(preliminary)

in the bending plane

muon momentum reconstruction

SAND-DUNE
From report by Paola...

Work in progress ...

Integration of 3DST, surrounded by tracking devices, + LAr meniscus

(SAND: Solenoid for Accurate Neutrino Detection, for DUNE)

FLUKA Simulation of SAND-DUNE
MC sample

5,000 \(\nu \)-CC interactions in the 3DST

Calorimeter

STT MC hits (all particles)

STT digits (muons)

Interaction vertices

(2.24 x 2.24 x 2.4 m³)

3DST
Muon trajectories are selected from MC information, in 3DST and STT, separately, in 3DST and STT, separately.Muon trajectories are selected from MC information.

Rec-p_{yz} [GeV/c] = 0.18 * R_{curv} [m]

estimate of p_{yz} (u-momentum in the bending plane):

- yz view, assigning proper coordinate errors (Dz, Dy)
- yz view, assigning proper coordinate errors (Dz, Dy)
- yz view, assigning proper coordinate errors (Dz, Dy)

Each muon-track is fitted by a circle function, in the yz view.

Straw Tube Layer hits provided by MC

STT: 1 "digit" for each plane in yz view (by grouping

"CellTree" in MC)

3DST: 1 hit (x, y, z coordinates) for each cubic cell

Muon tracks fits
Example events

Muon in 3DST

Muon in STT

N_{ev} = 4

Error on p_{yz} (~10% of events) absorbed

N_{ev} = 10

N_{ev} = 3

N_{ev} = 14
Muon p_T reconstruction in 3DST (1)

Due to poor space resolution, energy loss, multiple scattering...

Poor muon-p_T resolution from 3DST tracks...

1° method:

Muon p_T reconstruction in 3DST (1)

$>$10% multiple hits in the view due to superimposed cells neglected

fit of u-track in yz view, using $\Delta z = \Delta y = 0.5 \text{ cm}$

$N_{\text{cell}} > 90$
Muon p'yz reconstruction in 3DST (2)

In the track fit, greater weights are assigned to cells with larger pathlengths...

In the track fit, greater weights are assigned to cells with larger pathlengths...

$$D_z = D_y \cdot 1/E_{\text{dep} \text{-- cell}}$$

fit of u-track in yz view, using $\forall z = \forall y \cdot 1/E_{\text{dep} \text{-- cell}}$

method:

(multiple hits in the view due to superimposed cells neglected)
Muon p_T reconstruction in 3DST (2)

Giving 3DST hits a proper error depending on cell pathlength does not improve the resolution >10%.
Better muon-p_T^z resolution from STT tracks (in spite of a smaller average number of hits on track)

Muon-p_T^z reconstruction in STT

$\Delta z = 0.1 \text{ mm}, \ \Delta y = 0.2 \text{ mm}$

Fit of p_T-track in yz view, using coordinate spreads
Muon p_{yz} reconstruction in STT (2):

- Error related to initial p_{y0}^z (Muon at generation)
 - 7.6%

- Error related to p_{yz} ofMuon entering STT
 - 4.0%
Improvement in the resolution is observed when the STT hits are added to 3DST.

Muon p_T^Z reconstruction in 3DST+STT
Conclusions

Preliminary results on muon-pyz reconstruction (using MC information) show a better resolution in spite of a greater number of hits.

> Adding STT hits to the muon track in 3DST seems improving the resolution
> Weighing space errors of 3DST hits does not improve the resolution
> Probably due to poorer space resolution on hits, larger energy loss, multiple scatter ing,

for STT than 3DST (in spite of a greater number of hits)

Preliminary results on muon-pyz reconstruction

Conclusions