimming.
 - 1 ppm local uniformity was confirmed for MuSEUM.
- $\bullet\,$ Hall probes: injection region, $\sim 100\,\text{ppm}.$
- High precision water NMR probes.
 - Fixed probes: near storage region, \sim 0.05 ppm.
 - Mapping probes: storage region, $\sim 0.01\,\text{ppm}.$
 - The standard probe was cross-calibrated between J-PARC and FNAL at Argonne NL in 2017 ($\sim7\pm15\,\rm{ppb}$ agreement).
- New NMR probes with 3 He are under development.
 - Smaller correction than water, but smaller signal.

Positron tracking detector

- Positrons from decay of stored muon beam are detected by silicon strip sensors installed in the storage magnet.
 - Positron tracks are reconstructed from hits in radially arranged 40 modules.
- Each vane has silicon strip sensors in both sides with their strip directions orthogonal each other.

Detector components

Detector alignment system

- To achieve $10^{-21} e$ cm sensitivity of the EDM, position of sensors on the detector need to be controlled with precision better than 1 µm.
- Detector assembly with 1 μm accuracy in the sensor plane is under development (3 μm was achieved so far).
- Alignment/deformation monitor based on 3D-length measurement grid of absolute distance interferometers.
- A way to measure sensor positions using e^+ tracks is also being developed.

Track reconstruction

- SW based on Geant4 and ROOT provides the full chain from primary generation of injected μ^+ to reconstructed e^+ tracks.
- Track finding in the high density real track condition is challenging.
- 2 track finding algorithms are developed:
 - Using Hough transform
 - TMVA BDT
- $\bullet\,$ End-to-end simulation, from the μ target to the storage magnet: the plan is to increase statistic and then study systematics.

The time dependency of the number of e^+ with a cut on p reveals an oscillation pattern directly linked to ω .

Alternatively, it is possible to use ratio of data taken with opposite initial spin.

EDM measurement

$$\vec{\omega} = \vec{\omega}_{a} + \vec{\omega}_{\eta} = -a\frac{q}{m}\vec{B} - \eta\frac{q}{2m}\vec{\beta}\times\vec{B}.$$

The tilt of the angular velocity vector is observed as an asymmetry between up-going and down-going decay e^+ s.

Schedule

- KEK-SAC endorsed the experiment for the near-term priority in 2019.
- KEK requests construction funding from the Japanese government (MEXT) in 2021.
- The key components are under development by the JSPS grant-in-aid from 2020.

	BNL	FNAL		J-PARC
		Run 1	Final	
Muon momentum	3.09 GeV/ <i>c</i>			300 MeV/ <i>c</i>
Lorentz γ	29.3			3
Polarisation	100 %			50 %
Storage field	$B=1.45\mathrm{T}+E$			$B=3.0{ m T}$
Focusing field	Electric quadrupole			Very weak magnetic
Cyclotron period	149 ns			7.4 ns
Number of detected e^+	$5.0 imes10^9$		$1.6 imes10^{11}$	5.7×10^{11}
Number of detected e^-	$3.6 imes 10^9$ –		-	
a_{μ} precision (stat.)	460 ppb	434 ppb	100 ppb	450 ppb
(syst.)	280 ppb	$157 \oplus 25 ppb$	100 ppb	< 70 ppb
EDM precision (stat.)	$0.2 imes10^{-19}e{ m cm}$	_	_	$1.5 imes 10^{-21}$ $e{ m cm}$
(syst.)	$0.9 imes10^{-19}e{ m cm}$	_	_	$0.36 imes10^{-21}e{ m cm}$

Collaboration

Summary

- In the J-PARC E34 experiment, measurement of muon g-2 and EDM is planned with a method different from BNL/FNAL.
 - Re-accelerated thermal μ^+ .
 - Beam storage with no electric field.
 - The 300 MeV/c momentum μ^+ beam opens an opportunity for the compact storage region with highly uniform magnetic field.
 - The decay e^+ tracking detector can work in pile-up environment and measure \vec{p}_{e^+} , which is required for the g 2/EDM determination.
- Construction of the beam line has been started and other components of the experiment are also moved to the construction phase.
- The experiment aims to start data taking from 2025.

Aerogel target modification

- The validation Mu emission from multi-target aerogel experiment is proposed.
- Mu emission under various conditions are simulated and compared. With reflection, about 1.6 times higher yield is estimated in two-piece targets than in the current design.
- Design of the new target holder is ongoing, as well as detailed evaluation of the accelerated μ^+ beam at RFQ.
- See talk by C. Zhang at E34 CM22 https://kds.kek.jp/event/38051.

• Magnetic field measurement

$$B = \frac{\hbar\omega_p}{2\mu_p}$$

 ω_p — proton Larmor frequency in water.

• $\omega_a = \frac{e}{m_\mu c} aB$ • $\mu_\mu = (1 + a_\mu) \frac{e\hbar}{2m_\mu c}$

$$a_{\mu} = rac{\omega_{a}/\omega_{p}}{\mu_{\mu}/\mu_{p} - \omega_{a}/\omega_{p}}$$

Connected experiments

