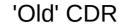
Inclusive jet cross sections at LHeC and prospects for an α_s determination

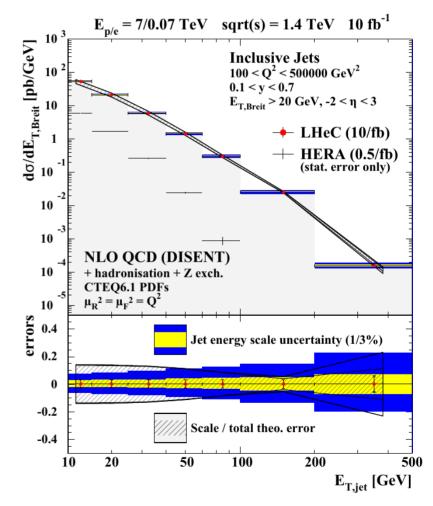
<u>D. Britzger,</u> J. Hessler, Max-Planck-Institut für Physik München, Germany together with NNLOJET (Th. Gehrmann, J. Niehues, A. Huss, D. Walker)

30.09.2019

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Inclusive jet cross sections

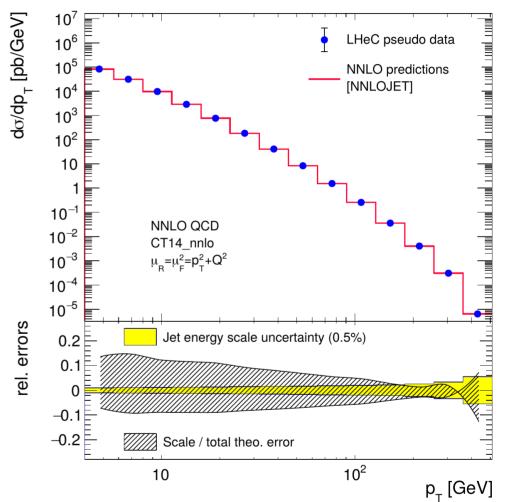

Inclusive jet cross sections


- Measured in Breit frame
- LO proportional to $O(\alpha_s)$
- Jets are defined as kT jets, R=1.0
 - \rightarrow low hadron. uncertainty

Large cross section Large kinematic reach

In comparison to HERA

- HERA: 5 < p_T < ~60 GeV
 LHeC: 4 < p_T < ~600 GeV
- HERA: 5.5 < Q² < ~15000 GeV² LHeC: 4 < Q² < ~600000 GeV²



New NNLO predictions

NNLOJET + fastNLO

- NNLOJET predictions (Gehrmann et al.)
- NNPDF31 as PDF
- $x_{min} \sim 0.5 * 10^{-5}$
- Scale: $\mu_{R}^{2} = \mu_{F}^{2} = Q^{2} + p_{T,jet}^{2}$
- 4 < Q² < 524288 GeV²
- 0.001 < y < 0.95
- $-5 < \eta_{\text{lab}} < 5$
- p^T_{jet} > 4 GeV
- electron method for reconstruction of Q² (and x for boost)
- NNLO scale uncertainty: vary scales by 0.5 and 2

Pseudo-data & error summary

Pseudo-data obtained from NNLO predictions

- It was validated, that when using data==prediction, no bias on the error esimate is observed
- [*] stat: at highest- p_{τ} , assume that 2 jets are recorded per event (back-to-back)

Uncertainty	Shift	Size on cross section
Statistics [*]	min 0.15%	>0.15%, < 5%
Electron energy	0.1 %	0.02 - 0.62%
Polar angle	2mrad	0.02 - 0.48%
Calorimeter noise	+/- 20 MeV (per jet)	0.01 - 0.74%
JES	0.5 % (lab-frame)	0.2 - 4.4%
Uncorrelated		0.6%
Normalisation		1.0%

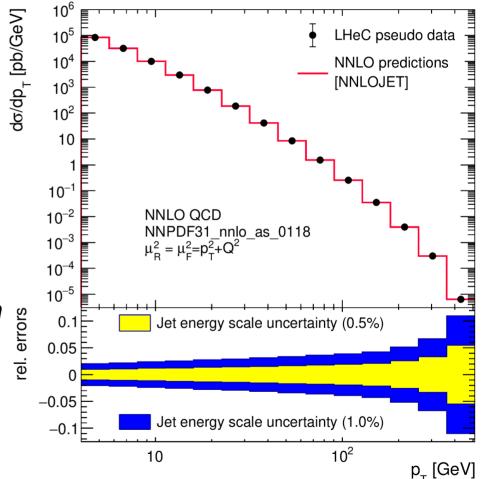
- Any further uncertainty (eff., model, unfold, rad.-corr., etc.) has an unknown pT and Q2 shape
 - → further uncertainty are represented through **uncorrelated** or **normalisation**

Jet energy scale uncertainty

Jet energy scale uncertainty

• Achieved precision at HERA (H1): 1%

LHeC


- Likely achieve: $\delta_{\text{JES}} \sim 0.5\%$

Propagation to cross sections

- JES is defined in lab-frame
- Dedicated simulation performed to

Size of JES uncertainty on cross section

- Similar to values reported by H1
- Very similar with CDR2012

Fit methodology

Fit methology

- similar to EPJ C77 (2017) 791 & EPJ C79 (2019) 68 & arXiv:1906.05303
- NNLO predictions: account for α_s in ME & DGLAP ($\mu_0 \sim 30 GeV$) ME (NNLOJET), P (QCDNUM)

Only $f_{\mu 0}$ is taken from NNPDF31

$$\sigma = f_{\mu_0} \otimes P_{\mu_0 \rightarrow \mu_F}(\alpha_s(M_Z)) \otimes \hat{\sigma}(\alpha_s(M_Z), \mu)$$

- α_s dependence in P is almost negligible

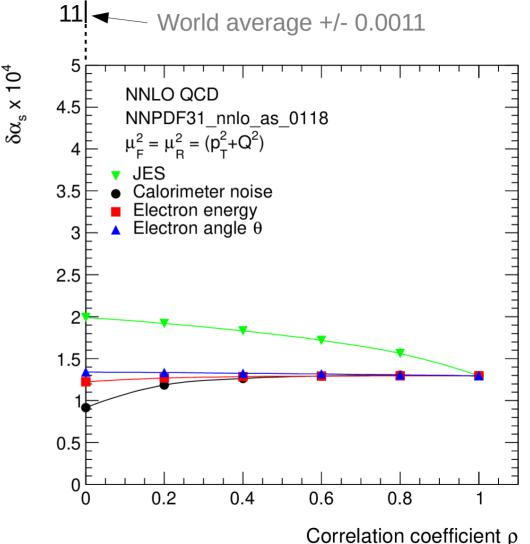
Minimisation with Minuit

- Consider all uncertainties as 'relative' in χ^{2}
- \rightarrow No 'error-rescaling' needed.
- \rightarrow No dependence on actual size of cross section in fit

Consider 2D pseudo-data

- use 509 data points (H1 had 78 in HERA-II)
- pT binning gauged with CMS and H1 binning
- Q2 binning gauged with HERA (H1) NC DIS binning

$$\chi^2 = \sum_{ij} \log \frac{\varsigma_i}{\tilde{\sigma}_i} V_{ij}^{-1} \log \frac{\varsigma_j}{\tilde{\sigma}_j}$$

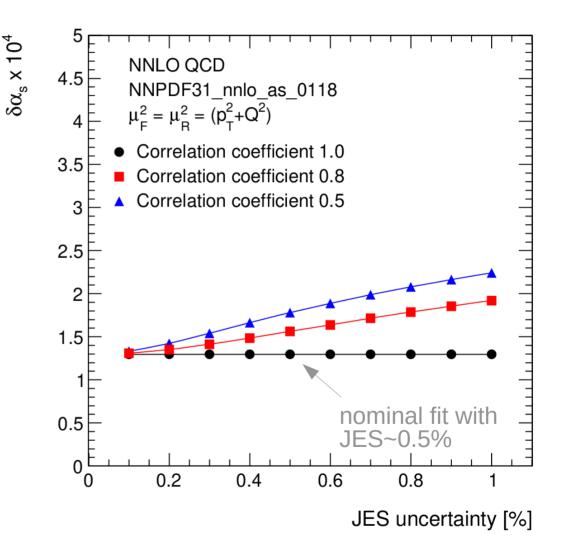

α_s uncertainty vs. 'correlation model'

Systematic uncertainties are considered as 'fully' correlated

- This may not be overoptimistic
- A full calibration could come with many smaller (correlated) error sources

Vary the correlation of a single syst. uncertainty

- Electron uncertainties are altogether fairly negligible
- Calorimeter noise decreases $\delta \alpha_{s}$ when considered uncorrelated
- JES increases $\delta \alpha_{s}$ when 'decorrelating' it


Size of jet-energy scale (JES)

Jet energy scale (JES)

- JES is expected to be 0.5% at detector-level
- H1 achieved 1%
- ATLAS/CMS ~1% (but pile-up, and difficult in-situ calibration!)
- Maybe even 0.3% is achievable ?!

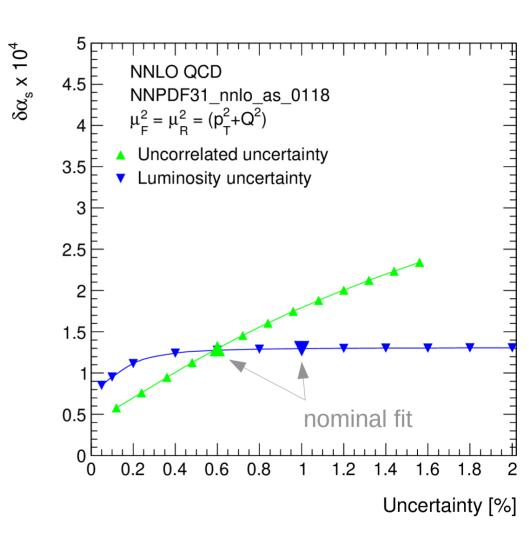
Increase JES

- 0.1% up to 1.0%
- For fully correlated JES, size of JES irrelevant (but shape matters)
- moderate de-correlation:
 - $\rightarrow\,$ moderate increase of $\delta\alpha_s$

Size of normalisation and uncorr. uncert.

Study size of

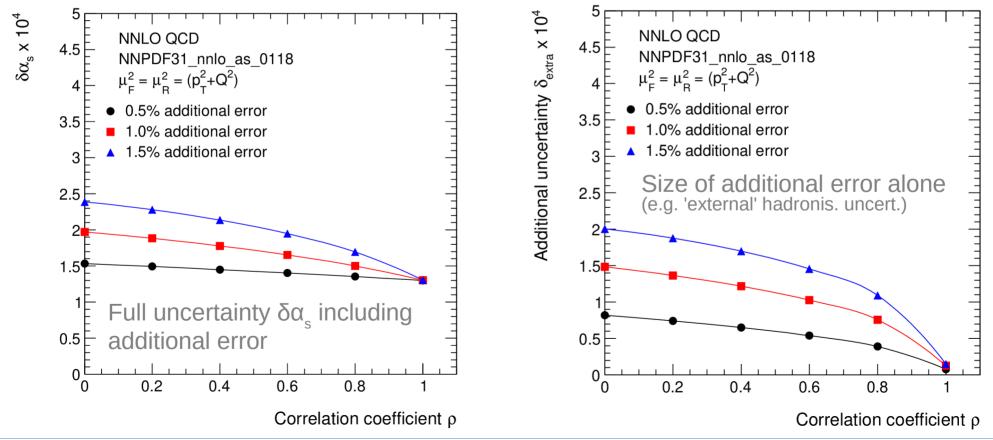
- normalisation uncertainty
- uncorrelated uncertainty


These two errors collect all sources with unknown p_{τ} and Q^2 dependence

Normalisation uncertainty

• Fit uncertainty largely <u>independent</u> on size of normalisation uncertainty

Uncorrelated uncertainty


- Fit uncertainty <u>largely dependent</u> on size of uncorr. uncertainty
- Dominant uncertainty
- Difficult to estimate & correlates with number of data points

Consider an additional error

One additional error of same size for all points

- Study different sizes (0.5, 1.0, 1.5%) vs. its correlation
- Moderate increase in uncertainty

D. Britzger, J. Hessler – α_s from jets at LHeC

Error budget

Estimate size of individual uncertainty

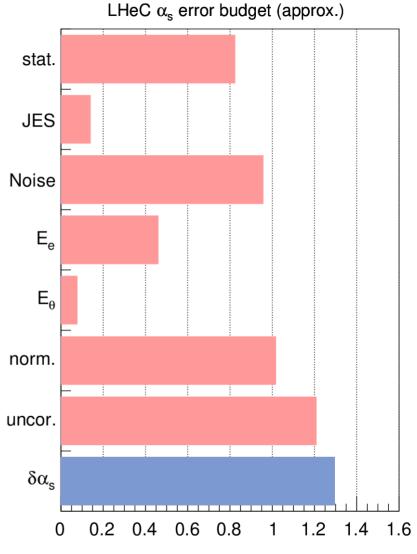
- Repeat fit with a single source excluded
- Calculate quadratic 'difference' to nominal fit uncertainty

 \rightarrow (only) an approximate estimate

(quadratic sum of all sources overestimates total uncertainty)

Reasonable estimate

• Uncor. dominant


AlphasMz

- stat. not negligible (min 0.15%)
- Calo-Noise more important than JES \rightarrow shape more similar to α_s dependence
 - \rightarrow more important at lower p_T
- Electron uncertainties negligible
- Normalisation uncertainty important albeit it is finally constraint by fit

LHeC_ElEn

PDF uncert (NNPDF31) ~ 0.0002 [not shown]

LHeC ElTh

 $\delta\alpha_s \times 10^4$

LHeC QCD meeting

Correlations

AlphasMz

D. Britzger, J. Hessler – α_s from jets at LHeC

LHeC_Lumi

-0.82283

LHeC_Noise

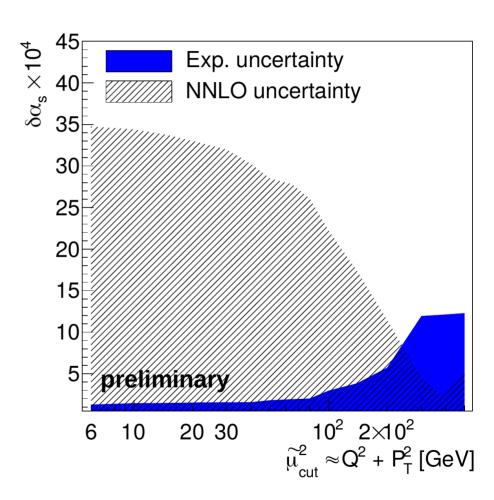
-0.86228

LHeC JES5

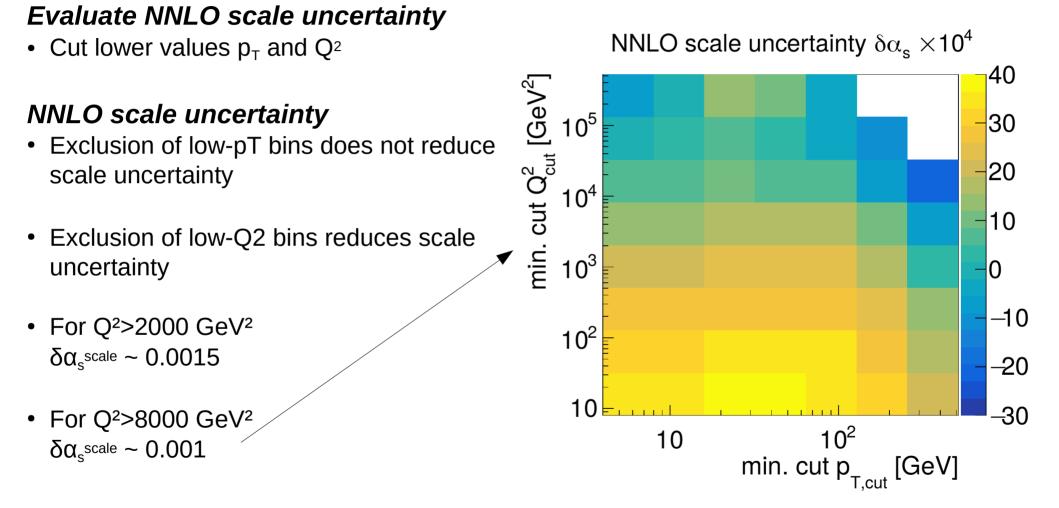
-0.30176

NNLO scale uncertainty

Scale uncertainty


- Vary scale(s) by 0.5 and 2 Or alternatively:
- Estimate derivate w.r.t. μ_R , μ_F and get scale uncertainty as linear error propagation

Scale uncertainty full fit

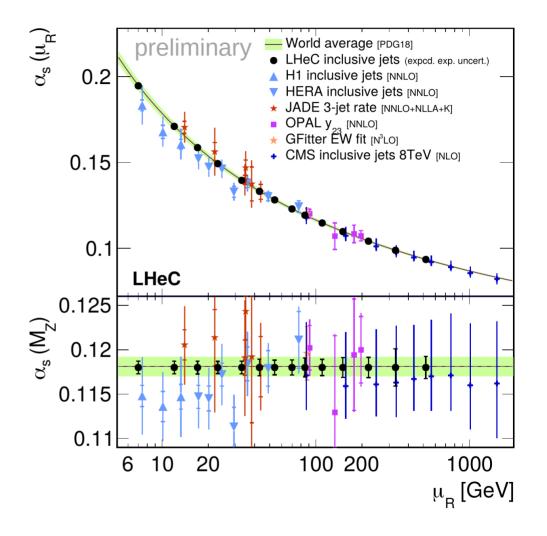

- about: +/- 0.0035
- \rightarrow fairly large

Restrict data to higher scales

- define a lower cut: $\mu^2 \sim Q^2 + p_T^2$
- Cut lower scales: expect reduction of scale uncertaint

NNLO scale uncertainty

α_s determination at different μ_R intervals


α_s determination at different μ_r intervals

→ 'running' Use: $\mu_R^2 = Q^2 + p_T^2$

High exp. sensitivity over large kinematic range

- $6 < \mu_R < 600 \text{ GeV}$
- Exp. uncertainty typically $\delta \alpha_s \sim 0.0007 0.0011$ for all studied intervals

Great improvement over other (jetbased) measurements

α_s from inclusive NC/CC DIS cross sections

Perform α_s -fit together with PDFs

- 'standard' HERA-like parameterisation
- Validate that different gluon param. do not alter the α_s uncertainty significantly

NC+CC DIS @ 60 x 7000 GeV

• $\delta \alpha_s \sim 0.00029$

NC+CC DIS @ 50 x 7000 GeV

- $\delta \alpha_s \sim 0.00038$
- $Q^2 > 20 \text{ GeV}^2$: $\delta \alpha_s \sim 0.00044$

Snowmass 2013

case	cut $[Q^2 \text{ in } \text{GeV}^2]$	relative precision in $\%$
HERA only (14p)	$Q^{2} > 3.5$	1.94
HERA+jets (14p)	$Q^{2} > 3.5$	0.82
LHeC only (14p)	$Q^{2} > 3.5$	0.15
LHeC only (10p)	$Q^{2} > 3.5$	0.17
LHeC only (14p)	$Q^2 > 20.$	0.25
LHeC+HERA $(10p)$	$Q^{2} > 3.5$	0.11
LHeC+HERA $(10p)$	$Q^{2} > 7.0$	0.20
LHeC+HERA $(10p)$	$Q^2 > 10.$	0.26

+ inclusive jets

 NC/CC + incl. jets: fit does not yield reliable uncertainties (yet)

> (prel.) conclusion In such a 'combined' PDF+ α_s fit I do not see much impact of the inclusive jet pseudo-data

LHeC QCD meeting

D. Britzger, J. Hessler – $\alpha_{\!_{S}}$ from jets at LHeC

exp. error on α

0.23% :=(1)

0.36% :=⁽²⁾ 0.22%

0.48%

0.22%

0.35%

DATA

NC & CC

NC e⁺ only

∩_µ>5°

m stat. *= 2

Summary and conclusions

Inclusive jets @ LHeC

- new NNLO calculations performed
- pseudo-data estimated

α_s estimate

- α_s uncertainty estimated from inclusive jet pseudo-data
- Exp. uncertainty: $\delta \alpha_s \sim 0.00013$
 - \rightarrow Improvement w.r.t. current world average by factor ~8
- NNLO scale uncertainty remains
 - \rightarrow Reduction feasible with restricted kinematic range (remove parts with large log(pT/Q))
 - \rightarrow Reduction possible with improved predictions (resumm.)
 - \rightarrow Other processes with possibly less scale dependence (e.g. di-jets)
- αs from inclusive DIS
 - $E_{\rm e}$ = 60 GeV: $\delta \alpha_{\rm s} \sim 0.0003$
 - $E_e = 50 \text{ GeV}$: $\delta \alpha_s \sim 0.0004$