Study of $B \rightarrow D^{(*)} \ell \bar{\nu}$ semileptonic decays by using lattice QCD

Jaehoon Leem
Korea Institute for Advanced Study

The 1st AEI Workshop for BSM and the 9th KIAS Workshop on
Particle Physics and Cosmology
Nov. 4-8, 2019

SWME-LNAL collaboration

Los Alamos National Laboratory

- Sungwoo Park
- Rajan Gupta
- Tanmoy Bhattacharya

Brookhaven National Laboratory

- Yong-Chull Jang

Seoul National University

- Weonjong Lee
- Jon A. Bailey
- Jaedon Choi
- Sunkyu Lee
- Seung-Yeob Jwa

Korea Institute for Advanced Study

- Jaehoon Leem (Speaker)

Motivation

- $B \rightarrow D^{(*)} \ell \bar{\nu}$ decays : determine $\left|V_{c b}\right|$.
- $\left|V_{c b}\right|$: long-standing tension between inclusive and exclusive determinations.
- $R(D)$ and $R\left(D^{*}\right): 2 \sigma-3 \sigma$ tension with the SM .
- Expect increasing precision in experiment : Belle II, LHCb

What is role of the Lattice QCD in understanding these issues?

Exclusive determination of $\left|V_{c b}\right|: \bar{B} \rightarrow D^{*} \ell \bar{\nu}$ |

1703.01766

$$
\begin{aligned}
\frac{d \Gamma}{d w}(\bar{B} \rightarrow D \ell \bar{\nu}) & =\frac{G_{F}^{2} m_{D}^{3}}{48 \pi^{3}}\left(m_{B}+m_{D}\right)^{2}\left(w^{2}-1\right)^{3 / 2} \eta_{\mathrm{EW}}^{2}\left|V_{c b}\right|^{2} \mathcal{G}(w)^{2} \\
\frac{d \Gamma}{d w}\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}\right) & =\frac{G_{F}^{2} m_{D^{*}}^{3}}{48 \pi^{3}}\left(m_{B}-m_{D^{*}}\right)^{2}\left(w^{2}-1\right)^{1 / 2} \eta_{\mathrm{EW}}^{2}\left|V_{c b}\right|^{2} \chi(w) \mathcal{F}(w)^{2}
\end{aligned}
$$

where the recoil parameter w is

$$
w \equiv v_{B} \cdot v_{D(*)}=\frac{m_{B}^{2}+m_{D^{(*)}}^{2}-q^{2}}{2 m_{B} m_{D^{(*)}}}\left(=\frac{E_{D^{(*)}}}{m_{D^{(*)}}}, \quad \text { when } \bar{B} \text { is at rest }\right)
$$

Exclusive determination of $\left|V_{c b}\right|: \bar{B} \rightarrow D^{*} \ell \bar{\nu}$ II

- Lattice QCD : calculate hadronic matrix elements \& determine $\mathcal{F}(w), \mathcal{G}(w)$.

$$
\begin{aligned}
\frac{\langle D| V^{\mu}|\bar{B}\rangle}{\sqrt{m_{B} m_{D}}} & =\left(v_{B}+v_{D}\right)^{\mu} h_{+}(w)+\left(v_{B}-v_{D}\right)^{\mu} h_{-}(w), \\
\frac{\left\langle D^{*}\right| V^{\mu}|\bar{B}\rangle}{\sqrt{m_{B} m_{D^{*}}}} & =h_{V}(w) \epsilon^{\mu \nu \alpha \beta} \epsilon^{* \nu} v_{D^{*}}^{\alpha} v_{B}^{\beta}, \\
\frac{\left\langle D^{*}\right| A^{\mu}|\bar{B}\rangle}{\sqrt{m_{B} m_{D^{*}}}} & =-i h_{A_{1}}(w)(w+1) \epsilon^{* \mu}+i h_{A_{2}}(w)\left(\epsilon^{*} \cdot v_{B}\right) v_{B}^{\mu}+i h_{A_{3}}(w)\left(\epsilon^{*} \cdot v_{B}\right) v_{D^{*}}^{\mu}
\end{aligned}
$$

At zero recoil $\left(v_{B}=v_{D^{(*)}}, w=1\right), \mathcal{F}(1)=h_{A_{1}}(1)$.

- Determination of CKM matrix elements with lattice QCD

Decay rate (exp.) $=$ known factors $\times\left|V_{C K M}\right|^{2} \times$ Hadronic matrix elements

Exclusive determination of $\left|V_{c b}\right|: \bar{B} \rightarrow D^{*} \ell \bar{\nu}$ III

- LQCD calculations are more precise near zero recoil ($w \simeq 1$), whereas experimental data for decay rate is suppressed by factor $\left(w^{2}-1\right)^{1 / 2}$ or $\left(w^{2}-1\right)^{3 / 2}$.
- Connect LQCD \& experiment : extrapolation to the zero recoil is required.

$$
\left|V_{c b}\right| \mathcal{F}(w \simeq 1) \rightarrow\left|V_{c b}\right| \mathcal{F}(1),
$$

- Parametrization dependence? : CLN vs. BGL

$\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}$ Form Factor Parametrization: CLN vs. BGL I

- CLN (Caprini, Lellouch, and Neubert) [NPB.530, 153] : HQET frameworks

$$
\begin{gathered}
{\left[1+\frac{4 w}{w+1} \frac{\left.1-2 w r+r^{2}\right]}{(1-r)^{2}}\right] \mathcal{F}^{2}(w)=h_{A_{1}}^{2}(w)\left\{2 \frac{1-2 w r+r^{2}}{(1-r)^{2}}\left[1+\frac{w-1}{w+1} R_{1}^{2}(w)\right]\right.} \\
\left.+\left[1+\frac{w-1}{1-r}\left(1-R_{2}(w)\right)\right]^{2}\right\}, \quad\left(r=m_{D^{*}} / m_{B}\right)
\end{gathered}
$$

$$
\begin{aligned}
& R_{1}(w)=R_{1}(1)-0.12(w-1)+0.05(w-1)^{2} \\
& R_{2}(w)=R_{2}(1)+0.11(w-1)-0.06(w-1)^{2}
\end{aligned}
$$

$$
h_{A_{1}}(w)=h_{A_{1}}(1)\left[1-8 \rho^{2} z+\left(53 \rho^{2}-15\right) z^{2}-\left(231 \rho^{2}-91\right) z^{3}\right], \quad\left(z=\frac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w+1}+\sqrt{2}}\right)
$$

- BGL (Boyd, Grinstein, and Lebed) [PRD.56,6895] : unitarity constraints

$$
f_{i}(z)=\frac{1}{\phi_{i}(z) P_{i}(z)} \sum_{k=0}^{n_{i}} a_{k}^{i} z^{k}, \quad\left(\text { with } f_{i}(z)=H_{0}(z), H_{ \pm}(z):\right. \text { Helicity amplitudes) }
$$

CLN vs. BGL

- Belle 2018 : difference between CLN/BGL,

$$
\begin{aligned}
& \left|V_{c b}\right|=42.5 \pm 0.6 \times 10^{-3}(\mathrm{BGL}+\mathrm{LQCD}) \\
& \left|V_{c b}\right|=38.4 \pm 0.6 \times 10^{-3}(\mathrm{CLN}+\text { LQCD })
\end{aligned}
$$

CLN vs. BGL

- Belle 2019 : the BGL result converges to the CLN result

$$
\begin{aligned}
& \left|V_{c b}\right|=38.3 \pm 0.7 \times 10^{-3}(\mathrm{BGL}+\mathrm{LQCD}) \\
& \left|V_{c b}\right|=38.4 \pm 0.6 \times 10^{-3}(\mathrm{CLN}+\mathrm{LQCD})
\end{aligned}
$$

CLN vs. BGL

- Belle 2019 : the BGL result converges to the CLN result

$$
\begin{aligned}
& \left|V_{c b}\right|=38.3 \pm 0.7 \times 10^{-3}(\mathrm{BGL}+\mathrm{LQCD}) \\
& \left|V_{c b}\right|=38.4 \pm 0.6 \times 10^{-3}(\mathrm{CLN}+\mathrm{LQCD})
\end{aligned}
$$

- BABAR 2019 : analysis with BGL/CLN, consistent with Belle 2019
- Gambino (1905.08209): BGL with more fit parameters $\mathrm{BGL}_{102} \rightarrow \mathrm{BGL}_{222}$

$R_{1}(w)$ and $R_{2}(w): J L Q C D$ results

$$
R_{1}(w) \equiv \frac{h_{v}(w)}{h_{A_{1}}(w)}, R_{2}(w) \equiv \frac{h_{A_{3}}(w)+r h_{A_{2}}(w)}{h_{A_{1}}(w)} \text {, with }\left(r=M_{D^{*}} / M_{B}\right)
$$

plots from T. Kaneko's talk (Lattice 2019)

$R_{1}(w)$ and $R_{2}(w)$: JLQCD results

$$
R_{1}(w) \equiv \frac{h_{v}(w)}{h_{A_{1}}(w)}, R_{2}(w) \equiv \frac{h_{A_{3}}(w)+r h_{A_{2}}(w)}{h_{A_{1}}(w)} \text {, with }\left(r=M_{D^{*}} / M_{B}\right)
$$

plots from T. Kaneko's talk (Lattice 2019)

$R_{1}(w)$ and $R_{2}(w)$: JLQCD results

$R_{1}(w) \equiv \frac{h_{\nu}(w)}{h_{A_{1}}(w)}, R_{2}(w) \equiv \frac{h_{A_{3}}(w)+r h_{A_{2}}(w)}{h_{A_{1}}(w)}$, with $\left(r=M_{D^{*}} / M_{B}\right)$

plots from T. Kaneko's talk (Lattice 2019)

- JLQCD's results for $R_{1}(w)$ favor the CLN result.
- CLN/BGL : $R_{1}(w)$ and $R_{2}(w)$ are determined by fitting.
- LQCD results of $R_{1}(w)$ and $R_{2}(w)$ can be input parameters of the parametrization and enhance the extrapolation.

$\left|V_{c b}\right|$ puzzle : unresolved

Table: $\left|V_{c b}\right|$ in units of 1.0×10^{-3}.

	(a) Exclusive $\left\|V_{c b}\right\|$	
channel	value	Ref.
CLN	$38.4(8)$	BABAR 2019
BGL	$38.4(9)$	BABAR 2019
CLN	$38.4(6)$	Belle 2019
BGL	$38.3(8)$	Belle 2019
CLN	$39.13(59)$	HFLAV 2017
CLN	39.25(56)	HFLAV 2019 [Web]

(b) Inclusive $\left|V_{c b}\right|$

channel	value	Ref.
kinetic scheme	$42.19(78)$	HFLAV 2017
1S scheme	$41.98(45)$	HFLAV 2017

(BABAR 2019: 1903.10002), (Belle 2019 : PRD 100, 052007 (2019)), (HFLAV 2017 : EPJ.C77, 895 (2017))

- $3 \sigma \sim 4 \sigma$ difference in $\left|V_{c b}\right|$ between the exclusive and inclusive decay channels: the $\left|V_{c b}\right|$ puzzle is unresolved yet.

[^0]
Current status of $\left|V_{c b}\right|$

- Combined fit of exclusive $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$ (preliminary)

$R(D)$ and $R\left(D^{*}\right)$

- R-ratios for $B \rightarrow D^{(*)}$ semileptonic decay

$$
R(D) \equiv \frac{\mathcal{B}\left(B \rightarrow D \tau \nu_{\tau}\right)}{\mathcal{B}\left(B \rightarrow D \ell \nu_{\ell}\right)}, \quad R\left(D^{*}\right) \equiv \frac{\mathcal{B}\left(B \rightarrow D^{*} \tau \nu_{\tau}\right)}{\mathcal{B}\left(B \rightarrow D^{*} \ell \nu_{\ell}\right)}
$$

- Results of HFLAV 2019 (Preliminary)

channel	SM	Experiment	Difference
$R(D)$	$0.299(3)$	$0.340(27)(13)$	1.4σ
$R\left(D^{*}\right)$	$0.258(5)$	$0.295(11)(8)$	2.5σ

$R(D)$ and $R\left(D^{*}\right)$ by LQCD

- Calculate semi-leptonic form factors at zero recoil and non-zero recoil points. By fitting the data, we obtain form factors $(\mathcal{F}(w)$ and $\mathcal{G}(w))$ for the full range of w using parametetrization like CLN, BGL.
- The recoil parameter w has bound as

$$
\begin{aligned}
& 1 \leq w=v_{B} \cdot v_{D}=\frac{m_{B}^{2}+m_{D}^{2}-q^{2}}{2 m_{B} m_{D}} \leq w_{\max }^{\ell(\tau)}=\frac{m_{B}^{2}+m_{D}^{2}-m_{\ell(\tau)}^{2}}{2 m_{B} m_{D}} \\
& R\left(D^{*}\right)=\frac{\mathcal{B}\left(B \rightarrow D^{*} \tau \nu_{\tau}\right)}{\mathcal{B}\left(B \rightarrow D^{*} \ell \nu_{\ell}\right)}=\frac{\int_{1}^{w_{\max }^{\tau}} d w\left[\frac{d \Gamma}{d w}\left(w, m_{\tau}\right)\right]}{\int_{1}^{w_{\max }^{\ell}} d w\left[\frac{d \Gamma}{d w}\left(w, m_{\ell}\right)\right]}, \quad \text { where } \ell=\{e, \mu\}, \\
& w_{\max }^{\tau}=1.355, \quad w_{\max }^{\ell}=1.503
\end{aligned}
$$

- Integrate using $\left(\left|V_{c b}\right|^{2}\right.$ is cancelled out)

$$
\frac{d \Gamma}{d w} \propto \text { known factors } \times \mathcal{F}^{2}(w)
$$

Study of $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}$ on the lattice

(1) Exclusive $\bar{B} \rightarrow D^{*} \ell \bar{\nu}$ at zero recoil [Fermilab-MILC (2014), HPQCD (2018)]

- Most precise in experimental and lattice errors.
- The decay rate depends on a single form factor $h_{A_{1}}$. Form factor calculation using the 3-point function $\left\langle D^{*}\right| A^{\mu}|B\rangle$ on the lattice.
(2) Exclusive $\bar{B} \rightarrow D \ell \bar{\nu}$ at non-zero recoil [Fermilab-MILC (2015), HPQCD (2015)]
- Near the zero recoil, the experimental precision is poor due to to the phase space suppression.
- Form factor calculation using the 3-point function $\langle D| V^{\mu}|B\rangle$ on the lattice.

Decay mode	Method	$\left\|V_{c b}\right\| \times 10^{3}[$ HFLAV (2017)]
$\bar{B} \rightarrow D^{*} \ell \bar{\nu}$	Lattice	$39.05(47)(58)$
$\bar{B} \rightarrow D \ell \bar{\nu}$	Lattice	$39.18(94)(36)$
$B \rightarrow X_{c} \ell \bar{\nu}$	QCD sum rule	$42.03(39)$

How to control discretization error

- On the lattice, we have discretization error by construction.
- For the $\bar{B} \rightarrow D^{*} \ell \bar{\nu}$ study, the heavy quark discretization error for charm quark is dominant.
- Fermilab action : Fermilab-MILC (2014) uses the Fermilab action for the b and c quarks.
The discretization error of $h_{A_{1}}(1):$ combined error $\mathcal{O}\left(\alpha_{s} \lambda^{2}\right) \& \mathcal{O}\left(\lambda^{3}\right) \sim 1 \%$.
λ : power counting parameter $\quad\left(\lambda \simeq \Lambda_{Q C D} / 2 m_{Q}, \Lambda_{Q C D} a\right)$
- Oktay-Kronfeld action : improved version of the Fermilab action. $\left(\mathcal{O}\left(\lambda^{3}\right)\right.$ improved)

How to control discretization error

- We expect the improvement in charm quark discretization error from the Fermilab/MILC results [PRD89, 114504 (2014)] for the $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}$ semileptonic form factors.

form factor	$h_{A_{1}}$
decay channel	$\bar{B} \rightarrow D^{*} \ell \bar{\nu}$
statistics	0.4
matching	0.4
$\chi \mathrm{PT}$	0.5
c discretization	$1.0 \rightarrow(0.2)_{\mathrm{OK}}$
\ldots	\ldots
total	$1.4 \rightarrow(0.8)_{\mathrm{OK}}$

- Expect improvement in experiment : Belle II has been running since April, 2019, and the target statistics is 50 times larger than Belle.

Fermilab action

- The Fermilab action [El-Khadra, Kronfeld, and Mackenzie, PRD55, 3933 (1997)]

$$
\begin{gathered}
S_{\text {Fermilab }} \equiv S_{0}+S_{E}+S_{B}, \\
S_{0} \equiv a^{4} \sum_{x} \bar{\psi}(x)\left[m_{0}+\gamma_{4} D_{\mathrm{lat}, 4}-\frac{a}{2} \Delta_{4}+\zeta\left(\gamma \cdot \boldsymbol{D}_{\mathrm{lat}}-\frac{r_{s} a}{2} \Delta^{(3)}\right)\right] \psi(x) \\
S_{E} \equiv-\frac{1}{2} c_{E} \zeta a^{5} \sum_{x} \bar{\psi}(x) \boldsymbol{\alpha} \cdot \boldsymbol{E}_{\mathrm{lat}} \psi(x), \quad S_{B} \equiv-\frac{1}{2} c_{B} \zeta a^{5} \sum_{x} \bar{\psi}(x) i \boldsymbol{\Sigma} \cdot \boldsymbol{B}_{\mathrm{lat}} \psi(x),
\end{gathered}
$$

$\Delta^{(3)}, \Delta_{4}$: discretized versions of D^{2}, D_{4}^{2}.

- Coefficients in the action $\left(m_{0}, c_{B}, \cdots\right)$ are tuned to reduce the discretization error in $\mathcal{O}(\lambda)$.

Oktay-Kronfeld action

- Oktay-Kronfeld (OK) action : $\mathcal{O}(\lambda) \rightarrow \mathcal{O}\left(\lambda^{3}\right)$ improvement. [Oktay and Kronfeld, PRD78, 014504 (2008)]

$$
S_{\mathrm{OK}} \equiv S_{\text {Fermilab }}+S_{6}+S_{7}
$$

$$
\begin{align*}
S_{6} & \equiv c_{1} a^{6} \sum_{x} \bar{\psi}(x) \sum_{i} \gamma_{i} D_{\mathrm{lat}, i} \Delta_{i} \psi(x)+c_{2} a^{6} \sum_{x} \bar{\psi}(x)\left\{\boldsymbol{\gamma} \cdot \boldsymbol{D}_{\mathrm{lat}}, \Delta^{(3)}\right\} \psi(x) \\
& +c_{3} a^{6} \sum_{x} \bar{\psi}(x)\left\{\boldsymbol{\gamma} \cdot \boldsymbol{D}_{\mathrm{lat}}, i \boldsymbol{\Sigma} \cdot \boldsymbol{B}_{\mathrm{lat}}\right\} \psi(x) \\
& +c_{E E} a^{6} \sum_{x} \bar{\psi}(x)\left\{\gamma_{4} D_{\mathrm{lat}, 4}, \boldsymbol{\alpha} \cdot \boldsymbol{E}_{\mathrm{lat}}\right\} \psi(x), \tag{1}\\
S_{7} & \equiv a^{7} \sum_{x} \bar{\psi}(x) \sum_{i}\left[c_{4} \Delta_{i}^{2} \psi(x)+c_{5} \sum_{j \neq i}\left\{i \sum_{i} B_{\mathrm{lat}, i}, \Delta_{j}\right\}\right] \psi(x) . \tag{2}
\end{align*}
$$

- Coefficients c_{i} are fixed by matching dispersion relation, interaction with background field, and Compton scattering amplitude of on-shell quark through the tree level.

Current improvement

- Simulation with the Fermilab action : current improvement through $\mathcal{O}(\lambda)$. Improved currents are constructed by improved quark fields [El-Khadra, Kronfeld, and Mackenzie, PRD55, 3933]

$$
V_{\mu}=\bar{\Psi}_{c} \gamma_{\mu} \Psi_{b}, \quad A_{\mu}=\bar{\Psi}_{c} \gamma_{\mu} \gamma_{5} \Psi_{b}
$$

where

$$
\Psi_{f}=e^{m_{1 f a} / 2}\left(1+d_{1 f} a \gamma \cdot D_{\text {lat }}\right) \psi_{f}, \quad f=b, c
$$

And determine $d_{1 f}$ by matching conditions.

- Simulation with the OK action : current improvement through $\mathcal{O}\left(\lambda^{3}\right)$ is required.

Current improvement

- Tree-level relation between QCD operator and HQET operator is given by Foldy-Wouthouysen-Tani transformation

$$
\begin{aligned}
b & =\left[1-\frac{\boldsymbol{\gamma} \cdot \boldsymbol{D}}{2 m_{b}}+\cdots\right] h_{b}, \\
\bar{c} \gamma_{\mu} b & \doteq \bar{h}_{c}\left\ulcorner h_{b}-\bar{h}_{c} \gamma_{\mu} \frac{\boldsymbol{\gamma} \cdot \boldsymbol{D}}{2 m_{b}} h_{b}+\bar{h}_{c} \frac{\gamma \cdot \overleftarrow{\boldsymbol{D}}}{2 m_{c}} \gamma_{\mu} h_{b}+\cdots\right.
\end{aligned}
$$

- Taking FWT transformation through $\mathcal{O}\left(1 / m_{q}^{3}\right)$ as ansatz, we introduced improved quark field [Jaehoon Leem, arXiv:1711.01777],

$$
\begin{aligned}
\Psi(x)= & e^{m_{1} a / 2}\left[1+d_{1} a \boldsymbol{\gamma} \cdot \boldsymbol{D}_{\text {lat }}+\frac{1}{2} d_{2} a^{2} \Delta^{(3)}+\frac{1}{2} i d_{B} a^{2} \boldsymbol{\Sigma} \cdot \boldsymbol{B}_{\text {lat }}+\frac{1}{2} d_{E} a^{2} \boldsymbol{\alpha} \cdot \boldsymbol{E}_{\text {lat }}\right. \\
& +d_{\text {EE }} a^{3}\left\{\gamma_{4} D_{4 \text { lat }}, \boldsymbol{\alpha} \cdot \boldsymbol{E}_{\text {lat }}\right\}+d_{r_{E}} a^{3}\left\{\boldsymbol{\gamma} \cdot \boldsymbol{D}_{\text {lat }}, \boldsymbol{\alpha} \cdot \boldsymbol{E}_{\text {lat }}\right\} \\
& +\frac{1}{6} d_{3} a^{3} \gamma_{i} D_{\text {lat } i} \Delta_{i}+\frac{1}{2} d_{4} a^{3}\left\{\boldsymbol{\gamma} \cdot \boldsymbol{D}_{\text {lat }}, \Delta^{(3)}\right\}+d_{5} a^{3}\left\{\boldsymbol{\gamma} \cdot \boldsymbol{D}_{\text {lat }}, i \boldsymbol{\Sigma} \cdot \boldsymbol{B}_{\text {lat }}\right\} \\
& \left.+d_{6} a^{3}\left[\gamma_{4} D_{4 \text { lat }}, \Delta^{(3)}\right]+d_{7} a^{3}\left[\gamma_{4} D_{4 l \mathrm{lat}}, i \boldsymbol{\Sigma} \cdot \boldsymbol{B}_{\text {lat }}\right]\right] \psi(x) .
\end{aligned}
$$

Numerical Simulation

Path integral on lattice

- Calculate Green's functions by performing path integral over discretized Euclidean space-time. For example,

$$
\left\langle O_{2}(x) O_{1}(0)\right\rangle=\frac{1}{Z} \int \prod d U d \bar{q} d q e^{-S_{Q C D}^{\mathrm{lat}}} O_{2}(x) O_{1}(0)
$$

The field variable $U_{\mu}(x)$ is gauge link.

- The integral over fermionic Grassmann variables gives fermionic determinant. For example, if $O_{2} \equiv \bar{b} \gamma_{5} d$ and $O_{1} \equiv \bar{d} \gamma_{5} b$

$$
\begin{aligned}
\left\langle O_{2}(x) O_{1}(0)\right\rangle & =\int \frac{1}{Z} \prod d U d \bar{q} d q e^{-S_{g}^{\mathrm{lat}} \bar{b}(x) \gamma_{5} d(x) \bar{d}(0) \gamma_{5} b(0) \prod_{q} e^{-\sum_{q} \bar{q} D_{q} q}} \\
& =-\frac{1}{Z} \int \prod d U e^{-S_{g}^{\mathrm{lat}}} \prod_{q} \operatorname{det}\left[D_{q}\right] \operatorname{tr}\left[\gamma_{5} D_{d}^{-1}(x, 0) \gamma_{5} D_{b}^{-1}(0, x)\right] \\
& \rightarrow \sum_{i=1}^{N_{\mathrm{MC}}} w\left(U_{i}\right)\left(-\operatorname{tr}\left[\gamma_{5} D_{d}^{-1}(x, 0) \gamma_{5} D_{b}^{-1}(0, x)\right]\right)
\end{aligned}
$$

if $\prod_{q} \operatorname{det}\left[D_{q}\right] \geq 0$, one can use Monte Carlo simulation with importance sampling with weight factor $w(U) \propto d U e^{-S_{g}^{\text {lat }}} \Pi_{q} \operatorname{det}\left[D_{q}\right](U)$.

Lattice QCD

Lattice QCD simulations in three steps.

- Generate gauge configuration : make gauge configurations to follow probability density $P(U) \propto w(U)$.
- Measurements : calculate Euclidean Green's function.
- Compute quark propagators: inverse of matrix with 4 (spin) $\times 3$ (color) $\times V$ (lattice vol) rows and columns. (For $V=48^{3} \times 96$ hypercubic lattice, dimension of matrix is over 100 millions.)
- Calculate correlation functions by contracting quark fields.
- Extract energy spectrum, hadronic matrix elements, ...

Sea quark and valence quark

- Fermions in Lagrangian : sea quark \rightarrow fermion determinant
- Fermions in the operator : valence quark \rightarrow propagator.

Numerical Simulation

- Sea quarks : Highly-improved-staggered quark (HISQ) action with $N_{f}=2+1+1$ flavors. [MILC collab., PRD87, 054505 (2013)]

ID	$a(\mathrm{fm})$	Volume	$a m_{l}$	$a m_{s}$	$a m_{c}$	$N_{\text {conf }} \times N_{\text {src }}$
a12m310	0.12	$24^{3} \times 64$	0.0102	0.0509	0.635	1053×3
a12m220	0.12	$32^{3} \times 64$	0.00507	0.0507	0.628	
a12m130	0.12	$48^{3} \times 64$	0.00184	0.0507	0.628	
a09m310	0.09	$32^{3} \times 96$	0.0074	0.037	0.440	1001×3
a09m220	0.09	$48^{3} \times 96$	0.00363	0.0363	0.430	
a09m130	0.09	$64^{3} \times 96$	0.0012	0.0363	0.432	

- Valence quark for (u, d, s) : HISQ action
- Valence quark for b and c : Oktay-Kronfeld action
- Calculate 2-point Green's function : determine the bare masses of b and c numerically by tuning the energy spectrum of lattice meson.
- Calculate 3-point Green's function : determine hadronic matrix elements with the improved flavor-changing current.

Green's function

- 2-point (Euclidean) Green's function : extract meson's energy sepctrum

$$
\begin{align*}
C_{B}^{2 p \mathrm{p}}(\boldsymbol{p})=\sum_{\boldsymbol{x}} e^{i \boldsymbol{p} \cdot \boldsymbol{x}} & \left.\left\langle O_{B}(t, \boldsymbol{x}) O_{B}^{\dagger}(0)\right\rangle=\sum_{n}\left|\langle 0| O_{B}^{\dagger}\right| B_{n}\right\rangle\left.\right|^{2} e^{-E_{n}(\boldsymbol{p}) t} \\
& \left.\left.=\left|\langle 0| O_{B}^{\dagger}\right| \bar{B}\right\rangle\left.\right|^{2} e^{-E_{0}(\boldsymbol{p}) t}+\left|\langle 0| O_{B}^{\dagger}\right| B_{1}\right\rangle\left.\right|^{2} e^{-E_{1}(\boldsymbol{p}) t}+\cdots \tag{3}
\end{align*}
$$

O_{B}^{\dagger} (meson interpolating operator) : creates B-meson as acting on vacuum.

- 3-point (Euclidean) Green's function : extract hadronic matrix elements

$$
\begin{align*}
C_{A_{j}}^{B \rightarrow D^{*}}\left(t_{s}, t_{f}\right) & =\sum_{\boldsymbol{x}, \boldsymbol{y}}\left\langle O_{D^{*}}\left(\boldsymbol{x}, t_{f}\right) A_{j}^{c b}\left(\boldsymbol{y}, t_{s}\right) O_{B}^{\dagger}(\mathbf{0}, 0)\right\rangle \\
= & \langle 0| O_{D^{*}}\left|D^{*}\right\rangle\langle\bar{B}| O_{B}^{\dagger}|0\rangle\left\langle D^{*}\right| A_{j}|\bar{B}\rangle e^{-M_{B} t_{s}} e^{-M_{D^{*}}\left(t_{f}-t_{s}\right)}+\cdots \tag{4}
\end{align*}
$$

where $A_{j}^{c b}$ is flavor-changing axial current.

- Do numerical analysis to extract the ground-state contribution out of excited-state contamination.

$\bar{B} \rightarrow D^{*} \ell \bar{\nu}$ at zero recoil

- $h_{A_{1}}(1)$ determination by LQCD

$$
\left|h_{A_{1}}(1)\right|^{2}=\frac{\left\langle D^{*}\right| A_{c b}^{j}|\bar{B}\rangle\langle\bar{B}| A_{b c}^{j}\left|D^{*}\right\rangle}{\left\langle D^{*}\right| V_{c c}^{4}\left|D^{*}\right\rangle\langle\bar{B}| V_{b b}^{4}|\bar{B}\rangle} \times \rho_{A_{j}}^{2}, \quad \text { with } \quad \rho_{A_{j}}^{2}=\frac{Z_{A_{j}}^{c b} Z_{A_{j}}^{b c}}{Z_{V_{4}}^{c c} Z_{V_{4}}^{b b}} \simeq 1
$$

- We calculate the following 3-point Green's functions $(w=1)$,

$$
\begin{align*}
& C_{A_{j}}^{B \rightarrow D^{*}}(t, \tau) \equiv \sum_{x, y}\left\langle O_{D^{*}}(0) A_{j}^{c b}(y, t) O_{B}^{\dagger}(x, \tau)\right\rangle, \\
& C_{A_{j}}^{D^{*} \rightarrow B}(t, \tau) \equiv \sum_{x, y}\left\langle O_{B}(0) A_{j}^{b c}(\boldsymbol{y}, t) O_{D^{*}}^{\dagger}(x, \tau)\right\rangle, \\
& C_{V_{4}}^{B \rightarrow B}(t, \tau) \equiv \sum_{x, y}\left\langle O_{B}(0) V_{4}^{b b}(\boldsymbol{y}, t) O_{B}^{\dagger}(x, \tau)\right\rangle, \\
& C_{V_{4}}^{D^{*} \rightarrow D^{*}}(t, \tau) \equiv \sum_{x, y}\left\langle O_{D^{*}}(0) V_{4}^{c c}(\boldsymbol{y}, t) O_{D^{*}}^{\dagger}(x, \tau)\right\rangle, \tag{5}
\end{align*}
$$

where O_{B} and $O_{D^{*}}$ are meson interpolating operators.

- The currents are given by the improved quark fields

$$
\begin{equation*}
A_{j}^{c b} \equiv \bar{\Psi}_{c} \gamma_{5} \gamma_{j} \Psi_{b}, \quad V_{4}^{b b} \equiv \bar{\Psi}_{b} \gamma_{4} \Psi_{b} . \tag{6}
\end{equation*}
$$

2pt function analysis

- Generate zero momentum meson propagators and do the multi-states fitting [Sungwoo Park, et al., Lattice 2018]

$$
\begin{aligned}
& C_{B\left(\text { or } D^{*}\right)}^{2 \mathrm{pt}}(t, \mathbf{0})=\left|\mathcal{A}_{0}\right|^{2} e^{-M_{0} t}\left(1+\left|\frac{\mathcal{A}_{2}}{\mathcal{A}_{0}}\right|^{2} e^{-\Delta M_{2} t}+\left|\frac{\mathcal{A}_{4}}{\mathcal{A}_{0}}\right|^{2} e^{-\left(\Delta M_{2}+\Delta M_{4}\right) t}+\cdots\right. \\
& \left.\quad-(-1)^{t}\left|\frac{\mathcal{A}_{1}}{\mathcal{A}_{0}}\right|^{2} e^{-\Delta M_{1} t}-(-1)^{t}\left|\frac{\mathcal{A}_{3}}{\mathcal{A}_{0}}\right|^{2} e^{-\left(\Delta M_{1}+\Delta M_{3}\right) t}+\cdots\right)+(t \leftrightarrow T-t)
\end{aligned}
$$

(a) $m_{\text {eff }}(t) \equiv \frac{1}{2} \ln \left|C^{2 p t}(t) / C^{2 p t}(t+2)\right|$.

(b) The excited state masses.

3pt function analysis

- Fit 3-point function including $2+1$ states for $\left|B_{m}\right\rangle$ and $\left|D_{n}^{*}\right\rangle$ with $n, m=0,1,2$.

$$
\begin{align*}
C_{A_{j}}^{B \rightarrow D^{*}}\left(t_{s}, \tau\right) & =\mathcal{A}_{0}^{D^{*}} \mathcal{A}_{0}^{B}\left\langle D_{0}^{*}\right| A_{j}^{c b}\left|B_{0}\right\rangle e^{-M_{B_{0}}\left(\tau-t_{s}\right)} e^{-M_{D_{0}^{*}}^{*} t_{s}} \\
& -\mathcal{A}_{0}^{D^{*}} \mathcal{A}_{1}^{B}\left\langle D_{0}^{*}\right| A_{j}^{c b}\left|B_{1}\right\rangle(-1)^{\left(\tau-t_{s}\right)} e^{-M_{B_{1}}\left(\tau-t_{s}\right)} e^{-M_{D_{0}^{*}} t_{s}} \\
& -\mathcal{A}_{1}^{D^{*}} \mathcal{A}_{0}^{B}\left\langle D_{1}^{*}\right| A_{j}^{c b}\left|B_{0}\right\rangle(-1)^{t_{s}} e^{-M_{B_{0}}\left(\tau-t_{s}\right)} e^{-M_{D_{1}^{*}} t_{s}} \\
& +\mathcal{A}_{1}^{D^{*}} \mathcal{A}_{1}^{B}\left\langle D_{1}^{*}\right| A_{j}^{c b}\left|B_{1}\right\rangle(-1)^{\tau} e^{-M_{B_{1}}\left(\tau-t_{s}\right)} e^{-M_{D_{1}^{*}} t_{s}} \\
& +\mathcal{A}_{2}^{D^{*}} \mathcal{A}_{0}^{B}\left\langle D_{2}^{*}\right| A_{j}^{c b}\left|B_{0}\right\rangle e^{-M_{B_{0}}\left(\tau-t_{s}\right)} e^{-M_{D_{2}^{*}} t_{s}} \\
& +\mathcal{A}_{0}^{D^{*}} \mathcal{A}_{2}^{B}\left\langle D_{0}^{*}\right| A_{j}^{c b}\left|B_{2}\right\rangle e^{-M_{B_{2}}\left(\tau-t_{s}\right)} e^{-M_{D_{0}^{*}} t_{s}} \\
& -\mathcal{A}_{2}^{D^{*}} \mathcal{A}_{1}^{B}\left\langle D_{2}^{*}\right| A_{j}^{c b}\left|B_{1}\right\rangle(-1)^{\tau-t_{s}} e^{-M_{B_{1}}\left(\tau-t_{s}\right)} e^{-M_{D_{2}^{*}} t_{s}} \\
& -\mathcal{A}_{1}^{D^{*}} \mathcal{A}_{2}^{B}\left\langle D_{1}^{*}\right| A_{j}^{c b}\left|B_{2}\right\rangle(-1)^{t} e^{-M_{B_{2}}\left(\tau-t_{s}\right)} e^{-M_{D_{1}^{*} t_{s}}} \\
& +\mathcal{A}_{0}^{D^{*}} \mathcal{A}_{2}^{B}\left\langle D_{0}^{*}\right| A_{j}^{c b}\left|B_{2}\right\rangle e^{-M_{B_{2}}\left(\tau-t_{s}\right)} e^{-M_{D_{0}^{*}} t_{s}}+\cdots \tag{7}
\end{align*}
$$

- In the fitting, the 2 pt amplitudes \mathcal{A} and masses M are constant fixed from the 2-point function analysis.

Fitting results for the 3-point correlation functions (1)

$$
\mathcal{G}(t, \tau) \equiv \frac{C_{A_{j}}^{X \rightarrow Y}(t, \tau)}{\mathcal{A}_{0}^{Y} \mathcal{A}_{0}^{X} e^{-M_{X_{0}}(\tau-t)} e^{-M_{Y_{0} t}}}=\left\langle Y_{0}\right| A_{j}^{c b}\left|X_{0}\right\rangle+\cdots,
$$

[Sungwoo Park, et al., Lattice 2018]

Fitting results for the 3-point correlation functions (2)

$$
\mathcal{G}(t, \tau) \equiv \frac{C_{A_{j}}^{X \rightarrow Y}(t, \tau)}{\mathcal{A}_{0}^{Y} \mathcal{A}_{0}^{X} e^{-M_{X_{0}}(\tau-t)} e^{-M_{Y_{0}} t}}=\left\langle Y_{0}\right| A_{j}^{c b}\left|X_{0}\right\rangle+\cdots,
$$

[Sungwoo Park, et al., Lattice 2018]

$\bar{B} \rightarrow D^{*} \ell \bar{\nu}$ Form Factor at Zero Recoil : $h_{A_{1}}(w=1)$

- $\rho_{A_{j}}$ is blinded: $\rho_{A_{j}}^{2}=\frac{Z_{A_{j}}^{b c} Z_{A_{j}}^{c b}}{Z_{V_{4}}^{b b} Z_{V_{4}}^{c c}} \rightarrow 1$.
- Non-perturbative calculation of $\rho_{A_{j}}$ is underway.
- Preliminary results!!!

$\bar{B} \rightarrow D \ell \bar{\nu}$ Form Factors: $h_{ \pm}(w)$ on the lattice

$$
\frac{\left\langle D\left(M_{D}, \boldsymbol{p}^{\prime}\right)\right| V_{\mu}\left|B\left(M_{B}, \mathbf{0}\right)\right\rangle}{\sqrt{2 M_{D}} \sqrt{2 M_{B}}}=\frac{1}{2}\left\{h_{+}(w)\left(v+v^{\prime}\right)_{\mu}+h_{-}(w)\left(v-v^{\prime}\right)_{\mu}\right\},
$$

- B meson is at rest: $v=\frac{p}{M_{B}}=(1,0)$.
- D meson is moving with velocity: $v^{\prime}=\frac{p^{\prime}}{M_{D}}=\left(\frac{E_{D}}{M_{D}}, \frac{\boldsymbol{p}^{\prime}}{M_{D}}\right)$.
- Recoil parameter: $w=v \cdot v^{\prime}=\frac{E_{D}}{M_{D}}$.

$\bar{B} \rightarrow D \ell \bar{\nu}$ Form Factors $h_{ \pm}(w)$

- MILC HISQ lattices at $a \cong 0.12 \mathrm{fm}$ and $a \cong 0.09 \mathrm{fm}$
- Z_{V} is blinded. (NPR is underway.)
- The vector current is improved up to the λ^{2} order.
- Preliminary results!!!

Summary

- This is the first numerical study with the OK action using the currents improved up to $\mathcal{O}\left(\lambda^{3}\right)$.
- We produced 3-point correlation functions, and obtained preliminary results for $\frac{\left|h_{A_{1}}(1)\right|}{\rho_{A_{j}}}\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}\right)$ and $\frac{h_{ \pm}(w)}{Z_{V}}(\bar{B} \rightarrow D \ell \bar{\nu})$.
[To do list]
- Non-perturbative (NPR) calculation of matching factors: $\rho_{A_{j}}, Z_{V}$.
- Extend measurement to superfine ($a \sim 0.06 \mathrm{fm}$), and ultrafine ($a \sim 0.045 \mathrm{fm}$) ensembles and accumulate more statistics.
- Chiral-continuum extrapolation (get results at $a \rightarrow 0$)
- Calculate $R(D)$ and $R\left(D^{*}\right)$
- Calculate beyond the standard model contributions from scalar or tensor type currents.

[^0]: ${ }^{1}$ Preliminary !!

