

TAU2021: 16th International Workshop on Tau Lepton Physics

Federica M. SIMONE¹ on behalf of the CMS Collaboration ¹ Univ. di Bari e INFN Bari

SEARCH FOR $\tau \to 3 \mu$ decays with cms EXPERIMENT AT LHC

MOTIVATIONS AND STATE OF THE ART ANALYSIS: HEAVY FLAVOUR CHANNEL

CHARGED LEPTON FLAVOUR VIOLATION

Lepton Flavour Violation (LFV) is allowed in the Standard Model extended to include neutrino mass. LFV for charged leptons has never been observed:

Date	Experim ent	Exp. [*]	Obs [*]	[*] x 10 ⁻⁸ at 90% CL	
2010	Belle	-	2.1	$ee \rightarrow \tau \tau$	[4]
2010	BaBar	4.0	3.3	$ee \longrightarrow au au$	[5]
2014	LHCb	5.0	4.6	HF channel - Run I	[6]
2016	ATLAS	39	38	W channel - Run I	[7]
2020	CMS	6.9	8.0	HF + W - 2016	[8]

SEARCH FOR $\tau \rightarrow 3\mu$ at colliders

ANALYSIS STRATEGY

D/B $\rightarrow \tau \rightarrow 3\mu$ signal MC \frown Data

Online: dedicated trigger					
low-p _T μμ pairs + 1 track					
forming displaced common vertex					

02. BOOSTED DECISIO

By QCD MC study, we know the dominant background is $B \rightarrow D$ cascade muonic decays, combined with a π/K

- Data sidebands used as bkg in BDT analysis
- Vertexing variables the most discriminating • 3µ vertex chi2, 3µ vertex displacement • angle between the PV-SV direction and the 3µ direction

• Suppressed in the Standard Model: Branching Ratio $\tau \rightarrow 3\mu$ (SM) ~ $\mathcal{O}(10^{(-54)})$ [1]

• Enhanced BR in SUSY, 2HDM Branching Ratio $\tau \rightarrow 3\mu$ (BSM) ~ $\mathcal{O}(10^{-7} \div 10^{-9})$ [2][3]

at LHC: $\sigma(10^{11})/\text{fb}^{-1} \tau$ leptons

Heavy Flavour (HF) $(D \rightarrow \tau v, B \rightarrow \tau v..., B \rightarrow D(\tau v)...)$ large cross section; low p_T ; high η ; high bkg

Heavy Flavour (W) relatively small cross section; high p_T; low bkg

CMS is capable of exploring both! Search for $\tau \rightarrow 3\mu$ in 2016 Run II data [8]

ANALYSIS: W CHANNEL

RESULTS - 2016 DATA

Higher trigger and offline selection efficiency

• Presence of large MET in the final state

• $W \rightarrow Iv$ like signature, where I indicates a narrow, isolated 3μ 'jet'

02.BOOSTED DECISION

BDT training:

- Isolation, missing energy, transverse mass, muon reconstruction quality as input variables
- Using a 10-fold cross-validation to exploit the limited statistics in BDT training

Signal is extracted from a maximum likelihood fit to the 3µ system invariant mass, in each of the six event categories. – MC signal is parametrized with Crystal Ball functions - exponential plus a polynomial to model the background. • Systematics uncertainties are treated as nuisance parameters in the fit.

- No significant event excess observed
- Upper limits on the branching fraction $BR(\tau \rightarrow 3\mu)$ are set using the modified frequentist CLs criterion Observed (expected) BR($\tau \rightarrow 3\mu$) = 9.2 (10.0) 10⁻⁸ at 90% C.L.

- Two event categories: barrel-endcap
- No significant event excess observed

Observed (expected) BR($\tau \rightarrow 3\mu$) = 19.5x10⁻⁸ (12.9x10⁻⁸) 10⁻⁸ at 90% C.L.

Combining the two channels, the upper limit on BR($\tau \rightarrow 3\mu$) set by the CMS experiment using the 2016 Run 2 data is: Observed (expected) BR($\tau \rightarrow 3\mu$) = 8.0x10⁻⁸ (6.9x10⁻⁸) 10⁻⁸ at 90% C.L

PERSPECTIVES

Run II, pp @ 13 TeV: Analysis at final stages **2017:** 38 fb⁻¹ **2018:** 59.7 fb⁻¹

• Higher statistics \rightarrow Higher sensitivity and larger statistics to train Multi-Variate discriminators • CMS detector in 2017 and 2018: improved pixel detector \rightarrow improved vertex reconstruction and track momentum resolution

[5] Phys. Rev. D 81, 111101 (2010)

[7] Eur. Phys. J. C 76, 232 (2016)

[6] J. High Energ. Phys 02-2015, 121, (2015)

[8] J. High Energ. Phys. 2021, 163 (2021)

The $\tau \rightarrow 3\mu$ search in Run 3:

Dedicated trigger path under development:

• Goal: lowering the p_T threshold to enhance the signal acceptance while keeping similar rates as 2018. Enlarge eta acceptance

New tools in Run 3:

- Level-1 trigger: implementation of a 3-µ invariant mass object
- CSC-GEM segment (1.6 < |eta| < 2.1)
 - improved momentum resolution at L1 trigger
 - Extended eta coverage

Bibliography:

[1] Eur. Phys. J. C 79, 84 (2019) [2] Phys. Rev. D 77, 073010 (2018) [3] Phys. Rev. Lett., 89, 241802 (2002) [4] Phys. Lett. B 687, p139-143 (2010)

Contact:

email federica.maria.simone@cern.ch

Dipartimento Interateneo di Fisica dell'Università degli Studi di Bari e del Politecnico di Bari Istituto Nazionale di Fisica Nucleare (INFN) - sezione di Bari

TAU2021: The 16th International **Workshop on Tau Lepton Physics** 27 Sept – 1 Oct 2021