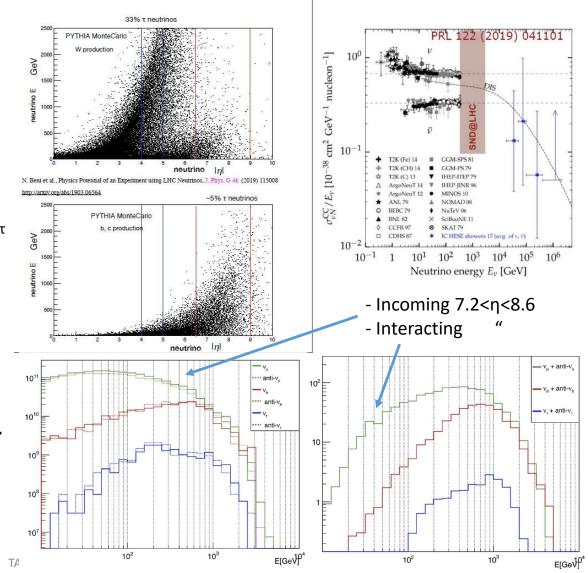


SND@LHC

Scattering and neutrino detector at the LHC

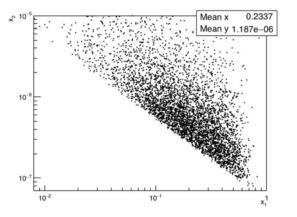
F. L. Navarria – Univ. & INFN-Bologna, Italy TAU2021, IU, Bloomington (virtual), Indiana, USA

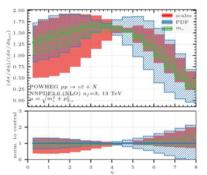


Outline

- - Introduction
- - The detector
- - Physics programme
- - Test beam
- - Conclusions

I: Motivation

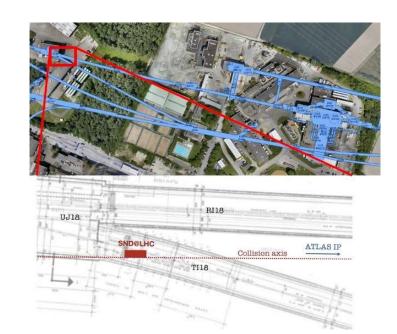

- Abundant high E 100-2000 GeV v_e , v_μ , v_τ flux from W, c decays at the LHC (lower E v_μ also from π/K decay) could fill the gap between accelerator (mostly v_μ , few v_e) and astrophysics measurements also, only 14 v_τ observed so far
- LHC Run 3, 2022-2024, ~150 fb-1 & O(ton) detector with good tracking and PI can do the job
- v from W decays a priori more interesting (they could be tagged with leptons detected in ATLAS/CMS) tests at different distances from IP5 exclude this possibility ($\eta \sim 4.5$, $\theta \sim 22$ mrad, max distance from IP ~ 25 m: overwhelming n, μ background) => $\eta \sim 8$, $\theta \sim 0.7$ mrad at a distance 480 m from IP1 is chosen for a compact detector
- -> SND@LHC was approved by the CERN Research Board on 17 March 2021



I: Motivation (cont.)

- Study v interactions (cross-section, LFU, ..) in a new energy domain
- Systematic uncertainty on the cross-section measurement dominated by the uncertainty on the v flux
- \bullet Study the v source, i.e. using vs as probes, e.g. in some angular region v_e production dominated by charm decays -> measure charm production in pp collisions in the forward region
- Interest for the charm measurement in pp collision at high η (LHCb up to 4.5 in η)
- Prediction of very high-energy v produced in cosmic-ray interactions -> experiment also acting as a bridge between accelerator and astroparticle physics

Gluon PDF in an x-region relevant for Future Circular Colliders



$$R = \frac{d\sigma/d\eta(13\,TeV)}{d\sigma/d\eta_{ref}(7\,TeV)} \qquad \eta_{ref} \sim 4-4.$$

I: Location

- TI18 tunnel
 - Former service tunnel connecting SPS to LEP
 - Symmetric wrt TI12 where FASER is located
 - Initially no infrastructed for operating an active detector!
- ~ 480 m from ATLAS interaction point (IP1)
 - Line of sight shielded by ~100 m rock, only μ and thermal n from beam-gas interaction (and v) survive
 - Charged particles from IP swept away by LHC magnets
- Detector offset wrt the collision axis, both physics-wise (very forward v dominated by π and K decay) & no excavation necessary (just a concrete base)
 - Angular acceptance 7.2 < η < 8.6

LHC seen from the tunnel (empty)

Concrete base & (empty) electronics racks ...

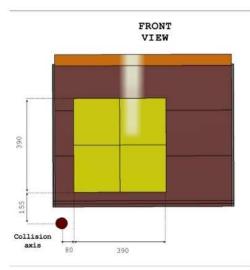
TAU2021 - 21/30/09

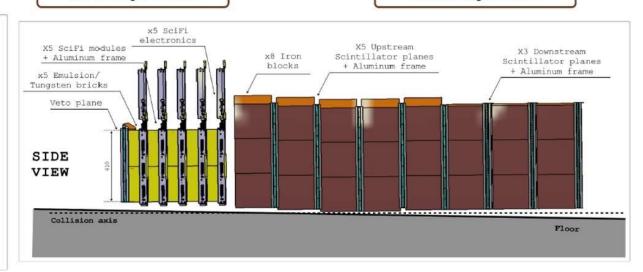
D: Detector concept & layout

Angular acceptance: 7.2< η < 8.6

· Target material: Tungsten

Target mass: 830 kg

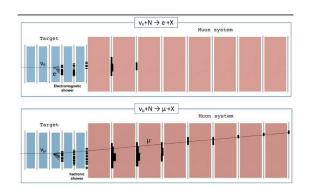

Surface: 390x390 mm²

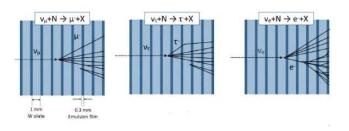

Veto Plane, Target Region (emulsion & tungsten), Muon system/Had Calo

Off axis location

Electromagnetic calorimeter On average ~40 X₀

Hadronic calorimeter On average $\sim 11 \ \lambda$

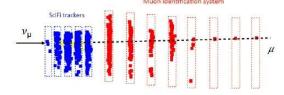


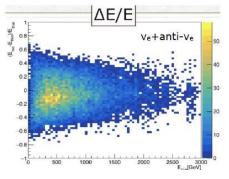

SND INSTALLATION PLANNING	8			,,								202	1	ave.		T			122					2	022	-71
	Month	Fe	ev	M	rch	Avril	May	June	ı	uly		Αι	g		Sep			Oct		Nov		Dec	Ja	n Fe		Dec
	Weeks	5 6	7 8	9 10	11 12	2 14-17	18-21	22-26	27 28	29 30	31 32	33 3	4 35 3	5 37	38 39	40 41	42 43	44 45	46 47	7 48 49	50 51	52 53	1 2	3-4 5 6	8 51-5	2 53
LHC schedule		☆			18	it camp	ugn.		ı j	Slot	s to be	defined										No	iël	Bi	13	Noël
Windows available				*						He filled	LHCm	achine	at 2K				Flo	ating L	HC mad	hine at 20	K			*	2	
Services	10		-										10-			1111		-				- 60				

D: Event reconstruction

- 1st: electronic detectors (Veto, Target Tracker and Muon system)
 - Identify ν candidates
 - Identify μ's in final state
 - em showers (SciFi)
 - ν energy (SciFi+Muon)

- 2nd: nuclear emulsions (event reconstruction in emulsion target)
 - Identify em showers
 - ν vertex reconstruction and secondary search
 - Match with candidates from electronic detectors (time stamp)


TAU2021 - 21/30/09


7

D: Muon identification, energy resolution

- ν_{μ} CC interactions identified by muons, last 3 μ stations equipped with 1 cm wide scintillator bars (others with 6 cm wide ones)
- μ -ID at ν vertex crucial to identify charmed hadron production, background to ν_{τ} detection
- Sampling calorimeter (SciFi + μ filter)
- Average resolution on hadron shower energy: 22% (simple counting $E_h^{rec} = A + B N_{SciFi} + C N_{\mu filt}$)
- ML algorithms being developed to improve resolution
- Much better em energy resolution

	% evts	% evts
	CC-DIS	NC-DIS
0μ	31.1	99.6
1μ	67.6	0.27
2μ	1.1	0.06

Ph: Main physics goals

 $7.2 < \eta < 8.6, 0.4 < \vartheta < 1.5 \text{ mrad}$

Measurement	Uncertainty			
	Stat.	Sys.		
$pp \to \nu_e X$ cross-section	5%	15%		
Charmed hadron yield	5%	35%		
ν_e/ν_τ ratio for LFU test	30%	22%		
ν_e/ν_μ ratio for LFU test	10%	10%		
NC/CC ratio	5%	10%		

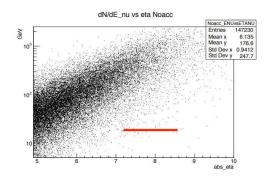
• Expectations in 150 fb⁻¹ (50/50 upward/downward crossing angle)

	CC neutrino	interactions	NC neutrino interactions			
Flavour	$\langle E \rangle [GeV]$	Yield	$\langle E \rangle [GeV]$	Yield		
ν_{μ}	452	606	480	182		
$egin{array}{c} u_{\mu} \ u_{e} \end{array}$	485	248	480	93		
ν_e	760	182	720	54		
$\bar{\nu}_e$	680	97	720	35		
ТОТ		1133		364		

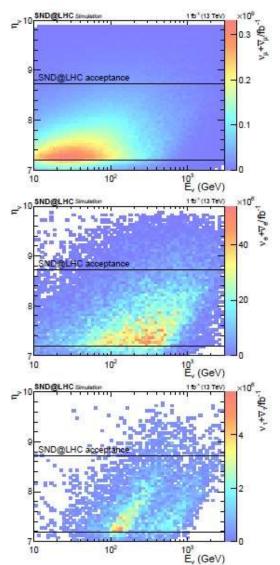
^{~ 20} ν_{τ} CC interactions expected

Upward beam crossing angle

	Neutrinos ir	n acceptance	CC neutrino	interactions	NC neutrino interaction		
Flavour	⟨E⟩ (GeV)	Yield	⟨E⟩ (GeV)	Yield	⟨E⟩ (GeV)	Yield	
ν_{μ}	145	2.1×10^{12}	450	730	480	220	
$\bar{\nu}_{\mu}$	145	1.8×10^{12}	485	290	480	110	
$egin{array}{l} u_{\mu} \\ ar{ u}_{\mu} \\ u_{e} \\ ar{ u}_{e} \\ u_{ au} \end{array}$	395	2.6×10^{11}	760	235	720	70	
$\bar{\nu}_e$	405	2.8×10^{11}	680	120	720	44	
$ u_{ au}$	415	1.5×10^{10}	740	14	740	4	
$ar{ u}_{ au}$	380	1.7×10^{10}	740	6	740	2	
TOT		4.5×10^{12}		1395		450	

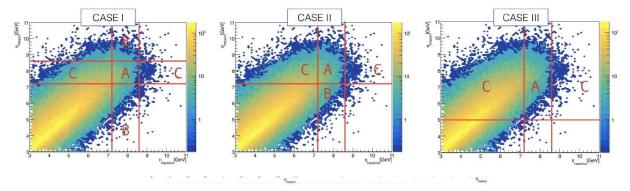

Downward beam crossing angle (35% decrease)

	CC neutrino interaction	ons NC neutrino	interactions
Flavour	⟨E⟩ [GeV] Yield	⟨E⟩ [GeV]	Yield
ν_{μ}	483		145
$\bar{\nu}_{\mu}$	206		77
ν_e	130		38 27
$\bar{\nu}_e$	74		27
TOT	893		287


Neutrino interactions in the acceptance estimated with DPMJET3/FLUKA for 150 fb-1

Ph: Flux vs **η & Ev**

- v_e , v_τ mainly from decay of charmed hadrons
 - 10% v_e from K (<200 GeV), 3% from beauty, interacting within acceptance
- measure charm production by observing $\nu_{\rm e}$ and ${\rm anti}\nu_{\rm e}$
- Soft v_{μ} component from π and K decays


v flux from c, b decays simulated with PYTHIA8

DPMJET /FLUKA π/K included tunnel & Machine simulated

Ph: Charm production measurement

- \sim (100)180 (anti $\nu_{\rm e}$) $\nu_{\rm e}$ interactions expected in 150 fb-1
 - Measure the energy spectrum of $\nu_{\rm e}$ + anti $\nu_{\rm e}$
 - Unfold energy resolution effects to get the reconstructed $\nu_{\rm e}$ + anti $\nu_{\rm e}$ energy spectrum
 - Apply deconvolution of the (SM predicted/assumed) ν /anti ν cross-section to get incoming neutrino flux $\to \nu_{\rm e}$ X
 - From $v_{\rm e}$ back to charm, to estimate the charm production yield
- ~5% (stat), ~35% (syst.: K subtraction (mainly E<200GeV), unfolding and v_e -charm hadron correlation)

Ph: Cross section ratios - LFU

- ν_{τ} mainly from D_s $\rightarrow \tau \nu_{\tau}$ (8% from beauty)
 - ν e from D0, D, Ds and Λ c
 - $\nu_{\rm e}/\nu_{\rm \tau}$ only depends on charm hadronization and decay branching fractions

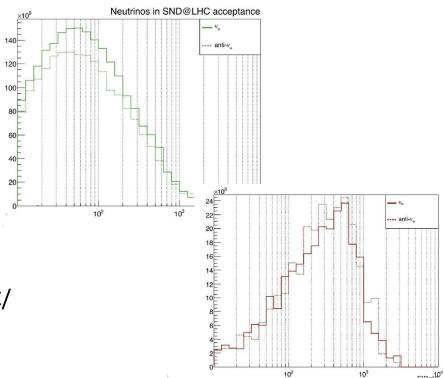
$$R_{13} = \frac{N_{\nu_e + \overline{\nu}_e}}{N_{\nu_\tau + \overline{\nu}_\tau}} = \frac{\sum_i \tilde{f}_{c_i} \tilde{Br}(c_i \to \nu_e)}{\tilde{f}_{D_s} \tilde{Br}(D_s \to \nu_\tau)}$$

- Uncertainties due to charm quark production cancel out
- $v_{\rm e}/v_{\rm \tau}$: sensitive to v-nucleon interaction cross section ratio (22% syst.)
- test of lepton universality in neutrino interactions (30% stat. due to ν_{τ} sample size)
- $v_{\rm e}/v_{\rm u}$ branching fractions practically equal
 - Large contamination of ν_{μ} from π and K, stable above 600 GeV (15% accuracy)
 - $\omega_{\pi/K}$ contamination

$$R_{12} = \frac{N_{\nu_e + \overline{\nu}_e}}{N_{\nu_\mu + \overline{\nu}_\mu}} = \frac{1}{1 + \omega_{\pi/k}}$$

Ph: NC/CC

- Lepton identification for three flavours allows to distinguish CC from NC interactions
- If ν and anti ν fluxes are equal:

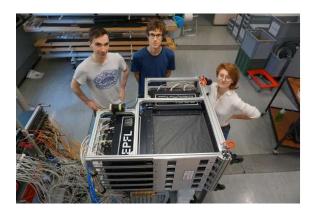

$$P = \frac{\sigma_{NC}^{\nu} + \sigma_{NC}^{\bar{\nu}}}{\sigma_{CC}^{\nu} + \sigma_{CC}^{\bar{\nu}}}$$

(~10% syst. ν /anti ν asym., μ ID, n induced events, CC//NC migration; ~5% stat. nb of NC interactions)

• In case of DIS:

$$P = \frac{1}{2} \left\{ 1 - 2\sin^2\theta_W + \frac{20}{9}\sin^4\theta_W - \lambda(1 - 2\sin^2\theta_W)\sin^2\theta_W \right\}$$
 For tungsten, λ =0.04

Use this as a control measurement



Rep. Prog. Phys. 79 (2016) 12, 124201

TB: Detector assembly

- Emulsion box prototype assembled, being tested
- Veto Fully assembled
- UpStream muon/HCAL
 - Fully assembled
 - Currently at test beam (H8) for E calibration with mock up Fe target
- DownStream muon
 - 2 out of 3 planes assembled
 - Currently at test beam (H8)
- SciFi tracker/ECAL fully assembled
 - Tested with CRs, just moved to test beam (H6)

D: Detector in H8

- Test beam with HCAL/Muon (US complete &DS 1/2 out of 3 stations) system + 30 cm Fe, to simulate a hadron shower starting in the middle of the target, at the CERN SPS (H8)
- Data taking with πs (180, 140, 100 GeV) beginning of Sep., repeated these days at 300, 250 GeV
- Data (being analyzed) extremely important to calibrate MC
- The apparatus will later be moved to H6 to be tested with μs

TAU2021 - 21/30/09 15

Conclusions

- SND@LHC was approved in March 2021
- Compact detector for neutrino studies to be ready for Run 2 data taking (Feb 2022)
- Expect ~ 1500 neutrino events for 150 fb-1
- Area being equipped (from void): on schedule
- Detector construction is proceeding on schedule, installation in Nov-Dec
- Test beam of US and DS muon detectors with pions ongoing, later commissioning with muons

Thank you