### Muon g-2 in 2HDMs (g2HDM, Variant Axion Models)

Michihisa Takeuchi (KMI, Nagoya)

based on arXiv:1907.09845 (with S. Iguro, Y. Omura) arxiv:1807.00593 (with C.-W. Chiang, P.-Y. Tseng, T. T. Yanagida ) (and JHEP11(2015)057 [arXiv:1507.04354],PhysRevD.97.035015 [arXiv:1711.02993])





at the 1st AEI workshop for BSM, Jeju, on 6th Nov. 2019

#### Muon g-2 : signature of BSM?

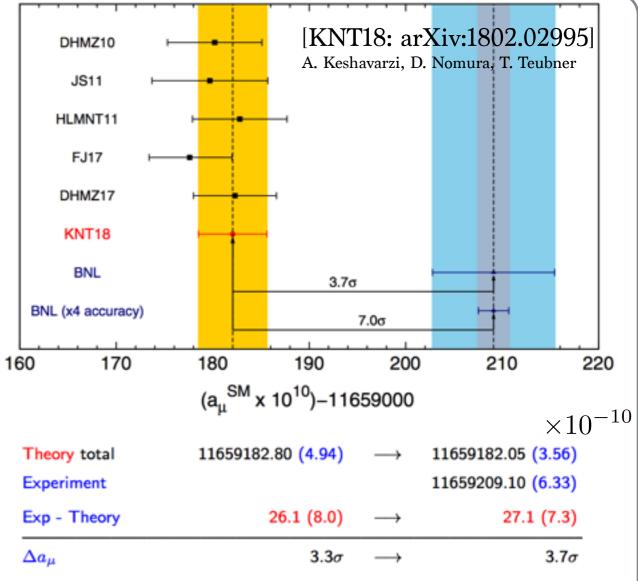
magnetic moment (potential term in a magnetic field)  

$$\mathcal{H} = -\vec{\mu} \cdot \vec{B} \qquad \vec{\mu} = -g \frac{e}{2m} \vec{S}$$

$$g = 2 \qquad \text{tree level, Dirac equation}$$

$$g = 2.002 \ 331 \quad \text{QED}, \quad \frac{\alpha}{\pi} = 0.00232...$$

$$g = 2.002 \ 331 \ 833 \qquad \text{hadronic}$$


$$g = 2.002 \ 331 \ 836 \ 6 \qquad \text{EW}$$
anomalous magnetic moment

$$a_{\mu} = (g_{\mu} - 2)/2$$

currently computed including 5-loop QED, up to 9th digit reliable

For long time, the  $3\sigma$  level discrepancy observed

$$\Delta a_{\mu} = a_{\mu}^{\rm Exp} - a_{\mu}^{\rm SM} \sim \Delta a_{\mu}^{\rm EW} \sim \mathcal{O}(10^{-9})$$



last year, estimate of the uncertainty reduced the resulting significance increased

 $\Delta a_{\mu}^{\rm NP} \sim \frac{g_{\rm NP}^2}{16\pi^2} \frac{m_{\mu}^2}{m_{\rm NP}^2} \quad \begin{array}{l} \mbox{Hint for BSM?} \\ \mbox{New physics at O(100GeV) ?} \end{array}$ 

#### Two Higgs Doublet Models (2HDM)

one additional Higgs doublet to the SM : new states  $H, A, H^{\pm}$ 

$$\Phi_1 = \begin{pmatrix} H_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + h_1 + ia_1) \end{pmatrix}, \\ \Phi_2 = \begin{pmatrix} H_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + h_2 + ia_2) \end{pmatrix} \qquad \begin{aligned} v_1^2 + v_2^2 &= v_{\rm SM}^2 = (246 \,{\rm GeV})^2 \\ \tan \beta &= v_2/v_1 \end{aligned}$$

appear as a low energy EFT in many well-motivated models (MSSM, Axion Models (PQ sym))

Yukawa interactions in general for both higgs doublets

$$\mathcal{L} = -\bar{Q}_{L}^{i}H_{1}y_{d}^{i}d_{R}^{i} - \bar{Q}_{L}^{i}H_{2}\rho_{d}^{ij}d_{R}^{j} - \bar{Q}_{L}^{i}(V^{\dagger})^{ij}\tilde{H}_{1}y_{u}^{j}u_{R}^{j} - \bar{Q}_{L}^{i}(V^{\dagger})^{ij}\tilde{H}_{2}\rho_{u}^{jk}u_{R}^{k} \qquad \tilde{H} = (i\sigma_{2})H^{*} \\ -\bar{L}_{L}^{i}H_{1}y_{e}^{i}e_{R}^{i} - \bar{L}_{L}^{i}H_{2}\rho_{e}^{ij}e_{R}^{j} + \text{h.c.}.$$

to avoid tree-level FCNC, certain parity structure is often introduced (otherwise simultaneously not diagonalized) each type of fermions can couple to one higgs doublet

| model                    | $  u_R$  | $d_R$    | $e_R$    | $\zeta_u$    | $\zeta_d$    | $\zeta_e$    |                                                        |
|--------------------------|----------|----------|----------|--------------|--------------|--------------|--------------------------------------------------------|
| Type I                   | $\Phi_2$ | $\Phi_2$ | $\Phi_2$ | $\cot \beta$ | $\cot eta$   | $\cot eta$   | $\xi_f^h = s_{\beta-\alpha} + c_{\beta-\alpha}\zeta_f$ |
| Type II (MSSM-like)      | $\Phi_2$ | $\Phi_1$ | $\Phi_1$ | $\cot eta$   | $-\tan\beta$ | $-\tan\beta$ | $\xi_f^H = c_{\beta-\alpha} - s_{\beta-\alpha}\zeta_f$ |
| Type X (Lepton-specific) | $\Phi_2$ | $\Phi_2$ | $\Phi_1$ | $\cot eta$   | $\cot eta$   | $-\tan\beta$ | $\xi_f^A = (2T_f^3)\zeta_f$                            |
| Type Y (Flipped)         | $\Phi_2$ | $\Phi_1$ | $\Phi_2$ | $\cot eta$   | $-\tan\beta$ | $\cot eta$   |                                                        |

\* tan beta enhancement always with the minus sign, the pseudo-scaler couplings depends on isospin

$$g-2 \text{ in 2HDM}$$

$$r_{f}^{i} = m_{f}^{2}/m_{i}^{2}$$

$$f_{AB}(r) = \int_{0}^{1} dx \frac{x^{2}(2-x)}{1-x+rx^{2}}, \quad f_{A}(r) = \int_{0}^{1} dx \frac{-x^{3}}{1-x+rx^{2}}$$

$$f_{BB}(r) = \int_{0}^{1} dx \frac{x^{2}(2-x)}{1-x+rx^{2}}, \quad f_{A}(r) = \int_{0}^{1} dx \frac{-x^{3}}{1-x+rx^{2}}$$

$$f_{BB}(r) = \int_{0}^{1} dx \frac{x^{2}(2-x)}{1-r(1-x)},$$

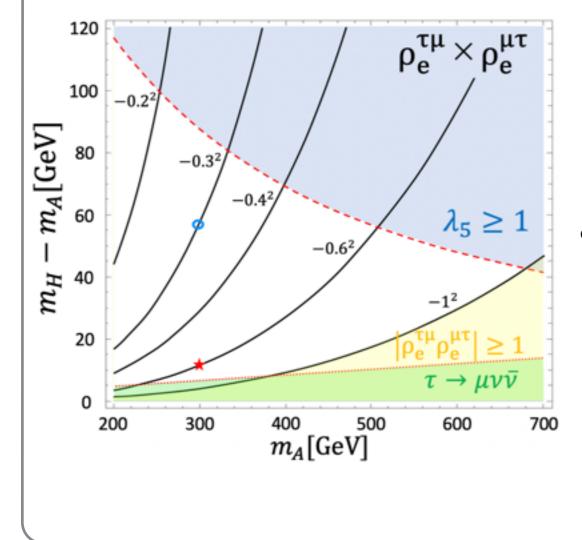
$$f_{BB}(r) = \int_{0}^{1} dx \frac{x^{2}(2-x)}{1-r(1-x)},$$

$$\Delta a_{\mu}^{1-100p} = \underbrace{\frac{G_{F}m_{\mu}^{2}}{4\sqrt{2}\pi^{2}}}_{\sim 10^{-9}} \int_{0}^{1} \int_{0}^{1} \frac{m_{\mu}^{2}}{m_{i}^{2}} f_{i}(r_{f}^{i})$$

$$\sim 10^{-7} (m_{II} = 1\text{TeV})$$

$$\mathcal{O}(10^{-9}) \text{ contribution required}$$

$$f_{A}(r) = \int_{0}^{1} dx \frac{x^{2}(2-x)}{1-x+rx^{2}}, \quad f_{A}(r) = \int_{0}^{1} dx \frac{x^{-x^{3}}}{1-x+rx^{2}}$$


$$\blacktriangleright$$
 LFV enhance with  $m_{\tau}^3/m_{\mu}^3 \sim 5000$ ,  $\xi_{\mu\tau} \sim \xi_{\tau\mu} \sim 50$  required  $m_H = 1$ TeV

consider the case only LFV couplings  $\ \rho^{\mu\tau}, \rho^{\tau\mu}$  introduced for heavy higgses

[S.Iguro, Y. Omura, MT arXiv:1907.09845]

g2HDM (new Yukawa matrices : free parameters, phenomenological analysis) we consider only  $\rho^{\mu\tau}$ ,  $\rho^{\tau\mu}$  cf) [Y. Abe, T. Toma and K. Tsumura, arXiv:1904.10908]

$$H_1 = \begin{pmatrix} G^+ \\ \frac{v + \phi_1 + iG}{\sqrt{2}} \end{pmatrix}, \quad H_2 = \begin{pmatrix} H^+ \\ \frac{\phi_2 + iA}{\sqrt{2}} \end{pmatrix} \qquad \qquad \mathcal{L} = -\bar{\ell}_{Li} H_2 \rho^{ij} e_{Rj} + h.c.$$

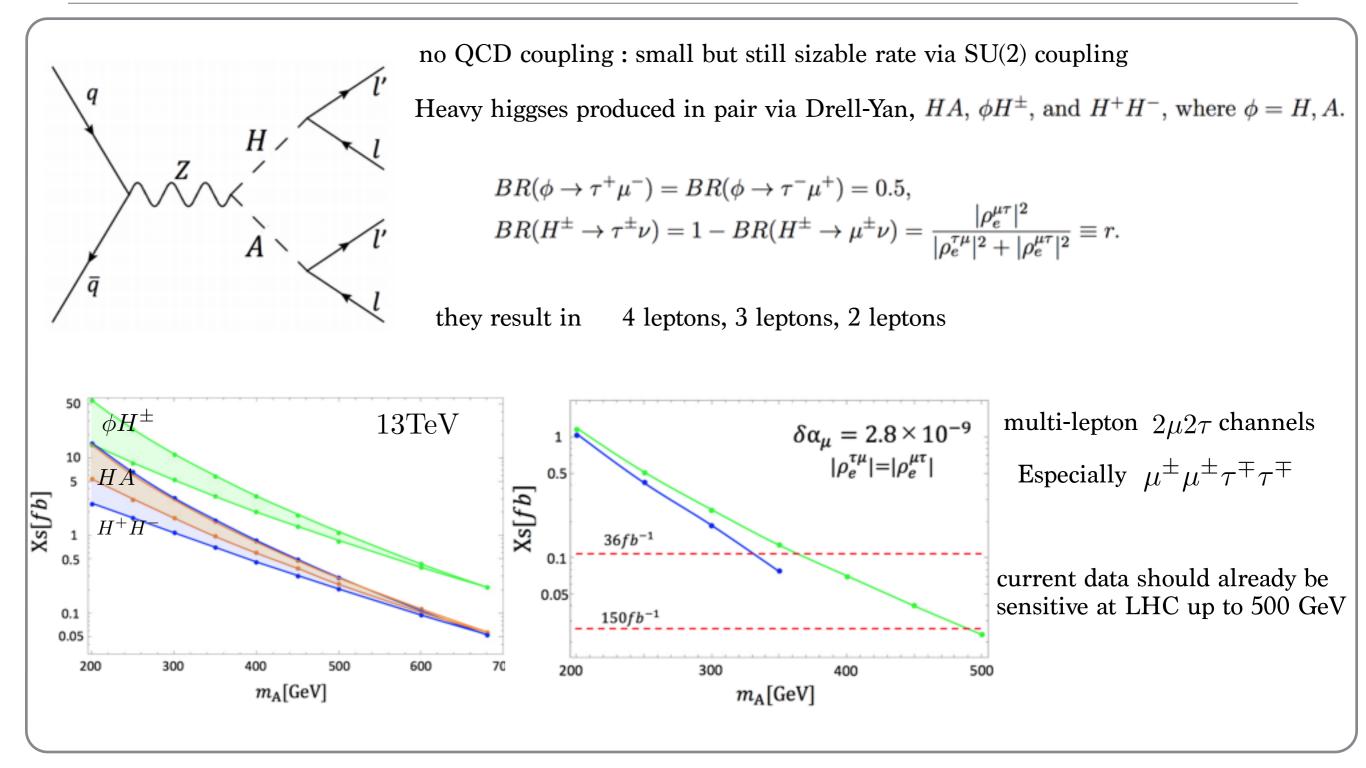


$$\begin{split} \Delta a_{\mu} &\simeq -\frac{m_{\mu}m_{\tau}\rho_{e}^{\mu\tau}\rho_{e}^{\tau\mu}}{8\pi^{2}}\frac{\Delta_{H-A}}{m_{A}^{3}}\left(\ln\frac{m_{A}^{2}}{m_{\tau}^{2}}-\frac{5}{2}\right) \\ &\simeq -3\times10^{-9}\left(\frac{\rho_{e}^{\mu\tau}\rho_{e}^{\tau\mu}}{0.3^{2}}\right)\left(\frac{\Delta_{H-A}}{60[\text{GeV}]}\right)\left(\frac{300[\text{GeV}]}{m_{A}}\right)^{3} \end{split}$$

*H*, *A* contributions cancel each other, total contributions  $\propto \Delta_{H-A} = m_H - m_A$ 

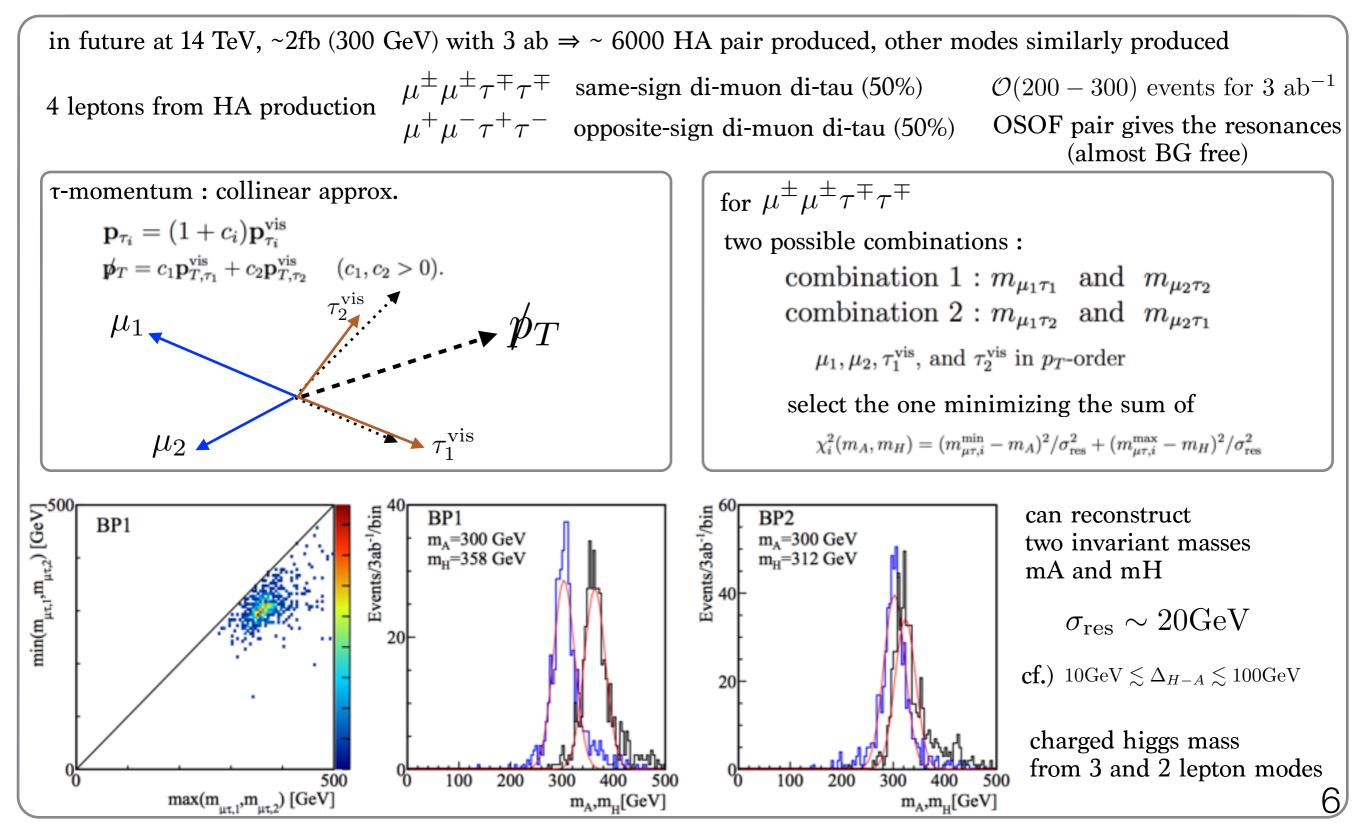
controlled by Higgs potential,  $V(H_i) = \lambda_4 (H_1^{\dagger}H_2)(H_2^{\dagger}H_1) + \{\frac{\lambda_5}{2}(H_1^{\dagger}H_2)^2 + \text{h.c.}\} + \cdots$  $m_H^2 \simeq m_A^2 + \lambda_5 v^2, \qquad m_{H^{\pm}}^2 \simeq m_A^2 - \frac{\lambda_4 - \lambda_5}{2}v^2,$ 

we assume  $m_A \leq m_H = m_{H^{\pm}}$  and require perturbativity, stability


$$0 < \lambda_5 < 1$$
  $|\rho^{\mu\tau}|, |\rho^{\tau\mu}| < 1$ 

the parameter region available to explain g-2 is finite

 $m_A \lesssim 700 {
m GeV}$  and  $10 {
m GeV} \lesssim \Delta_{H-A} \lesssim 100 {
m GeV}$ 


# g-2 via lepton flavor violation — LHC signatures

[S.Iguro, Y. Omura, MT arXiv:1907.09845]



### g-2 via LFV — mass reconstruction at LHC

[S.Iguro, Y. Omura, MT arXiv:1907.09845]



$$g-2 \text{ in } 2\text{HDM via } 2\text{-loop}$$

$$g-2 \text{ in } 2\text{HDM via } 2\text{-loop}$$

$$g_{a,c}(r) = \int_{0}^{r} \frac{dx^{2}z(1-x)-1}{x(1-x)} \frac{x(1-x)}{x(1-x)-r} \frac{dx^{2}z(1-x)-1}{x(1-x)-r} \frac{dx^{2}z(1-x)-r}{x(1-x)-r}$$

$$g_{a,c}(r) = \int_{0}^{r} \frac{dx^{2}z(1-x)-1}{x(1-x)-r} \frac{dx^{2}z(1-x)-r}{r}$$

$$g_{a,c}(r) = \int_{0}^{r} \frac{dx^{2}z(1-x)-r}{x(1-x)-r} \frac{dx^{2}z(1-x)-r}{r}$$

$$g_{a,c}(r) = \int_{0}^{r} \frac{dx^{2}z(1-x)-r}{r} \frac{dx^{2}z(1-x)-r}{r} \frac{dx^{2}z(1-x)-r}{r}$$

$$g_{a,c}(r) = \int_{0}^{r} \frac{dx^{2}z(1-x)-r}{r} \frac{dx^{2}z(1-x)-r}{r} \frac{dx^{2}z(1-x)-r}{r}$$

$$g_{a,c}(r) = \int_{0}^{r} \frac{dx^{2}z(1-x)-r}{r} \frac{dx^{2}z(1-x$$

#### 2HDM as the solution for strong CP problem

heavy Q introduced

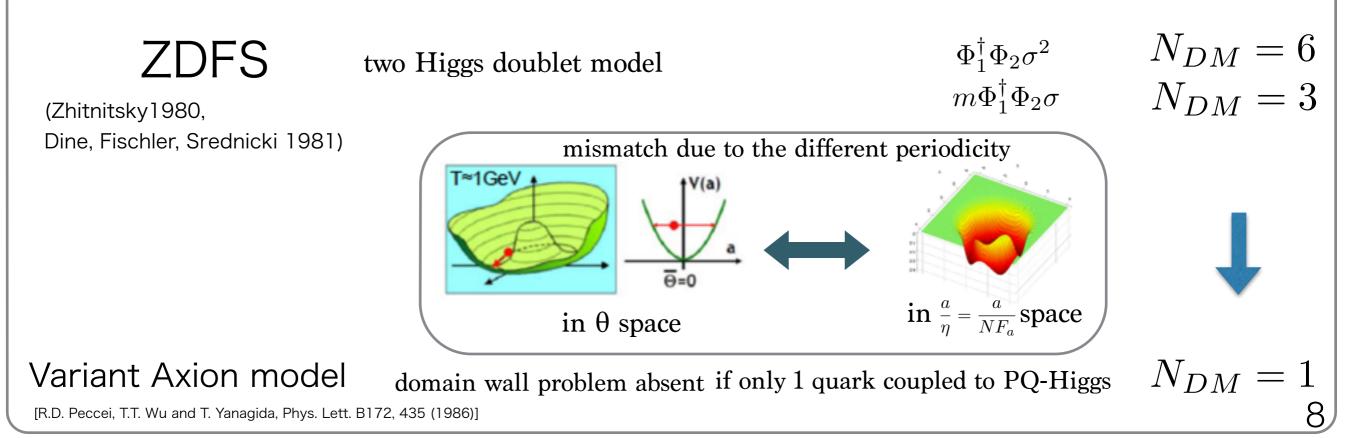
Strong CP problem



PQ solution with axion

assume spontaneously broken U(1)  $\eta e^{i\theta_{PQ}} \sim \eta + ia$  to introduce axion field triangle diagram (N: n. of coupled quarks),  $\delta \mathcal{L} = -\frac{g^2}{32\pi^2} N \frac{a}{\eta} G^{\mu\nu} \tilde{G}_{\mu\nu}$  induced after QCD PT,  $\langle G^{\mu\nu} \tilde{G}_{\mu\nu} \rangle \sim \Lambda^4_{QCD}$  the potential  $\theta_{\text{eff}} = \theta + \arg \det[M^u M^d] + \frac{\langle a \rangle}{F_a}$ 

very attractive, *a* also play a good CDM role  $2\pi F_a - 4\pi F_a$   $a' \equiv a + \bar{\theta} F_a$ 


-invisible axion models

KSVZ

 $\mathcal{L}_Q = -y_Q \bar{Q}_L \Phi Q_R + \text{h.c.} \qquad N_{DM} = 1$ 

(no problem but no low energy phenomenology, not interesting)

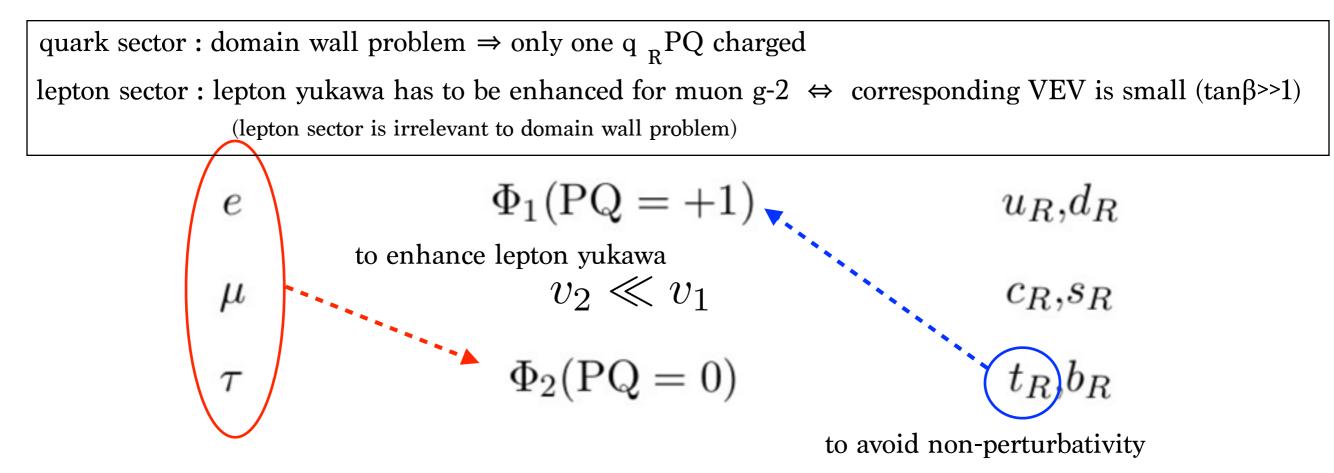
(Kim 1979, Shifman, Vainshtein, Zakharov 1980)



[arxiv:1807.00593, C.-W. Chiang, MT, P.-Y. Tseng, T. T. Yanagida]

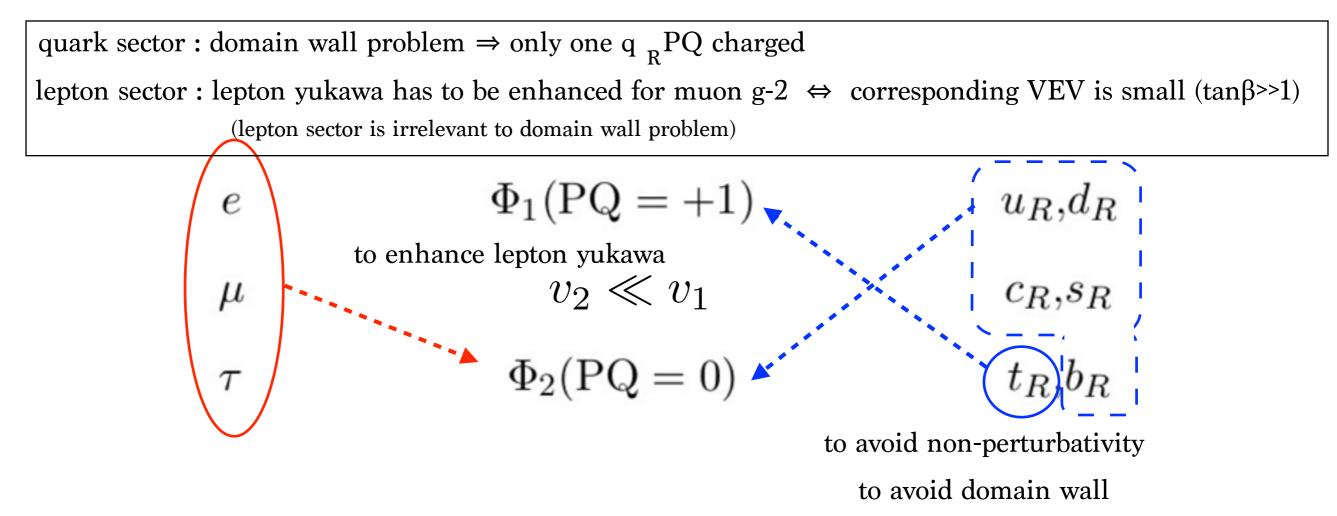
VAM is a 2HDM at low energy, there is a choice which one quark is PQ charged.

quark sector : domain wall problem  $\Rightarrow$  only one q <sub>R</sub>PQ charged lepton sector : lepton yukawa has to be enhanced for muon g-2  $\Leftrightarrow$  corresponding VEV is small (tan $\beta$ >>1) (lepton sector is irrelevant to domain wall problem)


e 
$$\Phi_1(PQ = +1)$$
  $u_R, d_R$   
 $\mu$   $c_R, s_R$   
 $\tau$   $\Phi_2(PQ = 0)$   $t_R, b_R$ 

[arxiv:1807.00593, C.-W. Chiang, MT, P.-Y. Tseng, T. T. Yanagida]

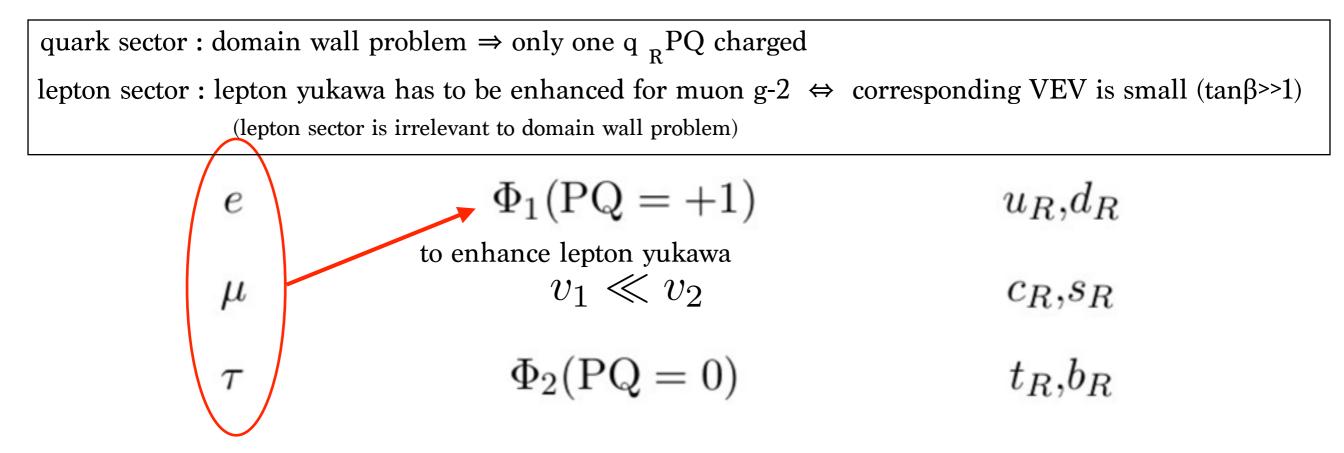
VAM is a 2HDM at low energy with various PQ charge assignments.


quark sector : domain wall problem  $\Rightarrow$  only one q  $_{R}$ PQ chargedlepton sector : lepton yukawa has to be enhanced for muon g-2  $\Leftrightarrow$  corresponding VEV is small (tan $\beta>1$ )(lepton sector is irrelevant to domain wall problem)e $\Phi_1(PQ = +1)$  $u_R, d_R$ to enhance lepton yukawa $\mu$  $v_2 \ll v_1$  $\tau$  $\Phi_2(PQ = 0)$  $t_R, b_R$ 

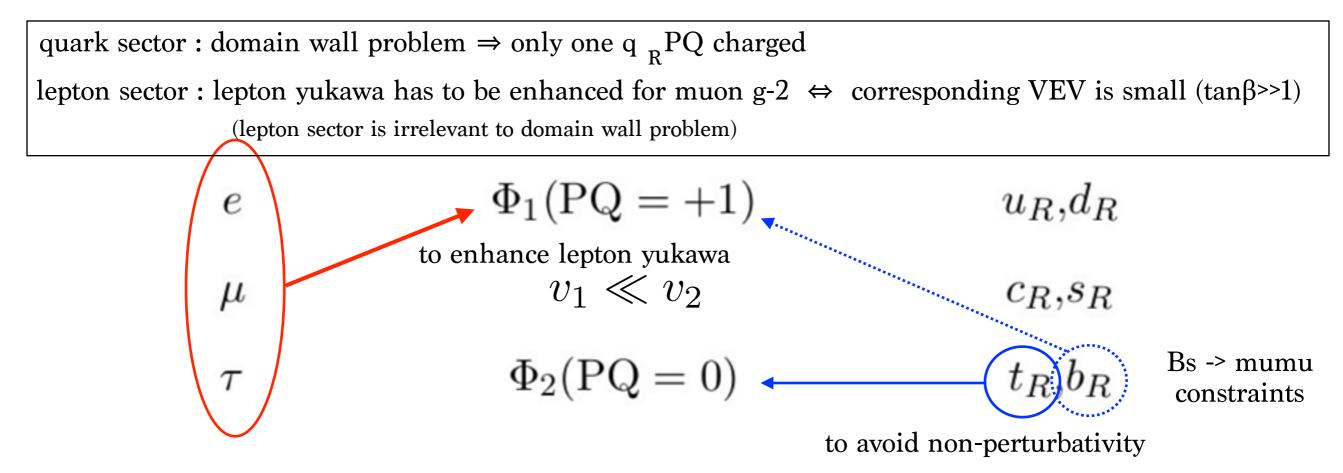
[arxiv:1807.00593, C.-W. Chiang, MT, P.-Y. Tseng, T. T. Yanagida]



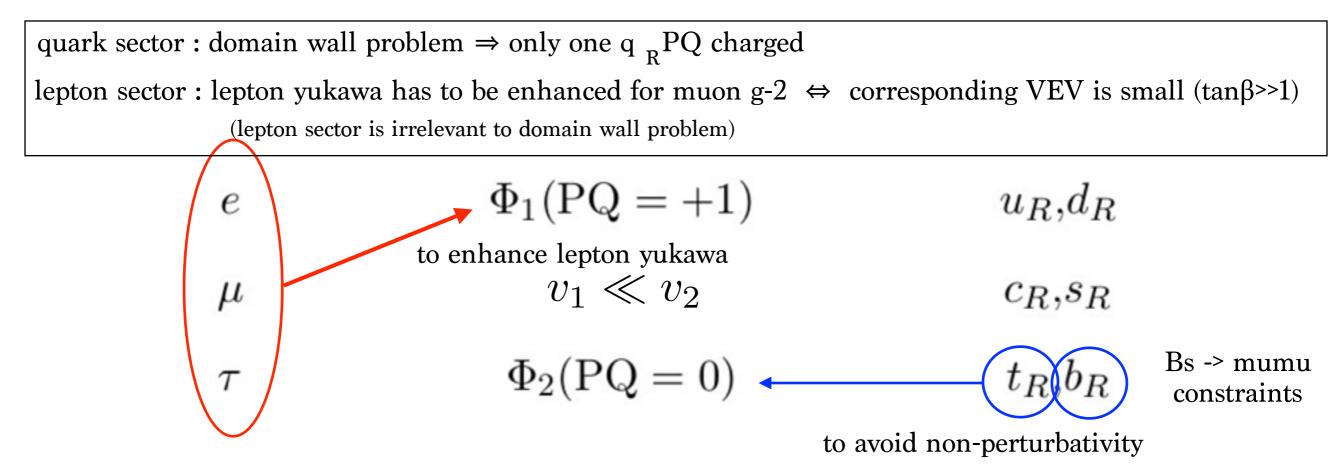
[arxiv:1807.00593, C.-W. Chiang, MT, P.-Y. Tseng, T. T. Yanagida]


VAM is a 2HDM at low energy with various PQ charge assignments.



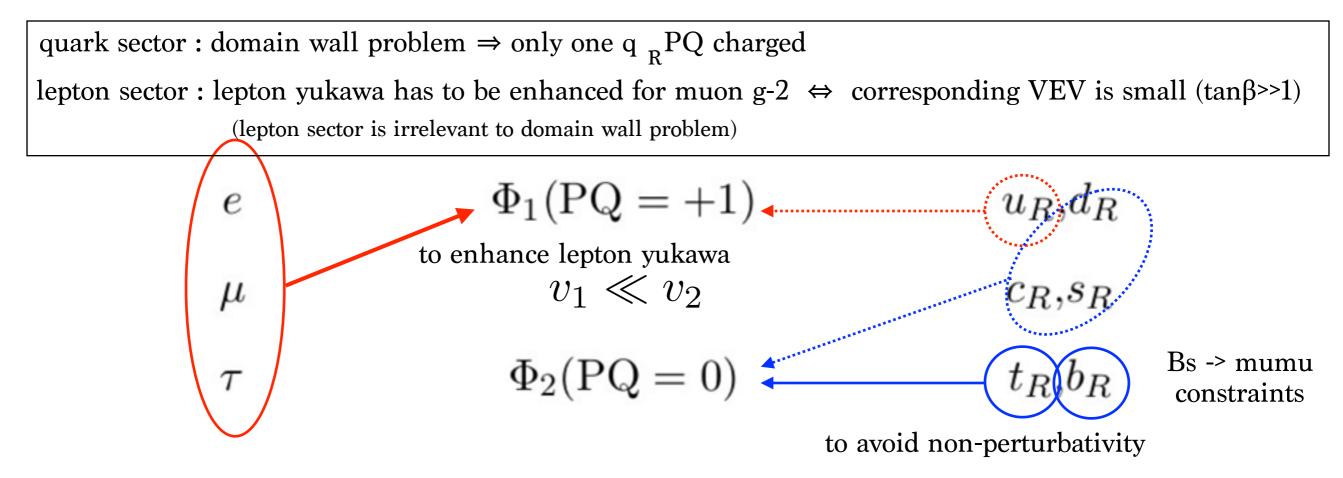

the 3rd gen. part becomes identical to the type II 2HDM  $\Rightarrow$  very constrained by LHC via bbA production also by Bs $\rightarrow$ µµ

 $\Rightarrow$  not viable possibility


[arxiv:1807.00593, C.-W. Chiang, MT, P.-Y. Tseng, T. T. Yanagida]



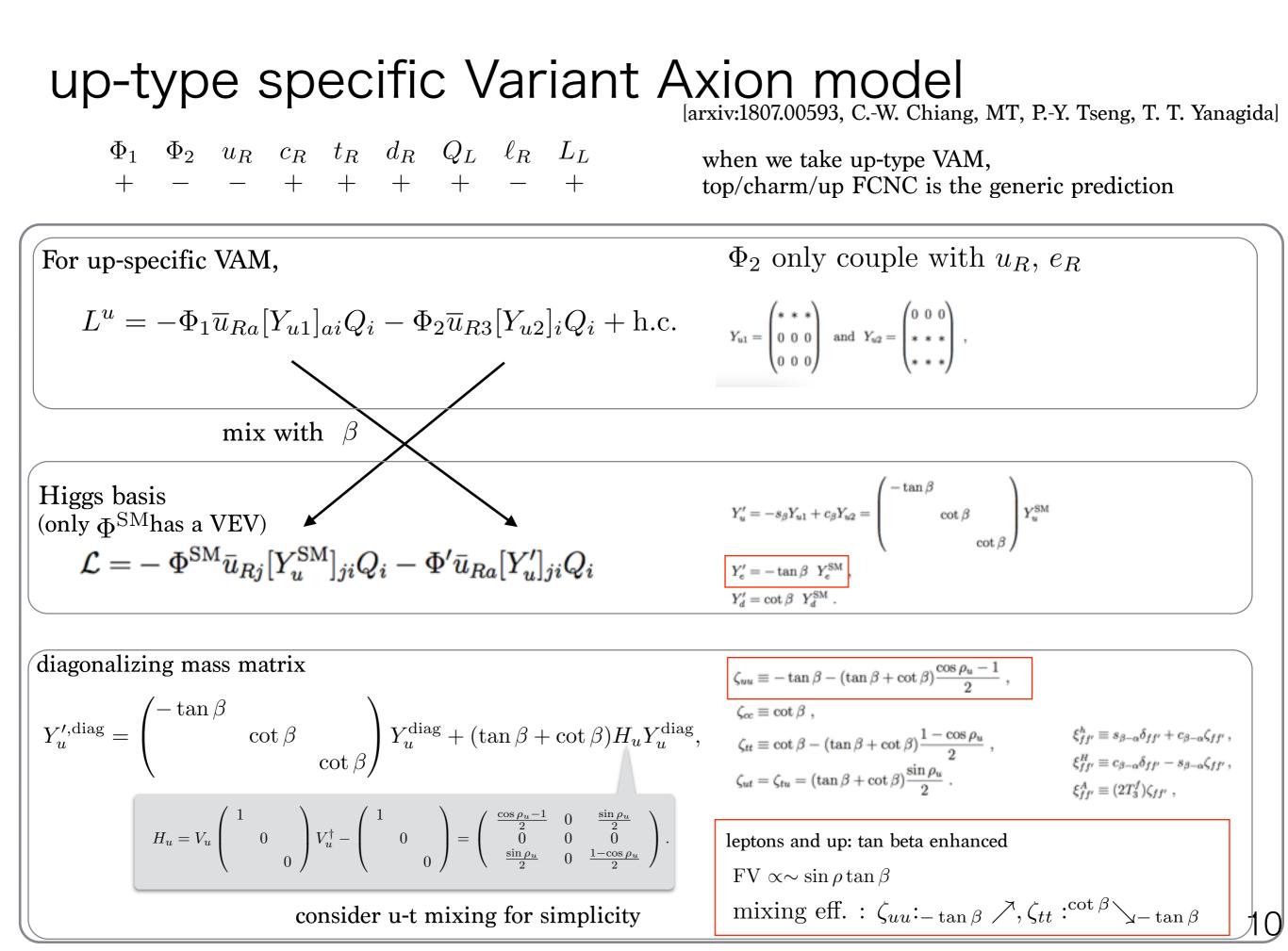
[arxiv:1807.00593, C.-W. Chiang, MT, P.-Y. Tseng, T. T. Yanagida]



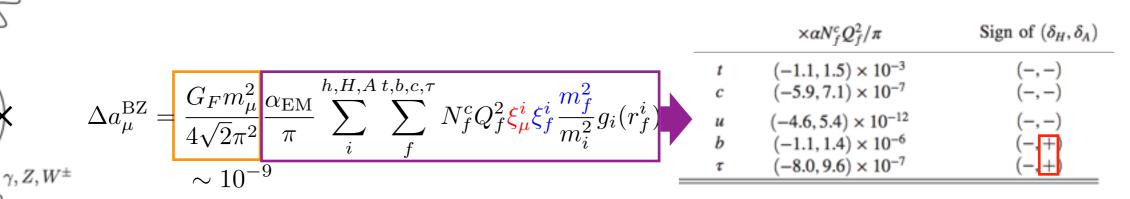

[arxiv:1807.00593, C.-W. Chiang, MT, P.-Y. Tseng, T. T. Yanagida]



[arxiv:1807.00593, C.-W. Chiang, MT, P.-Y. Tseng, T. T. Yanagida]


VAM is a 2HDM at low energy with various PQ charge assignments.



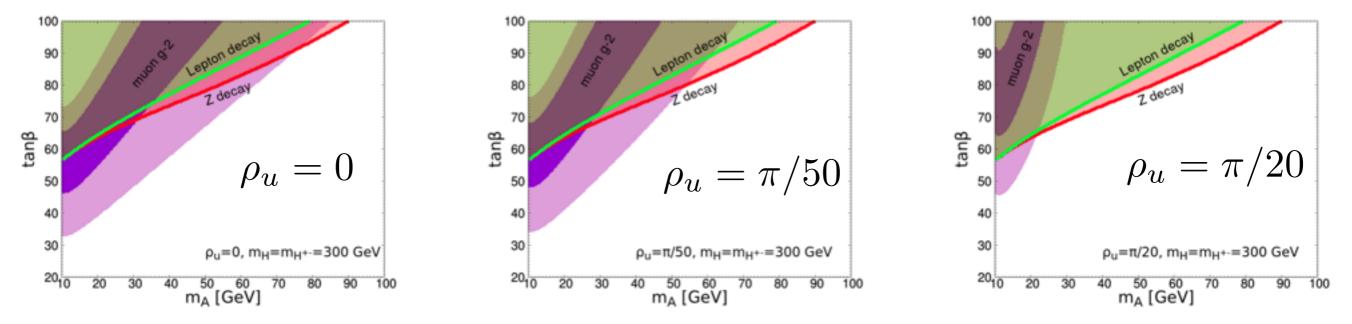

several choices, but up-specific is most interesting possibility

charm-specific : opposite sign for g-2

down/strange-specific : very constrained by Kaon physics



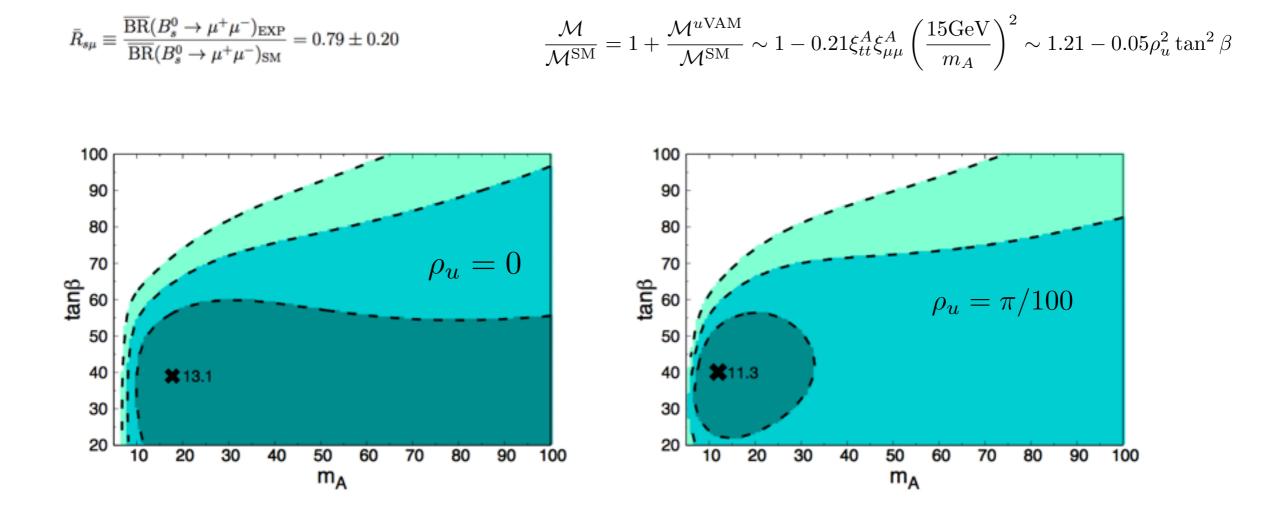
[arxiv:1807.00593, C.-W. Chiang, MT, P.-Y. Tseng, T. T. Yanagida]




 $\propto m_\mu m_f^2/m_H^2$ 

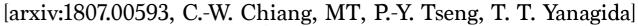
 $H^{0}, A^{0}$ 

opposite sign contributions -tan  $\beta$  enhanced for up-type  $\Rightarrow$  only up negligible LFV doesn't contribute directly to g-2, but affects the diagonal elements


```
FV \propto \sim \sin \rho \tan \beta mixing eff. : \zeta_{uu} := \tan \beta \nearrow, \zeta_{tt} : \cot^{\beta} \searrow -\tan \beta
```



switching on LFV coupling induces negative top-loop contribution ⇒ rather disfavored by g-2 but acceptable as long as a small mixing

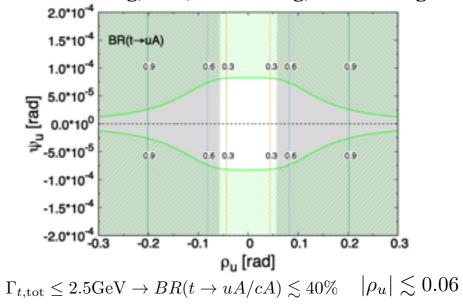

[arxiv:1807.00593, C.-W. Chiang, MT, P.-Y. Tseng, T. T. Yanagida]

 $Bs \rightarrow \mu\mu$  observation exhibit a slight deficit from the SM prediction



for combined  $\chi^2$ -fit including Bs  $\rightarrow \mu\mu$ , small mixing  $\rho_u = \pi/100$  slightly improves the fit

mA ~ 15GeV, tan $\beta$ ~40,  $\rho_u \sim 0.03$  will give a best fit




#### t ightarrow u A , A ightarrow au au

even for a slight mixing  $\rho \sim 0.03$  induces large  $BR(t \rightarrow uA) \sim O(10\%)$  $\Gamma_{t \rightarrow uA/cA} \propto \sim \sin^2 \rho_u \tan^2 \beta$ 

A decays dominantly to  $\tau\tau$  about 100%

important signal from top pair production :  $t\bar{t} \rightarrow t\bar{u}A, A \rightarrow \tau\tau$ 



recast the LHC searches for *bbA*,  $A \rightarrow \tau \tau$ , in the context of MSSM (type II)

(CMS at 8TeV in  $\mu\tau$ ,  $e\tau$ ,  $e\mu$  modes)

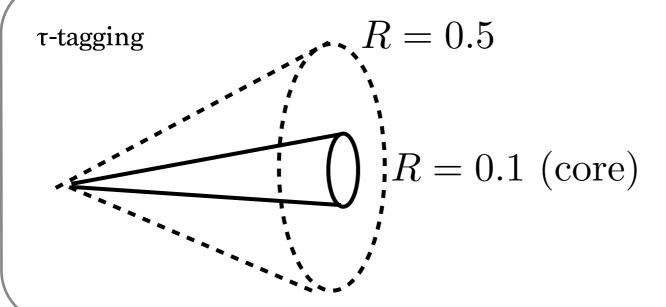
kinematics is different between *tuA* and *bbA* 


– efficiency for *tuA* 

higher due to  $p_{T,\tau}$  cut

quickly goes down as  $m_A \to 0$  due to  $\Delta R$  cut

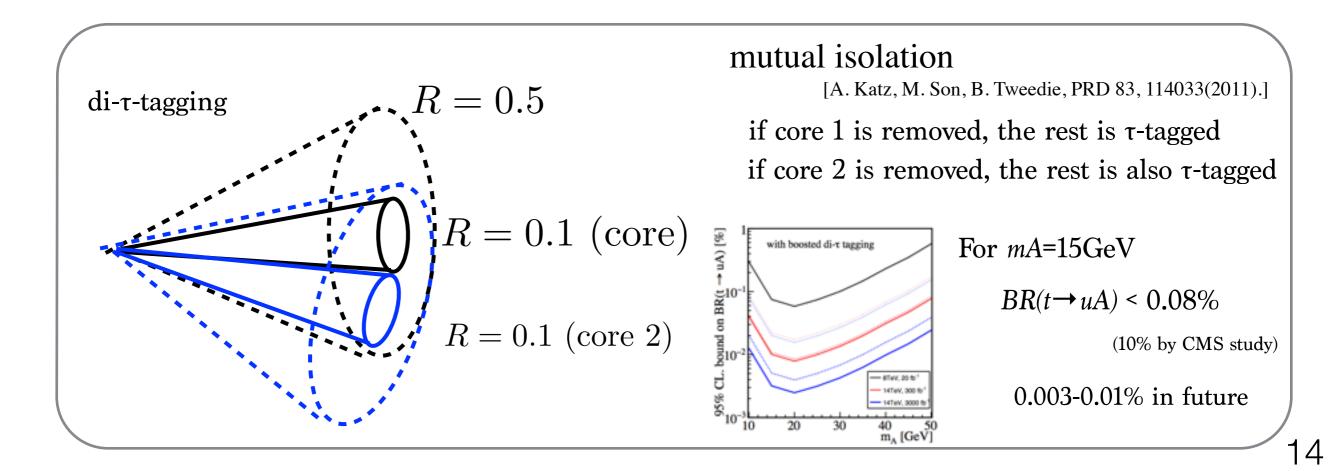
we estimate 8 TeV sensitivity,


 $BR(t \rightarrow uA) < 0.2\% (mA > 25 \text{GeV}), 10\% (mA = 15 \text{GeV}) : \text{marginal}$ 



#### boosted A $\rightarrow$ $\tau$ $\tau$

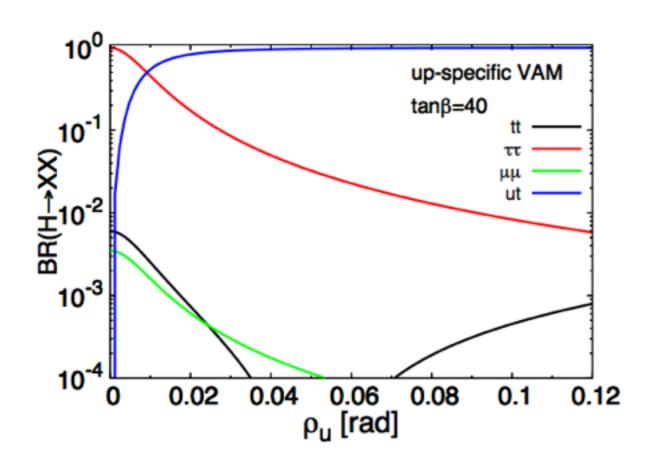
[arxiv:1807.00593, C.-W. Chiang, MT, P.-Y. Tseng, T. T. Yanagida]


The reason for rapid drop of the efficiency is due to the overlapping  $\tau$ 's due to the boost



require energy deposit in the core part

$$f = \frac{E(R = 0.1)}{E(R = 0.5)} > 0.95$$


for boosted tau pair the usual isolation fails



#### Flavor violating Heavy higgs decays [arxiv:1807.00593, C.-W. Chiang, MT, P.-Y. Tseng, T. T. Yanagida]

For  $m_H \gg m_t$  and  $\tan \gg 1$ , we have

$$\frac{BR(H \to tu)}{BR(H \to \tau\tau)} \sim \frac{m_t^2}{m_\tau^2} \frac{3\sin^2 \rho_u}{2} \simeq (120 \cdot \sin \rho_u)^2$$



$$\begin{split} \mathcal{L} \supset \sum_{f,f'}^{u,c,t,d,s,b,e,\mu,\tau} &- \frac{m_{f'}}{v} (\xi_{ff'}^h h \bar{f}_R f'_L + \xi_{ff'}^H H \bar{f}_R f'_L + i \xi_{ff'}^A A^0 \bar{f}_R f'_L) + \text{h.c} \,, \\ &\xi_{ff'}^h \equiv s_{\beta-\alpha} \delta_{ff'} + c_{\beta-\alpha} \zeta_{ff'} \,, \\ &\xi_{ff'}^H \equiv c_{\beta-\alpha} \delta_{ff'} - s_{\beta-\alpha} \zeta_{ff'} \,, \\ &\xi_{ff'}^H \equiv (2T_3^f) \zeta_{ff'} \,, \\ &\zeta_{ff'} = \frac{\cot \beta \delta_{ff'}}{-\tan \beta \delta_{ff'}} & (\text{for } f = d, s, b) \,, \\ &(\text{for } f = e, \mu, \tau) \\ &\zeta_{uu} \equiv -\tan \beta - (\tan \beta + \cot \beta) \frac{\cos \rho_u - 1}{2} \,, \\ &\zeta_{cc} \equiv \cot \beta \,, \\ &\zeta_{ut} \equiv \cot \beta - (\tan \beta + \cot \beta) \frac{1 - \cos \rho_u}{2} \,, \\ &\zeta_{ut} = \zeta_{tu} = (\tan \beta + \cot \beta) \frac{\sin \rho_u}{2} \,. \end{split}$$

the flavor-violating decay  $H \to tu$  dominates for  $\rho_u \gtrsim 1/120$ .

very striking signature of the up-specific Variant Axion Model

#### Conclusions

muon g-2 : long standing puzzle, the new updates coming soon

to explain the anomaly in the muon g-2 in 2HDMs

LFV in g2HDM or lepton-specific 2HDM

Lepton Flavor Violation in g2HDM

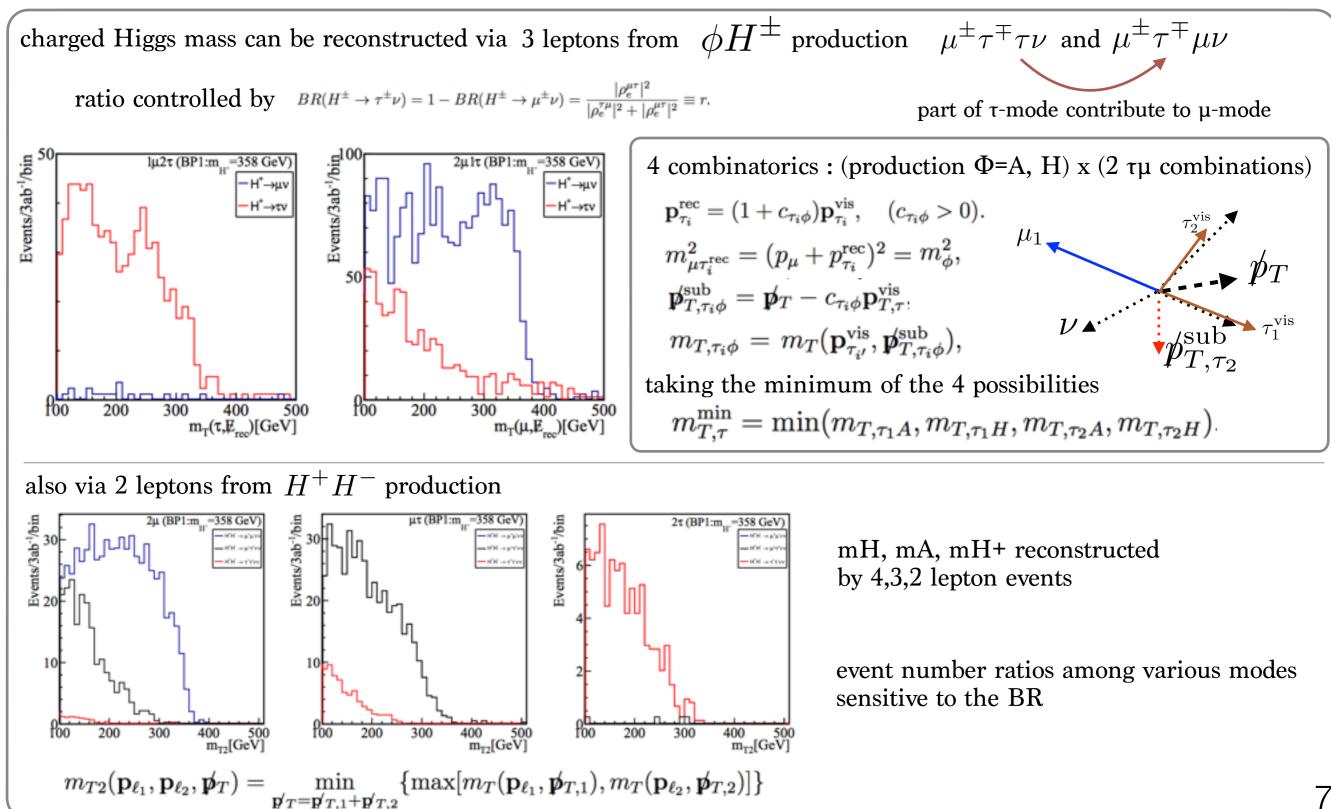
 $mA < 700~{\rm GeV},\,10{\rm GeV} < mH$  -  $mA < 100~{\rm GeV}$ 

Drell-Yan production provide LFV tau-mu resonances, which would be sensitive at LHC

a well motivated extension of lepton-specific 2HDM

strong CP problem  $\Rightarrow$  domain wall problem

 $\Rightarrow$  variant axion models (only 1 right-handed quark PQ charged)


For light A case,  $t \rightarrow uA$ ,  $A \rightarrow \tau\tau$  current constraints marginal

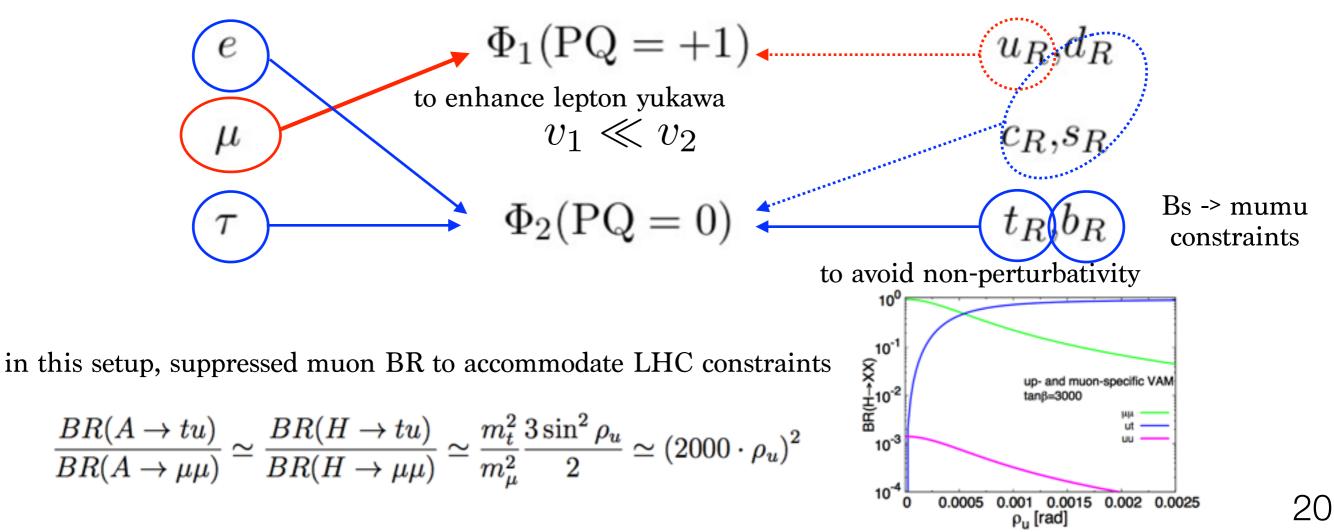
using boosted di-tau-tagging improves sensitivity significantly

For both cases, flavor violating heavy higgs decays (  $H \rightarrow \tau \mu, tu$ ) would be the distinctive signatures at LHC

#### Backup

#### g-2 via LFV — mass reconstruction at LHC




#### u-specific VAM with muon-specific lepton sector

An extreme model: muon-specific 2HDM to accommodate muon g-2 [T. Abe, R. Sato, K. Yagyu JHEP 1707, 012 (2017)]

only muon yukawa is tan $\beta$  enhanced ~ 3000 better fit against the lepton universality constraints constrained by multi-muon searches at LHC (A/H $\rightarrow$ µµ 100%)

VAM is essentially just a 2HDM with various PQ charge assignments (only one  $q_R$  PQ charged) lepton sector is irrelevant to the strong CP problem nor domain wall problem

muon yukawa has to be enhanced to accommodate muon g-2  $\Leftrightarrow$  corresponding VEV is small (tan $\beta$ >>1)



# g-2 in 2HDM

 $\mathcal{O}(10^{-9})$  positive contribution required  $2.6 \times 10^{-9}$ 

| Flavor dependent contribution : yukawa type                                                                    |                                        |                                                         |                                                                                                                             |                                                                                              |                                                                                                           |                                     |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|--|--|--|
| chirality flip required                                                                                        | $\mathcal{L} = a_{\mu} \frac{a}{4\pi}$ | $\frac{e}{m_{\mu}}\bar{\psi}\sigma_{\mu u}\psi F^{\mu}$ | ıν                                                                                                                          |                                                                                              | $r_f^i = m_f^2 / m_i^2$                                                                                   |                                     |  |  |  |  |  |
| 1-loop                                                                                                         |                                        | $^{\rm AM,1-loop} = \frac{1}{2}$                        | $\frac{G_F m_{\mu}^2}{4\sqrt{2}\pi^2} \sum_{i=1}^{h,H,A,H^{\pm}} \left( \sum_{i=1}^{h,H,A,H^{\pm}} \right)^{h,H,A,H^{\pm}}$ | $\sim 10^{-7}$                                                                               | $f_{H^{\pm}}(r) = \int_0^1 dx \frac{-x(1-x)}{1-r(1-x)}$ $g_{h,H}(r) = \int_0^1 dx \frac{2x(1-x)}{r(1-x)}$ |                                     |  |  |  |  |  |
| $ \begin{array}{c}  A^0, H^0, H^{\pm} \\ \mu & \mu, \nu_{\mu} \end{array} $                                    | 3 / 2                                  | ct                                                      | f.) muon-specific 2<br>[T. Abe, R. Sato                                                                                     | , K. Yagyu, arXiv:1705.                                                                      | 01469] $g_A(r) = \int_0^1 dx \frac{1}{x(1-x)}$                                                            | $\frac{1}{r} \ln \frac{x(1-x)}{r}.$ |  |  |  |  |  |
|                                                                                                                | $-\propto m_{\mu}^{s}/m_{H}^{z}$       |                                                         | enhance with                                                                                                                | h $m_{\tau}^3/m_{\mu}^3 \sim 5000$                                                           | $, \xi_{\mu\tau}^2  \xi_{\mu\tau}\xi_{\tau\mu}/m_H^2$                                                     | $[eV] \sim 10^4$ required           |  |  |  |  |  |
| 2-loop (Barr-Zee)                                                                                              | $\Delta a_{\mu}^{\rm VAM}$             | $G_{\rm FBZ} = \frac{G_F n}{4\sqrt{2}\pi}$              | $\frac{n_{\mu}^2}{\pi^2} \frac{\alpha_{\rm em}}{\pi} \sum_{i=1}^{h,H,A} \sum_{f=1}^{t,b,c,h}$                               | $\sum_{f=1}^{\tau} N_f^c Q_f^2 \xi_{\mu\mu}^i \xi_{ff}^i r_f^i g_i(r_f^i)$                   | $\binom{i}{f}$                                                                                            |                                     |  |  |  |  |  |
| heavy fermion contributions enhance at 2-loop $\xi_{\mu}\xi_{\tau}/m_{H}^{2}[\text{TeV}] \sim 10^{6}$ required |                                        |                                                         |                                                                                                                             |                                                                                              |                                                                                                           |                                     |  |  |  |  |  |
|                                                                                                                |                                        | Fermion                                                 | $(g_f^H, g_f^A)$                                                                                                            | $(r_f^H g_f^H, r_f^A g_f^A)$                                                                 | $	imes lpha N_f^c Q_f^2 / \pi$                                                                            | Sign of $(\delta_H, \delta_A)$      |  |  |  |  |  |
| $H^{0}, A^{0}, H^{\pm}, \gamma, Z, W^{\pm}$ $\mu \qquad \gamma, Z, W^{\pm}$                                    | One loop                               | μ<br>t<br>c                                             | (17, -16)<br>(-12, 15.9)<br>(-118, 140)                                                                                     | $(1.9, -1.8) \times 10^{-7}$<br>$(-3.6, 4.7) \times 10^{-1}$<br>$(-1.9, 2.3) \times 10^{-4}$ | $(1.9, -1.8) \times 10^{-7}$<br>$(-1.1, 1.5) \times 10^{-3}$<br>$(-5.9, 7.1) \times 10^{-7}$              | (+, -)<br>(-, -)<br>(-, -)          |  |  |  |  |  |
| $\propto m_{\mu}m_{f}^{2}/m_{H}^{2}$                                                                           | Two loop                               | u<br>b<br>t                                             | (-282, 330)<br>(-87, 105)<br>(-109, 130)                                                                                    | $(-1.5, 1.7) \times 10^{-9}$<br>$(-1.5, 1.8) \times 10^{-3}$<br>$(-3.4, 4.1) \times 10^{-4}$ | $(-4.6, 5.4) \times 10^{-12}$<br>$(-1.1, 1.4) \times 10^{-6}$<br>$(-8.0, 9.6) \times 10^{-7}$             | (-,-)<br>(-,+)<br>(-,+) 3           |  |  |  |  |  |
|                                                                                                                |                                        |                                                         |                                                                                                                             |                                                                                              |                                                                                                           | 9                                   |  |  |  |  |  |

#### g-2 via lepton flavor violation — other elements

Other Yukawa elements : 1st, 2nd generations severely constrained

 $\rho_e^{\tau\tau}, \ \rho_u^{tt}, \ \rho_u^{tc}, \ \rho_u^{ct} \text{ and } \rho_d^{bb}.$ 

 $BR(\tau \to \mu \gamma)$  sets  $|\rho_u^{tt}| < 0.05$  and  $|\rho_e^{\tau \tau}| < 0.06$ . 2-loop 1-loop

 $|\rho_u^{tc}| < 0.11$ : lepton univ. in  $B \to D\ell\nu$ 

 $\epsilon_K$  measurements provide a severe constraint as  $|\rho_u^{ct}| < 0.04$  $|\rho_d^{bb}| < 0.22$  is obtained by the flavor observables including  $BR(B \to \mu\nu)$ 

 $BR(H/A \to \mu^{\pm} \tau^{\mp})$  is diluted by  $H/A \to b\bar{b}$