Tau neutrino physics in the DUNE experiment

Thomas Kosc, for the DUNE collaboration (ex)-PhD student at Institut de Physique des 2 Infinis (France) <u>kosc.thomas@gmail.com</u>

Tau Lepton 2021 conference, 01/10/2021

- Unprecedented sensitivity to v_{μ} —> v_{τ} oscillations (~30 beam events / 10kTon / year). DONUT 9 candidates (2008), OPERA 10 candidates (2018)
- Only large scale neutrino experiment with this sensitivity
- Physics perspectives (de Gouvêa et al.) 10.1103/PhysRevD.100.016004 :
 - 3 flavour phenomenology
 - PMNS unitarity test
 - Sterile neutrino
 - Non-standard neutral current interactions
- Cross section measurement

DUNE (I)

Future long-baseline (1285 km) beam neutrino experiment between Fermilab and Sanford. Start by the end of the decade.

- Characteristics:
 - I.2 MW beam (upgradable to 2.4 MW)
 - Near detector hall (Fermilab)
 - four 10 kTons (fiducial mass) modules at far detector site

DUNE (II)

- Tuned to study subleading v_{μ} —> v_e oscillations (~10%) sensitive to last unconstrained PMNS parameter δ_{CP} , related to possible CP violation
- Rich program
 - Neutrino oscillations (mass hierarchy, octant of θ_{23} , CP violation study)
 - Neutrino astrophysics (supernovae, solar)
 - BSM studies
- >1000 physicists, >30 countries, >200 research institutions

Liquid Argon Time Projection Chambers

- ► Far detector chosen technology:
 - Excellent spatial resolution
 - Excellent calorimetric response

- Step to large scaling at CERN
 - Excellent spatial resolution
 - Excellent calorimetric and dE/dx responses

τ optimized neutrino beam opportunity DEEP UNDERGROUND NEUTRINO EXPERIMEN

- Alternative beam design to run with a higher energy neutrinos:
 - Kinematic suppression
 - CC 3.45 GeV threshold

• τ neutrino statistics boosted by a factor 6 !

Physics opportunitites - PMNS non-unitarity

DEEP UNDERGROUND NEUTRINO EXPERIMENT

- Poor v_{τ} appearance, no v_{τ} disappearance
- DUNE will help constraining 3rd column unitarity at ~5%

$$\begin{aligned} \frac{d^2 \sigma^{\nu(\bar{\nu})}}{dxdy} &= \frac{G_F^2 M E_{\nu}}{\pi (1 + Q^2/M_W^2)^2} \left(y^2 x + \frac{m_\tau^2 y}{2E_{\nu} M} \right) F_1 \\ &+ \left[\left(1 - \frac{m_\tau^2}{4E_{\nu}^2} \right) - \left(1 + \frac{M x}{2E_{\nu}} y \right) \right] F_2 \\ &+ \left[xy \left(1 - \frac{y}{2} \right) - \frac{m_\tau^2 y}{4E_{\nu} M} \right] F_3 \\ &+ \frac{m_\tau^2 (m_\tau^2 + Q^2)}{4E_{\nu}^2 M^2 x} F_4 - \frac{m_\tau^2}{E_{\nu} M} F_5. \end{aligned}$$

• Expect ~170 v_{τ} CC / 10kTon / year with τ optimized beam

- No direct reconstruction of the τ lepton feasible for DUNE
- Follow the pioneering work of the NOMAD collaboration (90's):
 - 1τ decay mode = 1 dedicated analysis
 - Transverse plane known for beam events
 - Large transverse missing momentum associated to leptonic decay modes of the τ (Albright & Shrock, 1978)
- Promising decay modes
 - τ —>e: final state electron + large BR (better than τ —> μ)
 - $\tau \rightarrow \rho \rightarrow \pi_0 \pi$: large BR + invariant masses of ρ and π_0
 - τ —> 3π : large hadronic activity

- Simulation driven likelihood analysis on three τ decay modes, each with its associated backgrounds
- ~40% signal selection efficiency with >95% background rejection for each

	Standard LBNF ν beam	τ optimized beam
3 channels combined		
$ u_{ au}$	44.0 ± 0.3	284.2 ± 1.6
Backgrounds	202.9 ± 2.1	375.4 ± 4.1
Significance	3.0 ± 0.0	13.2 ± 0.1

• Asimov significance (3.5 years staged normalization) shows gigantic help of the alternative τ optimized neutrino beam

Short baseline v_{μ} —> v_{τ} appearance analysis DEEP UNDERGROUND NEUTRINO EXPERIMENT

$$P(v_{\mu} \rightarrow v_{\tau}) = \sin^2(2\theta_{\mu\tau})\sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

Improve sensitivity wrt NOMAD

- Sterile scenario with Δm²~eV²: v_τ appearance !
- Work ongoing on several τ
 decay modes (leptonic and ρ)

• Better sensitivity than beam v_{τ}

Clear 1st oscillation maximum with atmospheric sample

- DUNE (Deep Underground Neutrino Experiment) is a future longbaseline neutrino experiments tuned to probe possible CP violation in the neutrino sector via v_{μ} —> v_{e} oscillations.
- DUNE will have an opportunistic and unprecedented sensitivity to τ neutrino appearance (~30 beam events / 10 kTon / year).
- Phenomenological studies: PMNS unitarity, 3-flavour phenomenology, cross-section, sterile neutrinos.
- v_{τ} search at the fast Monte Carlo level ongoing.

Thank you !

LES 2 INFINIS Lyon

