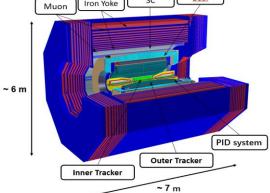
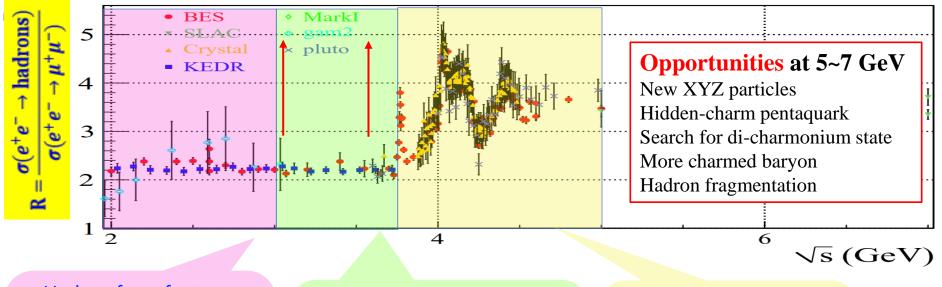


Experimental Program for Super Tau-Charm Facility

Xiaorong Zhou (On behalf of STCF working group) zxrong@ustc.edu.cn


University of Science and Technology of China


Super tau-Charm Facility in China

- Peaking luminosity $>0.5 \times 10^{35}$ cm⁻²s⁻¹ at 4 GeV
- Energy range $E_{cm} = 2-7 \text{ GeV}$
- Potential to increase luminosity and realize beam polarization
- A nature extension and a viable option for China accelerator project in the post **BEPCII/BESIII** era

Physics in tau-Charm Region

- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark,
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- XYZ particles
- Physics with D mesons
- fD and fDs
- D0-D0 mixing
- Charm baryons
- Rich of physics program, unique for physics with c quark and τ leptons,
- important playground for study of QCD, exotic hadrons, flavor and search for new physics.

Expected Data Samples at STCF

CME (GeV)	Lumi (ab ⁻¹)	samples	$\sigma(nb)$	No. of Events	remark
3.097	1	J/ψ	3400	3.4×10^{12}	
3.670	1	$\tau^+\tau^-$	2.4	2.4×10^{9}	
		ψ(3686)	640	6.4×10^{11}	
3.686	1	$\tau^+\tau^-$	2.5	2.5×10^{9}	
		$\psi(3686) \rightarrow \tau^+ \tau^-$		2.0×10^{9}	
		$D^0 ar{D}^0$	3.6	3.6×10^{9}	
		$D^+ \overline{D}^-$	2.8	2.8×10^{9}	
3.770	1	$D^0 ar D^0$		7.9×10^{8}	Single Tag
		$D^+ \overline{D}^-$		5.5×10^{8}	Single Tag
		$\tau^+\tau^-$	2.9	2.9×10^{9}	
		$\gamma D^0 \overline{D}^0$	0.40	4.0×10^{6}	$CP_{D^0\overline{D}^0} = +1$
4.040	1	$\pi^0 D^0 \bar{D}^0$	0.40	4.0×10^{6}	$CP_{D^0\bar{D}^0} = -1$
4.040	1	$D_s^+ D_s^-$	0.20	2.0×10^{8}	
		$\tau^+\tau^-$	3.5	3.5×10^{9}	
		$D_{s}^{+*}D_{s}^{-}+\text{c.c.}$	0.90	9.0×10^{8}	
4.180	1	$D_{s}^{+*}D_{s}^{-}+c.c.$		1.3×10^{8}	Single Tag
		$\tau^+\tau^-$	3.6	3.6×10^{9}	
		$J/\psi \pi^+\pi^-$	0.085	8.5×10^{7}	
4.230	1	$\tau^+\tau^-$	3.6	3.6×10^{9}	
		$\gamma X(3872)$			
4.360	1	$\psi(3686)\pi^{+}\pi^{-}$	0.058	5.8×10^{7}	
4.500	1	$\tau^+\tau^-$	3.5	3.5×10^{9}	
4.420	1	$\psi(3686)\pi^{+}\pi^{-}$	0.040	4.0×10^{7}	
4.420	1	$\tau^+\tau^-$	3.5	3.5×10^{9}	
4.630		$\psi(3686)\pi^{+}\pi^{-}$	0.033	3.3×10^{7}	
4.050	1	$\Lambda_c \bar{\Lambda}_c$	0.56	5.6×10^{8}	
	1	$\Lambda_c \bar{\Lambda}_c$		6.4×10^{7}	Single Tag
		$\tau^+\tau^-$	3.4	3.4×10^{9}	
4.0-7.0	3			0 MeV step, 1 fb ⁻	
> 5	2-7	several ab ⁻¹ high energy data, details dependent on scan results			

A XYZ factory				
XYZ	Y(4260)	Z _c (3900)	$Z_c(4020)$	X(3872)
No. of events	1010	109	10 ⁹	5×10^{6}

A Hyperon Factory				
Decay mode	$\mathcal{B}(\text{units } 10^{-4})$	Angular distribution parameter α_{ψ}	Detection efficiency	No. events expected at STCF
$J/\psi ightarrow \Lambda \bar{\Lambda}$	$19.43 \pm 0.03 \pm 0.33$	0.469 ± 0.026	40%	1100×10^{6}
$\psi(2S) \rightarrow \Lambda \bar{\Lambda}$	$3.97 \pm 0.02 \pm 0.12$	0.824 ± 0.074	40%	130×10^{6}
$J/\psi ightarrow \Xi^0 \bar{\Xi}^0$	11.65 ± 0.04	0.66 ± 0.03	14%	230×10^{6}
$\psi(2S) \rightarrow \Xi^0 \bar{\Xi}^0$	2.73 ± 0.03	0.65 ± 0.09	14%	32×10^{6}
$J/\psi ightarrow \Xi^- \bar{\Xi}^+$	10.40 ± 0.06	0.58 ± 0.04	19%	270×10^{6}
$\psi(2S)\to \Xi^-\bar{\Xi}^+$	2.78 ± 0.05	0.91 ± 0.13	19%	42×10^6

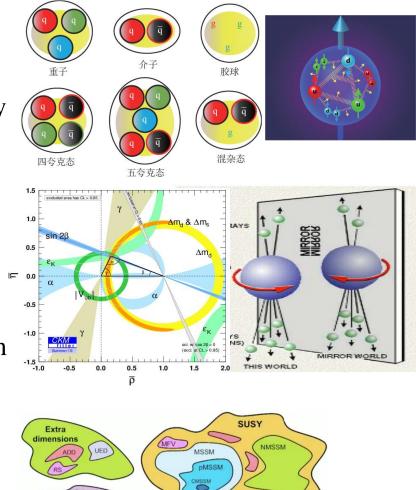
A light meson factory

		, ,
Decay Mode	$\mathcal{B}(\times 10^{-4})$ [2]	η/η' events
$J/\psi \to \gamma \eta'$	52.1 ± 1.7	1.8×10^{10}
$J/\psi \to \gamma \eta$	11.08 ± 0.27	3.7×10^{9}
$J/\psi ightarrow \phi \eta'$	7.4 ± 0.8	2.5×10^{9}
$J/\psi ightarrow \phi\eta$	4.6 ± 0.5	1.6×10^{9}
5/4 . 4.1	1.0 ± 0.0	1.0 / 10

- Belle-II (50/ab) has more statistics
- LHCb have much more statistics, but huge background
- STCF is expected to have higher detection efficiency and low bkgs for productions at threshold
- Additionally, STCF excellent resolution, kinematic constraining

Highlighted physics at STCF

QCD and Hadronic Physics


- Exotic states and hadron spectroscopy
- ≻ Hadron structures
- Precision test of SM parameters

□Flavor Physics and CP violation

- > CKM matrix, $D^0 \overline{D}^0$ mixing
- ≻ CP violation in lepton, hyperon, charm

DNew Physics Search

- ≻ Rare/Forbidden
- ➢ Dark particle search

New heavy bosons

5

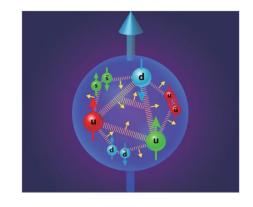
exotic models

Contact

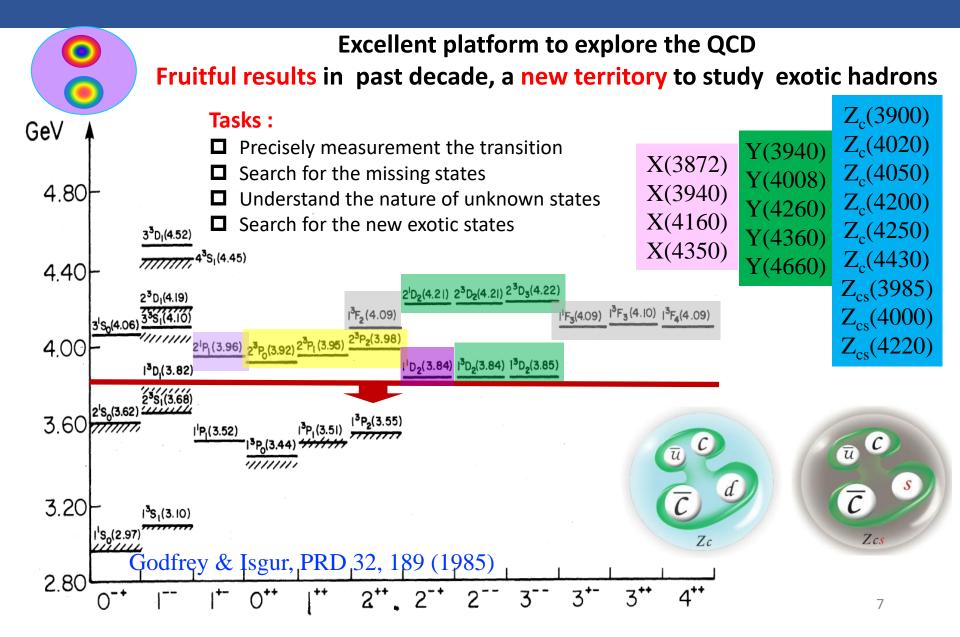
Highlighted physics at STCF

QCD and Hadronic Physics

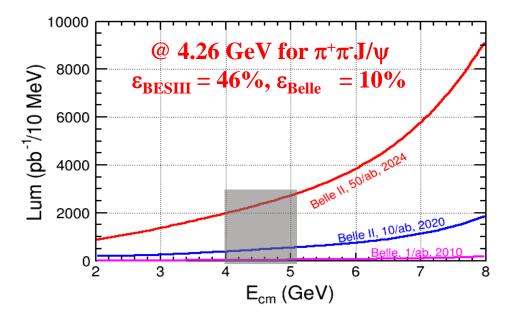
- Exotic states and hadron spectroscopy
- ≻ Hadron structures
- Precision test of SM parameters


DFlavor Physics and CP violation

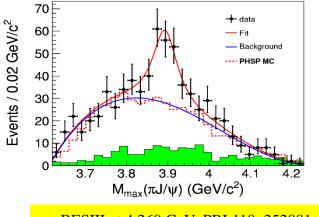
- > CKM matrix, $D^0 \overline{D}^0$ mixing
 - > CP violation in lepton, hyperon, charm


DNew Physics Search

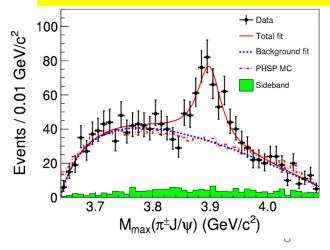
- ≻ Rare/Forbidden
- > Dark particle search



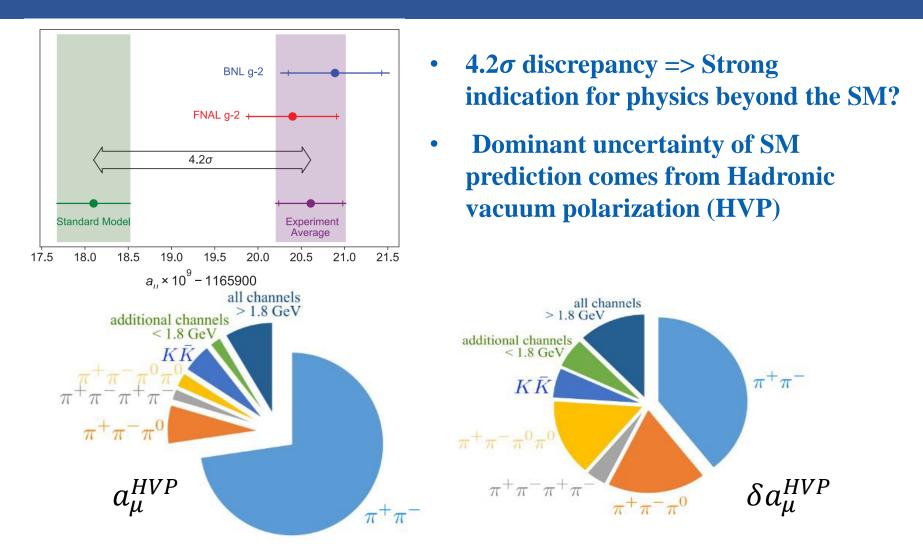
Charmonium (Like) Spectroscopy



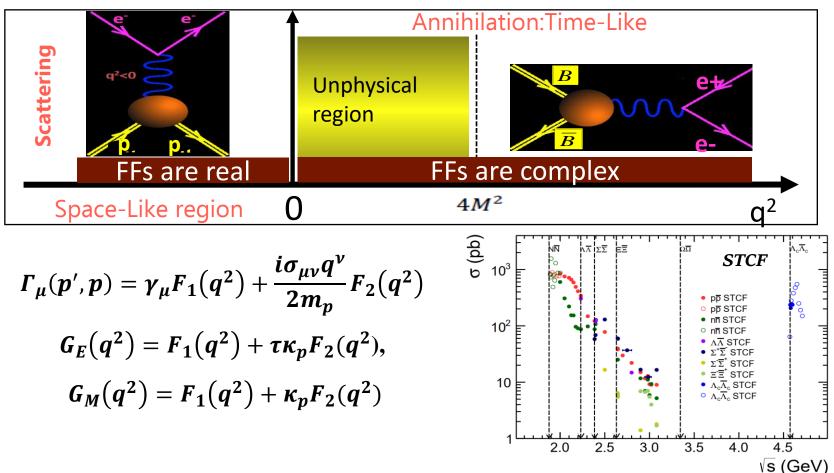
Charmonium(Like) Spectroscopy at STCF



- B factory : Total integrate effective luminosity between 4-5 GeV is 0.23 ab⁻¹ for 50 ab⁻¹ data
 τ-C factory : scan in 4-5 GeV, 10 MeV/step, every point have 10 fb⁻¹/year, 5 time of Belle II for 50 ab⁻¹ data
- τ-C factory have much higher efficiency and low background than B Factory


Belle with ISR: PRL110, 252002 967 fb-1 in 10 years running time

BESIII at 4.260 GeV: PRL110, 252001 0.525 fb⁻¹ in one month running time


HVP Contribution to $(g-2)_{\mu}$

High Luminosity of STCF will largely improve the SM precisions !

Electromagnetic Form Factors

- Fundamental properties of the nucleon
 - Connected to charge, magnetization distribution
 - > Crucial testing ground for models of the nucleon internal structure

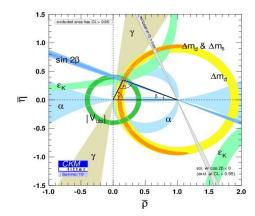
QCD and Hadronic Physics

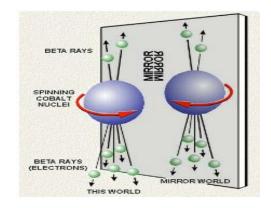
Physics at STCF	Benchmark Processes	Key Parameters*
XYZ properties	$e^+e^- \rightarrow Y \rightarrow \gamma X, \eta X, \phi X$ $e^+e^- \rightarrow Y \rightarrow \pi Z_c, KZ_{cs}$	$N_{Y(4260)/Z_c/X(3872)} \sim 10^{10} / 10^9 / 10^6$
Pentaquarks, Di-charmonium	$e^+e^- \rightarrow J/\psi p\bar{p}, \Lambda_c \overline{D}\bar{p}, \Sigma_c \overline{D}\bar{p}$ $e^+e^- \rightarrow J/\psi \eta_c, J/\psi h_c$	$\sigma(e^+e^- \rightarrow J/\psi p\bar{p}) \sim 4 \text{ fb};$ $\sigma(e^+e^- \rightarrow J/\psi c\bar{c}) \sim 10 \text{ fb}$ (prediction)
Hadron Spectroscopy	Excited <i>cc̄</i> and their transition, Charmed hadron spectroscopy, Light hadron spectroscopy	$\frac{N_{J/\psi/\psi(3686)/\Lambda_c}}{10^{12}/10^{11}/10^8}$
Muon g-2	$e^+e^- \rightarrow \pi^+\pi^-, \pi^+\pi^-\pi^0, K^+K^-$ $\gamma\gamma \rightarrow \pi^0, \eta^{(\prime)}, \pi^+\pi^-$	$\Delta a_{\mu}^{HVP} \ll 40 imes 10^{-11}$
R value, au mass	$e^+e^- \rightarrow inclusive$ $e^+e^- \rightarrow \tau^+\tau^-$	$\Delta m_{\tau} \sim 0.012 \text{ MeV}$ (with 1 month scan)
Fragmentation functions	$e^+e^- \rightarrow (\pi, K, p, \Lambda, D) + X$ $e^+e^- \rightarrow (\pi\pi, KK, \pi K) + X$	$\Delta A^{Collins} < 0.002$
Nucleon Form Factors	$e^+e^- \rightarrow B\overline{B}$ from threshold	$\delta R_{EM} {\sim} 1\%$

*Sensitivity estimated based on $\mathcal{L} = 1 \text{ ab}^{-1}$

Highlighted physics at STCF

QCD and Hadronic Physics

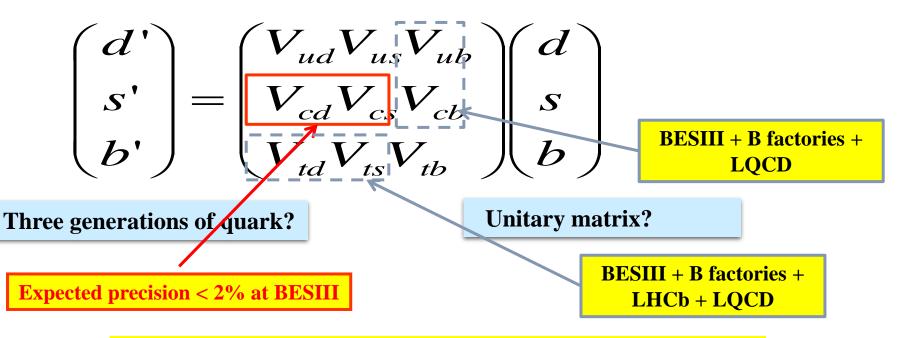

- Exotic states and hadron spectroscopy
- ≻ Hadron structures
- > Precision test of SM parameters


□Flavor Physics and CP violation

- \succ CKM matrix, $D^0 \overline{D}^0$ mixing
- ≻ CP violation in lepton, hyperon, charm

DNew Physics Search

- ≻ Rare/Forbidden
- Dark particle search


Facilities for Charm Study

- ≻LHCb: huge x-sec, boost, 9 fb⁻¹ now (×40 current B factories)
- B-factories (Belle(-II), BaBar): more kinematic constrains, clean environment, ~100% trigger efficiency
- τ-charm factory : Low backgrounds and high efficiency, Quantum correlations and CP-tagging are unique
- \succ STCF :
- 4×10^9 pairs of $D^{\pm,0}$ and $10^8 D_s$ pairs per year
 - -10^{10} charm from Belle II/year
- Highlighted Physics programs
 - Precise measurement of (semi-)leptonic decay (f_D, f_{Ds}, CKM matrix...)
 - *D* decay strong phase (Determination of $\gamma/\phi 3$ angle)
 - $D^0 \overline{D}^0$ mixing, CPV
 - Rare decay (FCNC, LFV, LNV....)
 - Excite charm meson states D_J , D_{sJ} (mass, width, J^{PC} , decay modes)
 - Charmed baryons (JPC, Decay modes, absolute BF)

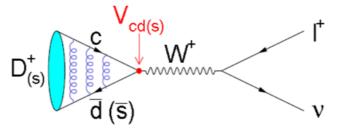
Precision Measurements of CKM Elements

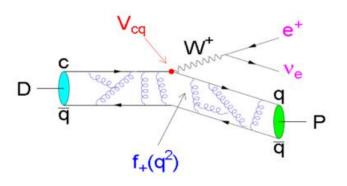
CKM matrix elements are fundamental SM parameters that describe the mixing of quark fields due to weak interaction.

- □ A precise test of EW theory
- □ New physics beyond SM?

A direct measurement of V_{cd(s)} is one of the most important task in charm physics

D_(s) (Semi-)Leptonic decay


Purely Leptonic:


$$\Gamma(D_{(s)}^{+} \to \ell^{+} \nu_{\ell}) = \frac{G_{F}^{2} f_{D_{(s)}^{+}}^{2}}{8\pi} |V_{cd(s)}|^{2} m_{\ell}^{2} m_{D_{(s)}^{+}} \left(1 - \frac{m_{\ell}^{2}}{m_{D_{(s)}^{+}}^{2}}\right)^{2}$$

Semi-Leptonic:

1

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = \frac{G_F^2}{2|4\pi^3|} |V_{cs(d)}|^2 p_{K(\pi)}^3 |f_+^{K(\pi)}(q^2)|^2,$$

Directly measurement : $|V_{cd(s)}| \ge f_{D(s)}$ or $|V_{cd(s)}| \ge FF$

- $\square \text{ Input } f_{D(s)} \text{ or } f^{k(\pi)}(0) \text{ from LQCD } \Rightarrow |V_{cd(s)}|$
- $\square \text{ Input } |V_{cd(s)}| \text{ from a global fit } \Rightarrow f_{D(s)} \text{ or } f^{k(\pi)}(0)$
- □ Validate LQCD calculation of Input f_{B(s)} and provide constrain of CKM-unitarity

D_(s) (Semi-)Leptonic decay

	BESIII	STCF	Belle II	
Luminosity	2.93 fb ⁻¹ at 3.773 GeV	1 ab ⁻¹ at 3.773 GeV	50 ab ⁻¹ at $\Upsilon(nS)$	
$\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$	5.1% _{stat} 1.6% _{syst} [8]	$0.28\%_{stat}$	_	
f_{D^+} (MeV)	2.6%stat 0.9%syst [8]	0.15% _{stat}	Theory : 0.2%(0.1% expected	
$ V_{cd} $	2.6% _{stat} 1.0% [*] _{syst} [8]	$0.15\%_{stat}$	111col <u>y</u> . 0.2 /0(0.1 /0 expected)	/
$\mathcal{B}(D^+ \to \tau^+ \nu_{\tau})$	20%stat 10%syst [9]	$0.41\%_{stat}$	_	
$\mathcal{B}(D^+ \to \tau^+ \nu_{\tau})$	21% _{stat} 13% _{syst} [9]	$0.50\%_{stat}$	_	
$\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$		0.50 /0 stat		
Luminosity	3.2 fb ⁻¹ at 4.178 GeV	1 ab ⁻¹ at 4.009 GeV	50 ab ⁻¹ at $\Upsilon(nS)$	
$\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu)$	2.8%stat 2.7%syst [10]	0.30%stat	0.8%stat 1.8%syst	
$f_{D_s^+}$ (MeV)	1.5%stat 1.6%syst [10]	0.15% _{stat}	Theory : 0.2%(0.1% expected	
$ V_{cs} $	1.5%stat 1.6%syst [10]	$0.15\%_{stat}$	meory . 0.2 /0(0.1 /0 expected)	/
$f_{D_{s}^{+}}/f_{D^{+}}$	3.0%stat 1.5%syst [10]	$0.21\%_{stat}$	_	
$\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau})$	$1.9\%_{\mathrm{stat}}2.3\%_{\mathrm{syst}}^{\dagger}$	0.24%stat	0.6%stat 2.7%syst	
$f_{D_s^+}$ (MeV)	$0.9\%_{\text{stat}} 1.2\%_{\text{syst}}^{\dagger}$	0.11%stat	Theory: 0.2%(0.1% expected)
$ V_{cs} $	$0.9\%_{ ext{stat}} 1.2\%_{ ext{syst}}^\dagger$	$0.11\%_{stat}$	_	-
$\overline{f}_{D_s^+}^{\mu\&\tau}$ (MeV)	$0.9\%_{\mathrm{stat}}1.0\%_{\mathrm{syst}}^{\dagger}$	0.09%stat	0.3%stat 1.0%syst	
$ \overline{V}_{cs}^{\mu\& au} $	$0.9\%_{stat} 1.0\%_{syst}^{\dagger}$	$0.09\%_{stat}$	_	
$\mathcal{B}(D_s^+ \to \tau^+ \nu_\tau)$	$3.6\%_{\text{stat}} 3.0\%_{\text{syst}}^{\dagger}$	0.38% _{stat}	0.9% _{stat} 3.2% _{syst}	
$\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu)$	star - star - syst	one of estat	syst	

* assuming Belle II improved systematics by a factor 2

Stat. uncertainty is closed to theory precision Sys. is challenging

$D^0 - \overline{D}^0$ Mixing and CPV

> STCF provide a unique place for the study of $D^0 - \overline{D}^0$ mixing and CPV by means of quantum coherence of D^0 and \overline{D}^0 produced through

 $\psi(3770) \rightarrow (D^0 \bar{D}^0)_{\text{CP}=-} \text{ or } \psi(4140) \rightarrow D^0 \bar{D}^{*0} \rightarrow \pi^0 (D^0 \bar{D}^0)_{\text{CP}=-} \text{ or } \gamma (D^0 \bar{D}^0)_{\text{CP}=+}$

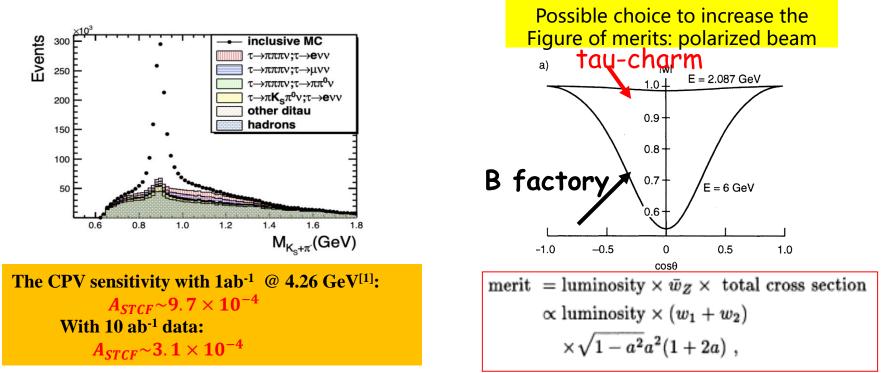
→ The QC+incoherent results contains $D^0 \to K_S \pi \pi$, $D^0 \to K^- \pi^+ \pi^0$ and general CP tag decay channels, The BelleII and LHCb only contain incoherent $D^0 \to K_S \pi \pi$ channel

	1/ab @4.0 (only QC QC-		BelleII(50/ab)		Cb(50/fb) Prompt)
x(%)	0.036	0.035	0.03	0.024	0.012
y(%)	0.023	0.023	0.02	0.019	0.013
r _{CP}	0.017	0.013	0.022	0.024	0.011
$\alpha_{CP}(^{\circ})$	1.3	1.0	1.5	1.7	0.48

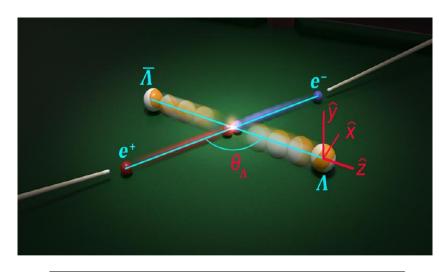
- → Mixing parameter $(x, y) \sim 0.05\%$ with 1 ab⁻¹ data at 4.040 by $e^+e^- \rightarrow \gamma D^0 \overline{D}^0$
- > $\Delta A_{CP} \sim 10^{-3}$ for KK and $\pi\pi$ channels

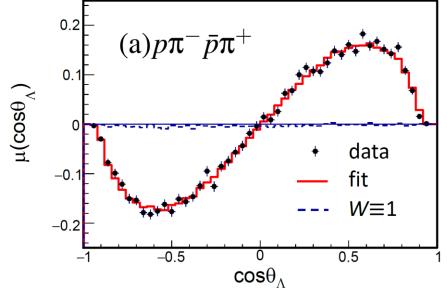
CPV in τ decay

H. Y. Sang, et al., Chin. Phys. C 45, 053003 (2021)


 \succ The CPV source in $K^0 - \overline{K}^0$ mixing produces a difference in tau decay rate

In Theory:
$$A_Q = \frac{B(\tau^+ \to K_S^0 \pi^+ \bar{\nu}_\tau) - B(\tau^- \to K_S^0 \pi^- \nu_\tau)}{B(\tau^+ \to K_S^0 \pi^+ \bar{\nu}_\tau) + B(\tau^- \to K_S^0 \pi^- \nu_\tau)} = (+0.36 \pm 0.01)\%$$

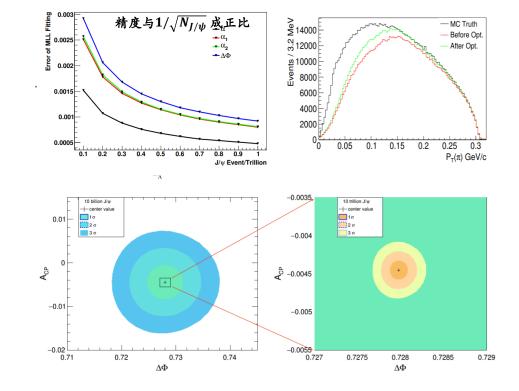

BaBar experiments : $A_{CP}(\tau^- \to K_S \pi^- \nu \geq 0\pi^0]) = (-0.36 \pm 0.23 \pm 0.11)\%$


 2.8σ away from the SM prediction

Theorist try to reconcile the deviation, but not coverage even NP included

Polarization of Λ hyperons and CPV

Nature Phys. 15, 631–634 (2019)



1.31 B J/ ψ events Quantum correlation in Λ pair

Parameters	This work	Previous results
$lpha_{\psi}$	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027 ¹⁴
$\Delta \Phi$	$(42.4\pm 0.6\pm 0.5)^\circ$	_
α_	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013 ¹⁶
$lpha_+$	$-0.758 \pm 0.010 \pm 0.007$	-0.71 ± 0.08 ¹⁶
$\bar{\alpha}_0$	$-0.692 \pm 0.016 \pm 0.006$	_
A_{CP}	$-0.006 \pm 0.012 \pm 0.007$	$0.006 \pm 0.021 \ ^{\rm 16}$
$\bar{\alpha}_0/\alpha_+$	$0.913 \pm 0.028 \pm 0.012$	
	CPV tes	sensitivity for t liction:10 ⁻⁴ ~10 ⁻⁵
	CP test $A_{CP} = \frac{a}{a}$	$\frac{\alpha_{-}+\alpha_{+}}{\alpha_{-}-\alpha_{+}}$

CPV in Hyperon Decays at STCF

- 4 trillion J/ ψ events $\Rightarrow A_{CP} \sim 10^{-4}$
 - Luminosity optimized at J/ψ resonance
 - Luminosity of STCF: \times 100
 - 2 3 years data taking
 - No polarization beams are needed

- **Beam energy trick**
 - \Rightarrow small beam energy spread
 - \Rightarrow J/ ψ cross-section: \times 10 \Rightarrow $A_{CP} \sim 10^{-5}$?
- □ Challenge: Systematics control, spin procession effect in magnet

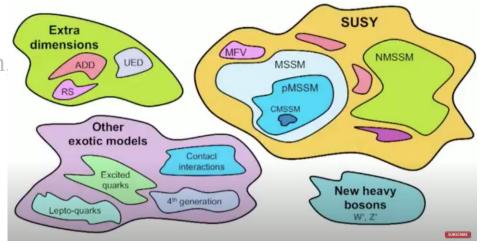
Flavor Physics and CP violation

Physics at STCF	Benchmark Processes	Key Parameters*
CKM matrix	$D^+_{(s)} \to l^+ \nu_l, D \to P l^+ \nu_l$	$\delta V_{cd/cs} \sim 0.15\%; \ \delta f_{D/D_s} \sim 0.15\%$
γ/ϕ_3 measurement	$D^0 \to K_s \pi^+ \pi^-, K_s K^+ K^- \dots$	$\begin{array}{l} \Delta(\cos\delta_{\mathrm{K}\pi}) \sim 0.007;\\ \Delta(\delta_{\mathrm{K}\pi}) \sim 2^{\mathrm{o}} \end{array}$
$D^0 - \overline{D}^0$ mixing	$\begin{split} \psi(3770) &\to (D^0 \overline{D}{}^0)_{CP=-}, \\ \psi(4140) &\to \gamma (D^0 \overline{D}{}^0)_{CP=+} \end{split}$	$\Delta x \sim 0.035\%;$ $\Delta y \sim 0.023\%$
Charm hadron decay	$D_{(s)}, \Lambda_c^+, \Sigma_c, \Xi_c, \Omega_c$ decay	$N_{D/D_s/\Lambda_c} \sim 10^9 / 10^8 / 10^8$
γ polarization	$D^0 \to K_1 e^+ \nu_e$	$\Delta A'_{UD} \sim 0.015$
CPV in Hyperons	$J/\psi \to \Lambda \overline{\Lambda}, \Sigma \overline{\Sigma}, \Xi^- \overline{\Xi}^-, \Xi^0 \overline{\Xi}^0$	$\Delta A_A \sim 10^{-4}$
CPV in $ au$	$\tau \to K_s \pi \nu$, EDM of τ , $\tau \to \pi/K \pi^0 \nu$ for polarized e^-	$\Delta A_{\tau \to K_s \pi \nu} \sim 10^{-3};$ $\Delta d_{\tau} \sim 5 \times 10^{-19} \text{ (e cm)}$
CPV in Charm	$ \begin{split} D^0 &\to K^+ K^- / \pi^+ \pi^-, \\ \Lambda_c &\to p K^- \pi^+ \pi^0 \dots \end{split} $	$\Delta A_D \sim 10^{-3};$ $\Delta A_{\Lambda_c} \sim 10^{-3}$

*Sensitivity estimated based on $\mathcal{L} = 1 \text{ ab}^{-1}$

Highlighted physics at STCF

QCD and Hadronic Physics


- Exotic states and hadron spectroscopy
- ≻ Hadron structures
- Precision test of SM parameters

□Flavor Physics and CP violation

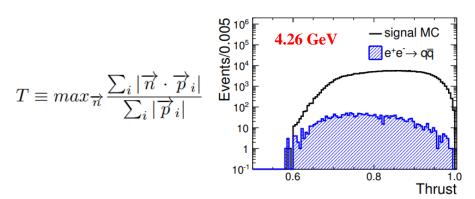
CKM matrix, $D^0 - \overline{D}^0$ mixing CP violation in lepton, hyperon

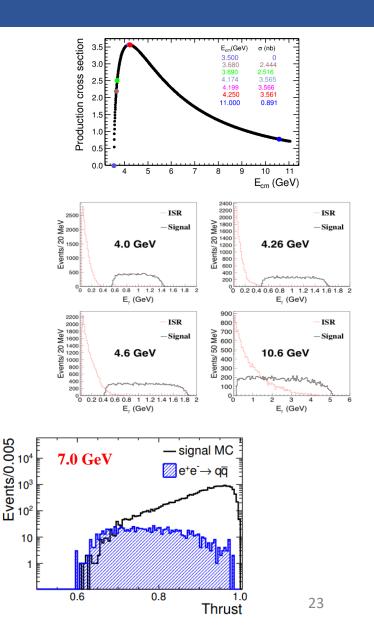
DNew Physics Search

- ≻ Rare/Forbidden
- ➢ Dark particle search

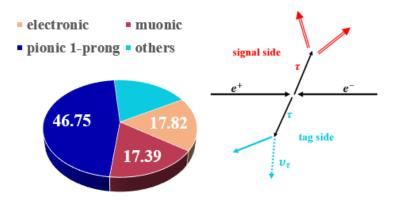
Studies of τ at STCF

Advantage:

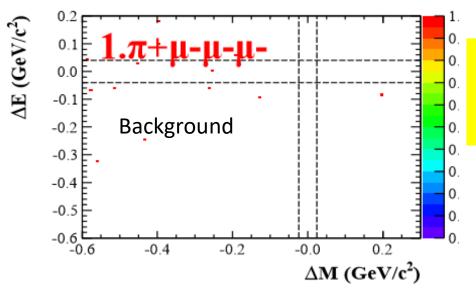

- Threshold production
- Peaking cross section in 4-5 GeV
- At 4.26 GeV, number of tau pairs per year:


 $N_{\tau\tau} \sim 1.0 \text{ ab}^{-1} \times 3.5 \text{ nb} = 3.5 \times 10^9$

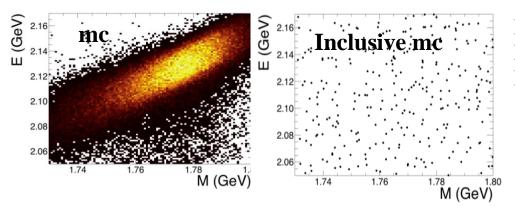
- $e^+e^- \rightarrow \gamma \tau^+ \tau^-$ is not the main background
- Improved π/μ misid rate at STCF


Disadvantage:

- Entangled topology of $e^+e^- \rightarrow \tau^+\tau^-$
- Large $e^+e^- \rightarrow q\bar{q}$ background at low c.m.e

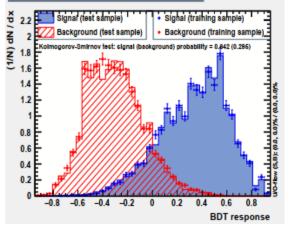


LFV decay of $\tau \rightarrow lll$ at STCF



- ▶ Signal side: $\tau \rightarrow 3leptons$
- ➤ Tag side: $\tau \rightarrow ev\bar{v}$, $\mu v\bar{v}$, $\pi v + n\pi^0$ (Br = 82%)
- ➢ Almost background free, the sensitivity : \mathcal{B}_{UL}^{90} ($\tau \rightarrow \mu \mu \mu$)~1/L
- Sest efficiency ($\tau \rightarrow \mu \mu \mu$): 22.5% (including tag branching fraction)

$$\Rightarrow \text{ STCF with 1ab}^{-1}:$$
$$\mathcal{B}_{UL}^{90}(\tau \to \mu\mu\mu) < \frac{N_{UL}^{90}}{2\varepsilon N_{\tau\tau}} \sim 1.5 \times 10^{-9}$$


LFV decay of $\tau \rightarrow \gamma \mu$ at STCF

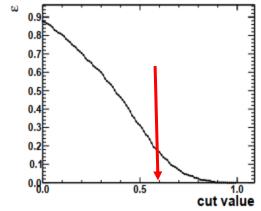
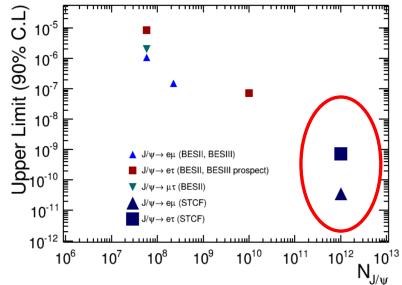

Signal side τ → γμ
Tag side: τ → evv, πv, ππ⁰v(Br = 54%)
Dominant background: e⁺e⁻ → μ⁺μ⁻ and e⁺e⁻ → τ⁺τ⁻, τ⁺ → ππ⁰v, τ⁻ → μvv

TABLE II. Optimization for pion/muon separation.

	μ eff. at 1 GeV	$UL(\mathcal{B}(\tau \to \gamma \mu))/10^{-8}$
$\overline{3\%}$	96.7%	1.2
1.7%	92.6%	1.5
1%	87.3%	1.8

MVA overtraining check for classifier: BDT

LFV decay of $J/\psi \rightarrow e\tau$ at STCF

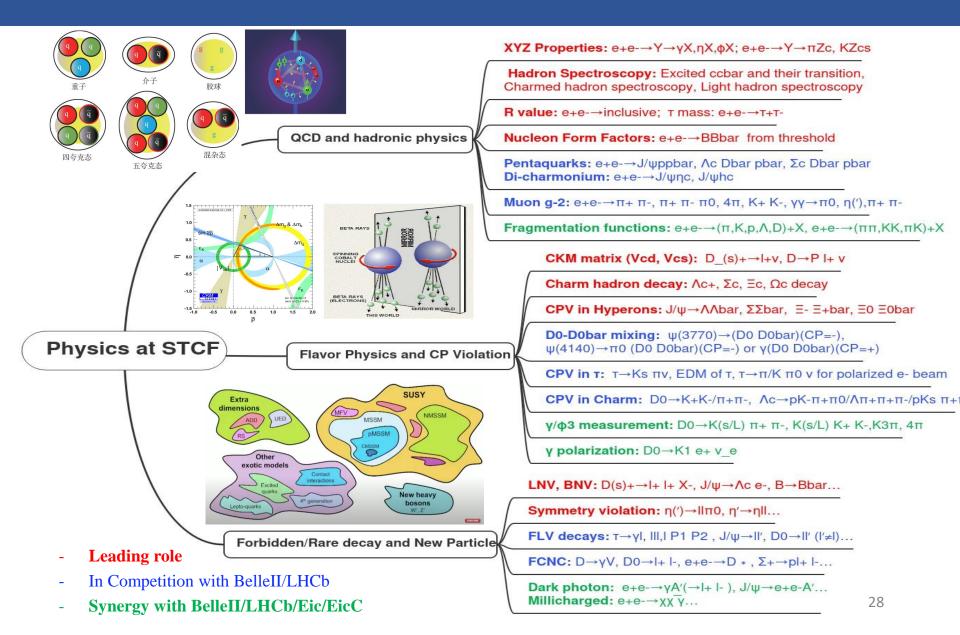

□ The cLFV decays of vector mesons $V \rightarrow l_i l_j$ are also predicted in various of extension models of SM:

 $\square \mathcal{B}_{UL}^{90}(J/\psi \to e\mu) < 10^{-13}$ $\square \mathcal{B}_{UL}^{90}(J/\psi \to e(\mu)\tau) < 10^{-9}$

□ At STCF, 1 trillion J/ψ can be obtained per year, taken efficiency from BESIII, the upper limit can be predicted to be:

- $\square \ \mathcal{B}_{UL}^{90}(J/\psi \to e\mu) < 3.6 \times 10^{-11}$
- $\square \ \mathcal{B}^{90}_{UL}(J/\psi \to e\tau)) < 7.1 \times 10^{-10}$

□ The $\mathcal{B}_{UL}^{90}(J/\psi \to e\tau)$) can be further **optimized** with better PID.

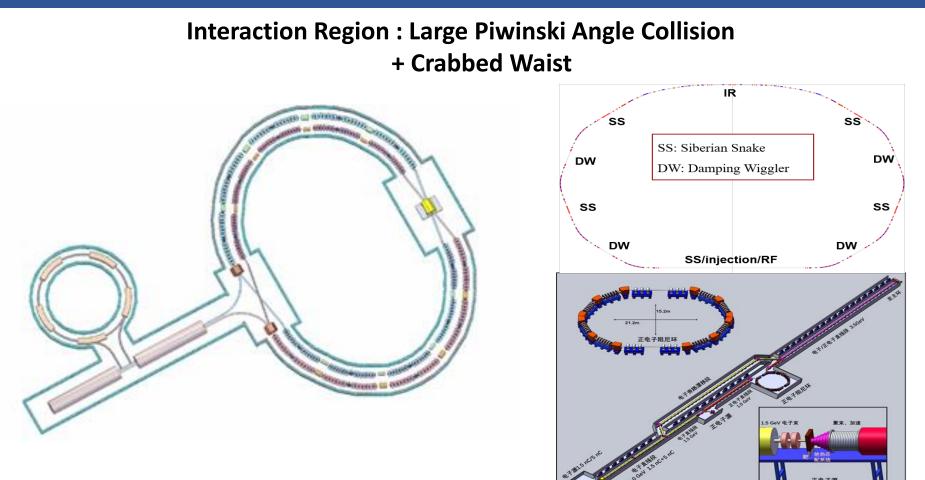


Forbidden/Rare decay and New Particle Search

Physics at STCF	Benchmark Processes	Key Parameters* (U.L. at 90% C.L.)
LFV decays	$\begin{split} \tau &\to \gamma l, lll, lP_1P_2\\ J/\psi &\to ll', D^0 \to ll'(l' \neq l) \dots \end{split}$	$\mathcal{B}(\tau \to \gamma \mu / \mu \mu \mu) < 12/1.5 \times 10^{-9};$ $\mathcal{B}(J/\psi \to e\tau) < 0.71 \times 10^{-9}$
LNV, BNV	$\begin{split} D^+_{(s)} &\to l^+ l^+ X^-, J/\psi \to \Lambda_c e^-, \\ B &\to \bar{B} \dots \end{split}$	$\mathcal{B}(J/\psi\to\Lambda_c e^-)<10^{-11}$
Symmetry violation	$\eta^{(\prime)} ightarrow ll \pi^0, \eta' ightarrow \eta ll \dots$	$ \mathcal{B}(\eta' \rightarrow ll/\pi^0 ll) < 1.5/2.4 \times 10^{-10} $
FCNC	$\begin{split} D \to \gamma V, D^0 \to l^+ l^-, e^+ e^- \to D^*, \Sigma^+ \to \\ p l^+ l^- \dots \end{split}$	$\mathcal{B}(D^0 \rightarrow e^+ e^- X) < 10^{-8}$
Dark photon, millicharged	$\begin{array}{c} e^+e^- \to (J/\psi) \to \gamma A'(\to l^+l^-) \dots \\ e^+e^- \to \chi \bar{\chi} \gamma \dots \end{array}$	Mixing strength $\Delta \epsilon_{A'} \sim 10^{-4}$; $\Delta \epsilon_{\chi} \sim 10^{-4}$


*Sensitivity estimated based on $\mathcal{L} = 1 \text{ ab}^{-1}$

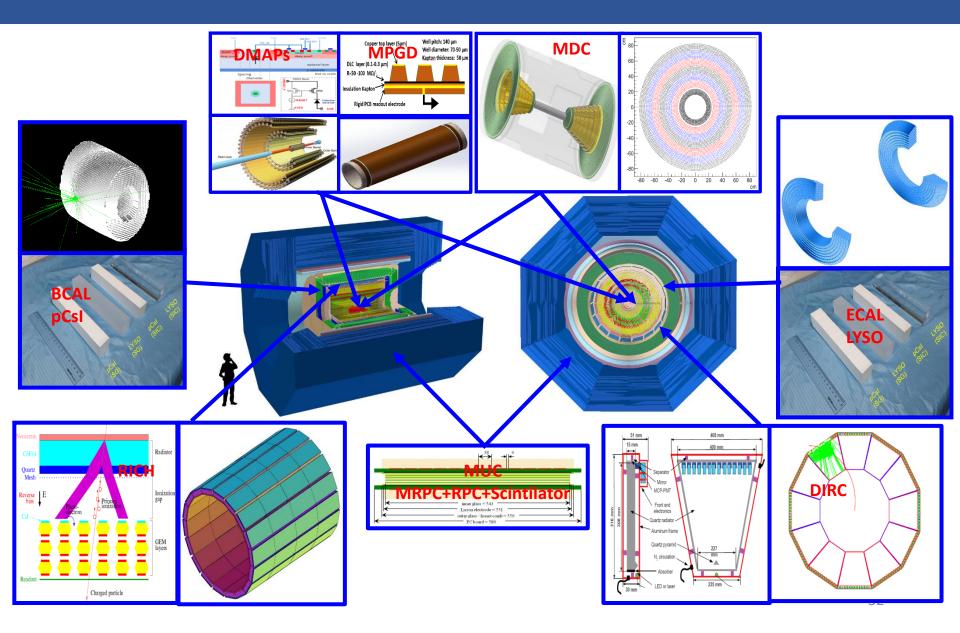
Summary of physics program at STCF



Tentative Plan

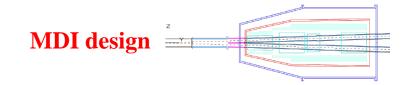
	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031- 2040	2041- 2042
Form Group															
CDR															
TDR															
Construction															
In operation															
Upgrade															

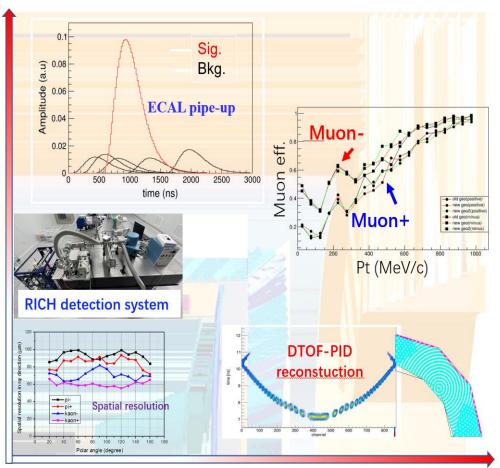
STCF Accelerator


Injector:

- No booster, 0.5 GeV \rightarrow 1~3.5 GeV
- e+, a convertor, a linac and a damping ring, 0.5 GeV
- e-, a polarized e- source, accelerated to 0.5 GeV

Machine Parameters


Parameters	Phase1	Phase2
Circumference/m	600~800	600~800
Optimized Beam Energy/GeV	2.0	2.0
Beam Energy Range/GeV	1-3.5	1-3.5
Current/A	1.5	2.0
Emittance $(\varepsilon_x / \varepsilon_y)$ /nm·rad	6/0.06	5/0.05
β Function <i>ⓐ</i>IP (β_x^*/β_y^*)/mm	60/0.6	50/0.5(estimated)
Full Collision Angle 20/mrad	60	60
Tune Shift ξy	0.06	0.08
Hourglass Factor	0.8	0.8
Aperture and Lifetime	15σ, 1000s	15σ, 1000s
Luminosity @Optimized Energy/×10 ³⁵ cm ⁻² s ⁻¹	~0.5	~1.0


STCF detector

STCF detector

- **MDI**: CDR finished; beam/physics background estimation;
- **Inner Tracker**: MPGD CDR finished, in optimizing; Silicon tracker ongoing
- **MDC**: CDR finished
- **PID**: CDR finished; Prototyle of RICH (2nd version) and DTOF
- ECAL: CDR finished; optimizing crystal and electronics
- MUC: CDR finished; optimizing

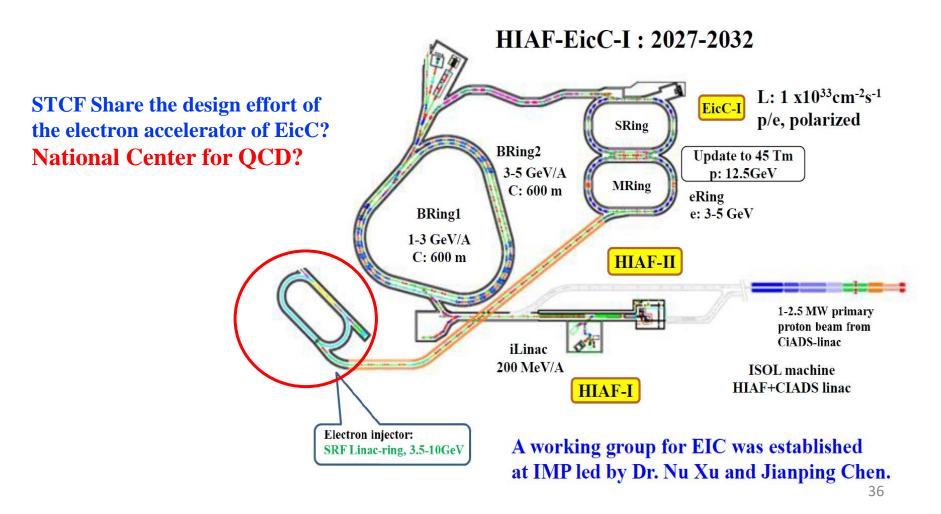
Strategy & Activities

CDR \rightarrow **TDR** \rightarrow project application \rightarrow construction \rightarrow commissioning

- Strategy: focus on CDR (4 years) and TDR (7 years) depend on the available resources. the construction site open.
- Domestic Workshops (2011, 12, 13, 14, 16, 20, 21)
- International Workshops (2015, 18, 19, 20, 21)
- **Funding support** for R&D
- Double First-Class university project foundation of USTC
- CAS international cooperation and exchange project
- National Science Foundation of China (Key/General programs)
- The 14th five-year planning, National Key Basic Research Program of China

Candidate Site : Hefei

One of three integrated national science centers, which will play important role in 'Megascience' of China in near future



- University of Science and Technology of China (USTC)
- National Synchrotron Radiation Lab and Hefei Light Source, operated by USTC
- The only National Lab operated by University in China. (Totally Four officially approved National Labs in China)

- Pay a lot of attention on accelerator facilities
- Hefei Advanced light source is under design
- STCF is listed in future plan

Candidate Site : Huizhou

Institute of Modern Physics, CAS, proposed building HIAF-EicC in Huizhou, Canton

Summary

Super τ -c Facility (STCF):

▶ e⁺e⁻ collision with $E_{cm} = 2 - 7$ GeV, $L > 0.5 \times 10^{35}$ cm⁻²s⁻¹

STCF is one of the crucial **precision frontier**

- rich of physics program
- \blacktriangleright unique for physics with c quark and τ leptons,
- important playground for study of QCD, exotic hadrons and search for new physics.
- Complementary to Belle-II and LHCb in understanding the QCD/EW models and searching for new physics
- Project organization is setup and a working group is toward for CDR/TDR
- □ An International collaboration is essential for promoting the project.

Thanks for your attention! Welcome to join the effort!