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Motivation - Discrepancies in the MeV regime

Puzzle at low energies: (gµ − 2) and Proton Radius Puzzle (Bound)

Future Experiments (1608.03591):
1 LHCb Run 3 (2021-2023) search for Dark Photons via D∗ → D0A′(A′ → e+e−);
2 Mu3e Phase II (2018 - ): muon decay channel µ → eνeνµ(A′ → e+e−) for

10 < mA[MeV ] < 80.
3 DarkLight (2018 - ): Electrons scattered off hydrogen gas to on-shell dark photons in

10 < mA[MeV ] < 100.
4 VEPP-3 (proposal): Positron beam on hydrogen gas target for e+e− → γA′;
5 E36 (J-PARC): Kµ2ee decays.

Dark Photons vs. Z ′: What are the consequences of axial-vector couplings and
new decay modes?

F. Correia & S. Fajfer KIAS & IJS Light X in SM ⊗ U(1)X November 7, 2019 3 / 34



Motivation - Z′ vs. Dark Photons U(1)X with RH fermions Constraints Outlook Conclusions

Proton Radius

Estimation Comparison between a prediction (theoretical) and measurement of
the Lamb shift in muonic and atomic Hydrogen.

Prediction
∆E |lthe = δE l

a + δE l
b + · · ·+ λl 〈r2

p 〉|l (1)

where l = µ, e. At leading order λl is given by

λl =
2α

3a3
l n3

(δP0 − δS0) (2)

where n = 2 for 2P − 2S and al = (αmlp)−1 is the Bohr radius of the
system with reduced mass mlp .

Proton Radius
∆E |lthe = ∆E |lexp; ∆E |µexp = 202.3706(23) meV (3)

At the theory side

∆E |µthe = 206.0336(15) + 0.0332(20)− 5.2275〈r2
p 〉 (4)

Discrepancy (N. Bezginov et.al Science 365 (2019))√
〈r2

p 〉|0µ = 0.84087(39) fm (5a)√
〈r2

p 〉|0e = 0.8758(77) fm CODATA-2010 (5b)
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Guiding Principles

Non-Universality : Selected puzzles as a signal of favored flavors;

Minimality : Introducing the minimal set of new degrees of freedom;
Standard Model features :

1 Preserve fermion representations;
2 Cancellation of anomalies per generation;

Low-Energy Phenomenology (1103.0721):
1 Interactions νe or νN not stronger than GF ;
2 Absent of fundamental electrically charged particles with mp < 100(GeV);
3 QED and particle physics at the MeV.
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Anomalies Requirement

U(1)3
X

U(1)Y U(1)2
X

U(1)2
Y U(1)X

SU(2)2U(1)X

SU(3)2U(1)X

grav2U(1)X

Solutions per generation

XD = 2XQ − XU , XL = −3XQ , Xl = −2XQ − XU , Xχ = XU − 4XQ
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Guiding Principles

Minimality : Introducing the minimal set of new degrees of freedom;

Non-Universality : Selected puzzles as a signal of favored flavors;
Standard Model features :

1 Preserve fermion representations;
2 Cancellation of anomalies per generation;

Low-Energy Phenomenology (1103.0721):
1 Interactions νe or νN not stronger than GF ;
2 Absent of fundamental electrically charged particles with mp < 100(GeV);
3 QED and particle physics at the MeV.

SM ⊗ U(1)X

Second Generation of Right-Handed fields;

Two-Higgs Doublet Model;

Scalar Singlet: New scale and breaking of residual U(1);

Phenomenology of light neutral gauge boson: Remaining fields around the
decoupling limit;
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Particle Content

Three vector fields Wµ from SU(2)L; One vector BY
µ from U(1)Y and BX

µ from
U(1)X ;

Three independent coupling constants g, gY , gX apart from a kinetic mixing term
κ;

Three generations of Weak Isospin doublets:

(LL)i =

(
νi
ei

)
L

(QL)i =

(
ui
di

)
L

(6)

with i = 1, 2, 3;

Right-Handed SU(2)L singlets: χR , liR , uiR , diR ;
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On the Kinetic Mixing

L ⊃ −
1
4

Wµν ·Wµν −
1
4

BYµνBY
µν −

1
4

BXµνBX
µν +

ε

2
BYµνBX

µν

Field redefinition:

BY
µ → BY

µ + εBX
µ (7)

or

Lk.m. ⊃ −
1
2

(BY
µ + εBX

µ )Ôµν(BY
ν + εBX

ν )−
1
2

BX
µ ÔµνBX

ν + ε BX
µ Ôµν(BY

ν + εBX
ν ) (8)

such that, up to order O(ε),

Lk.m. ⊃ −
1
2

BY
µ ÔµνBY

ν −
1
2

BX
µ ÔµνBX

ν +O(ε2) (9)

i.e. the crossed terms vanishes and the mixing effect is converted into the Covariant
Derivative:

Dµ → Dµ = ∂µ − igWµ · τ − igY BY
µY p − i(κY p + gX X p)BX

µ (10)

where εgY ≡ κ.
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Couplings and Masses

Mixing Matrix:

V =

sθcφ −sθsφ −cθ
sφ cφ 0

cθcφ −cθsφ sθ

 (11)

Photon Couplings:
eQ = gsφτ3 + gY cφY (12)

and by applying it to the standard fields, it can be extracted

gsφ = gY cφ = e (13)

Z Couplings:

gZ = cθgSM
Z + sθ(κY + gX X) (14)

X Couplings:

gR = sθgSM
Z − cθ(κY + gX X) (15)

where gSM
Z = g

cφ
(τ3 − s2

φQ).
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Couplings and Masses

Z Couplings:

gZ = cθgSM
Z + sθ(κY + gX X)

X Couplings:

gR = sθgSM
Z − cθ(κY + gX X)

where gSM
Z = g

cφ
(τ3 − s2

φQ).

Neutral Vector Masses: If gX , κ� ḡ

m2
Z →

v2

4
ḡ2, m2

X →
v2

4
a1 (16)

where

ḡ2 = g2
Y + g2 , a1 = 4

[
g2

X
v̄2

v2
− gXκc2

β

]
+ κ2

Mixing Angle:

sθ ≈
|2gX c2

β − κ|
ḡ

[
1−

m2
X

m2
Z

]−1

(17)
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Fermion Gauge Interactions

Lkin ⊃ i
[

LαL /DLαL + QαL /DQαL + lαR /DlαR + dαR /DdαR + uαR /DuαR + χR /DχR

]
(18)

with α = 1, 2, 3, β = 1, 2. The Covariant Derivative in terms of the mass eigenstates
can be written like

Dµ = ∂µ − ig(W +I+ + W−I−)− ieQAµ − igZ Zµ − igRXµ (19)

Flavor Violating processes in both Z and X interactions are exclusive to RH sector.
Defining the vector of fermion fields f = (f1, f2, f3) and rotating the system to the mass
basis, fR → VfR f ′R ≡ VfR fR , the general currents depending on the X charges can be
fully separated via:

Lkin ⊃ −cθgX

[
uRFUγµuR + dRFDγµdR + lRFlγµlR

]
Xµ (20)

apart from the sθ-dependent universal contribution. The matrices

Ff ≡ V †fRX
f VfR , where (Xf )ij ≡ X f δ2iδ2j (21)

or
(Ff )ij = X f (V †fR)i2(VfR)2j (22)

summarizes the amount of flavor violation and fermion non-universality in the model.
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Fermion Gauge Interactions and Non-Universality

(Ff )ij = X f (V †fR)i2(VfR)2j (23)

By unitarity the trace of Ff is equal to X f :

Tr[Ff ] = Tr[V †fRX
f VfR ]

= Tr[Xf ]

= X f (24)

In the scenario where flavor is aligned to mass eigenstates, i.e. when the absolute
value of diagonal elements of VfR are larger than the non-diagonal ones, the flavor
violating processes also will favor second generation in the final state.

|Ff | ≡ X f

 |VfR |221 |VfR |21|VfR |22 |VfR |21|VfR |23
|VfR |21|VfR |22 |VfR |222 |VfR |22|VfR |23
|VfR |21|VfR |23 |VfR |22|VfR |23 |VfR |223

 (25)

X hypercharges (P.Ko, Y.Omura, C.Yu, PLB 717(2012)202-206)

XL = 0; XQ = 0; Xe2 = 1; Xχ = −1; Xu2 = −1; Xd2 = 1 (26)

with the remaining RH fields uncharged

F. Correia & S. Fajfer KIAS & IJS Light X in SM ⊗ U(1)X November 7, 2019 13 / 34



Motivation - Z′ vs. Dark Photons U(1)X with RH fermions Constraints Outlook Conclusions

Parameter Space - U(1)X

Parameter Space P: Initially the set P is given by

P := [κ, g, gY , gX , vX , v0, vs,F] (27)

To reproduce the Electroweak interactions, both g and gY can be solved in terms of the
remaining elements. The mW and mZ pole mass can, in addition, solve v0 and vX .
However, in the asymptotic limit both masses depends only on v such that it may be
convenient to preserve cβ in the analysis. Finally, the scale vs can be replaced by mX .
We end up with a five-dimensional parameter space, namely

P := [cβ , κ, gX ,mX ,F] (28)

The kinetic mixing variable is independent and can be replaced by the new mixing
angle. Accordingly, there must be a region for κ where the SM Z interactions are
exactly reproduced, i.e. sθ = 0.
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Constraints

Most stringent from previous work (PRD 94, 115023 (2016)):

ρ parameter;

Proton Puzzle in the U(1)X ;

χ Fermion - Mixing Energy Considerations and Relic Abundance;

Kaon Leptonic Decays Kµ2ee;

(gl − 2), l = e, µ;

Neutrino Trident Production;

Parity Non-Conserving Processes.
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ρ Parameter

The ρ parameter is a quantity defined by three observables, namely mW , mZ and the
weak mixing angle through the expression

ρ =
m2

W

m2
Z c2

w
(29)

In the SM these parameters are connected by a natural relation and results in ρ = 1 at
tree-level. In order to verify how the parameter will escape from the unity, in first
approximation we can rewrite the Z mass

m2
Z ≈

v2

4
ḡ2
(

1 + s2
θ

)
(30)

where the Xµ light mass condition has been used. It follows that

ρtree
X ≈ c2

θ (31)

which cannot touch the central value of the experimental measurement

ρ ∈ 1.00040(24) (32)

At two sigmas we can demand 0.99992 < c2
θ ≤ 1 or

s2
θ < 8 · 10−5 (33)
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Proton Radius in U(1)X

The discrepancy can be accommodated

∆E |lthe = δE l
0 + δE l

X + λl 〈r2
p 〉|Xl → 〈r

2
p 〉|Xµ = 〈r2

p 〉|Xe (34)

The difference between the “X” and “0” frameworks can be expressed as a small
deviation like

〈r2
p 〉|Xl = 〈r2

p 〉|0l − δ
X
l where δX

l ≡
δE l

X
λl

(35)

In summary, a proton radius constraint is imposed by

δX
e − δX

µ = 〈r2
p 〉|0e − 〈r2

p 〉|0µ (36)

The correction δX
l originates from a contribution to the Coulomb potential due to the

exchange of a massive vector boson Xµ

V l
X (r) =

gl gp

e2

αe−mX r

r
(37)

with a correspondent shift in 2P − 2S

δE l
X =

∫
dr V l

X (r)
(
|R21(r)|2 − |R20(r)|2

)
r2

= −
α

2a3
l

(
gl gp

e2

)
f (al mX )

m2
X

(38)

For mX > 10 MeV we can take f (x) = x4

(1+x)4 ∼ 1.
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Proton Radius in U(1)X

A Proton curve is defined by

6
gp

e2

(ge − gµ)

m2
X

= 〈r2
p 〉|0e − 〈r2

p 〉|0µ (39)

which in principle can be solved by an attractive force (i.e. sgngp = −sgngl ) strongly
coupled with muons. In the U(1)X framework, and under the limit where f (x) ∼ 1, the
sgn gp must be opposite only to the non-universal part of the Xµ coupling. The
couplings gp and gl are given by:

gp = −c2
φκ; gl =

x l
V
2

(40)

For simplicity Fττ may be taken zero such that Fµµ + Fee = 1, what reduces the
Proton curve to

6
gpgX

e2

2Fµµ − 1
m2

X
= 0.060(13) fm2 (41)
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(ge − 2)

The correction to ae due to the presence of Xµ corresponds to a shift of the
fine-structure constant:

dα = 2πaX
e →

dα−1

α−1
= −

2πaX
e

α
(42)

The r.h.s is the relative correction to the measurement of α−1 which should not exceed
0.5 ppb. The dipole function can be written like

aX
e =

m2
e

4π2

[
(xe

V )2IV (m2
X ) + (xe

A)2IA(m2
X )
]

(43)

where

IV (m2
X ) =

∫ 1

0
dz

z2(1− z)

[m2
l z2 + m2

X (1− z)]

mX�ml→
1

3m2
X

IA(m2
X ) =

∫ 1

0
dz

z(1− z)(z − 4)−
(

2 m2
l

m2
X

)
[m2

l z2 + m2
X (1− z)]

mX�ml→ −
5

3m2
X

(44)

Since the limit mX � me is valid in our region we can set the bounding curve

f

(
m2

e

m2
X

)
≡
(

m2
e

m2
X

)
1

6πα
|(xe

V )2 − 5(xe
A)2| < 0.5ppb (45)
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Parameter Space facing Selected Process

(cβ, κ, Fμμ) = (0.8, -4gX , 1)

(ge - 2)
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10

-9
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-5

10
-3

10 20 30 40 50 60

mX [MeV]

g
X2

mχ[MeV]

Favored ±2σ

KμY 90% C.L.

Kμνee

(a)

(cβ, κ, Fμμ) = (0.8, -4gX , 1)

(ge - 2)

50 100 150 200
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-6

10
-5

10
-4

0.001

10 20 30 40 50 60

mX [MeV]

g
X2

mχ[MeV]

Favored ±2σ

KμY 90% C.L.

Kμνee

(b)

Figure: The favored region for the proton radius anomaly explanation facing the selected bounds. Under the Narrow-
Width approximation the vector Xµ decays into a lepton pair l̄ l for l = e, 3ν, τ . Here mX = 3mχ while
Fττ = 0.
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Parameter Space - Fine Tuning

We must deal with the task of fixing a plane of a five-dimensional parameter space
under the assumption that the model must explain, for instance, the proton puzzle. For
that particular discrepancy one needs

sgngX = −sgnκ (46)

In the examples depicted in the previous figures one can verify how stringent (g − 2)e
bounds are. A possible strategy to loose these lines is to look in their definition and
work with the interference between vector and axial-vector couplings. For instance, in
the region around the root

|(xe
V )2 − 5(xe

A)2| = 0 (47)

for some fixed F, the bound would be approximately absent. For instance, for Fee = 0
the solutions are

n ∈
[
−

7
5
,

3
2
, 3
]

c2
β (48)

for κ = ngX . Hence, only one value can satisfy the condition of Eq.(46).
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Parameter Space - Fine Tuning

(cβ, κ, Fμμ) = (0.7, κ0, 1)

(ge - 2)

50 100 150 200
10
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10
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0.001

10 20 30 40 50 60
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Favored ±2σ
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Kμνee

(a)

(cβ, κ, Fμμ) = (0.6, κ0, 1)

(ge - 2)
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0.001

10 20 30 40 50 60
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g
X2

mχ[MeV]

Favored ±2σ

KμY 90% C.L.
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(b)

Figure: Close to the root for the (ge − 2) bound one can reduce the discrepancy of the proton puzzle from 5σ to
2σ.
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(gµ − 2)

∆(gµ − 2)

2
∼ 288(80)× 10−11 (49)

X Boson Contribution

L =
1
2

∑
F

µ̄[xVγ
ρ + xAγ

ργ5]F Xρ (50)

Neglecting flavor violating vertex, i.e. F = µ.

[aµ]a =
m2
µ

16π2

∫ 1

0
dz

[
x2

V [(z − z2)z] + x2
A[(z − z2)(z − 4)− 2

m2
µ

m2
X

z3]

]
m2
µx2 + m2

X (1− x)
(51)

In the very large Higgs mass assumption only [aµ]a contributes. However, for
cβ < .9 it leads to negative sign to the dipole function, thus forbidding the
explanation.
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(gµ − 2)

We include the contributions from Light Higgs to the dipole function in the region where
the asymptotic approximation to the integrals is still valid mh > 20mµ.

General Yukawa Lagrangian

LY =
∑
h,F

µ̄[CS + CPγ5]F h (52)

Asymptotic Limit of the Integrals : For mh+ ,mh0 >> mµ

[aµ]c →
m2
µ

8π2
(|C+

S |
2 + |C+

P |
2)

(
−

1
3

)
(53)

[aµ]Sd →
m2
µ

m2
h0

|C0|2S
8π2

[
log

[
m2

h0

m2
µ

]
−

7
6

]
(54)

[aµ]Pd →
m2
µ

m2
h0

|C0|2P
8π2

[
log

[
m2

h0

m2
µ

]
−

11
6

]
(55)

Charged scalars cannot contribute to the correct sign;
cβ > .9: Scalars allowed to stay in the decoupling region;
For cβ < 0.7 (small vX ), light neutral scalars with mh0 ∈ (10− 100)mµ might be
required to restore gµ − 2, depending on κ. Charged scalars are disfavored in the
low-energy regime.
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Neutrino Trident Production

Clean tests for leptonic couplings.

(a) (b)

Figure: The trident production in the equivalent photon approximation (EPA). In addition, there are the reciprocal
diagrams where the real photon is attached to µ− .

In the CHARM-II experiment, a neutrino beam with the mean energy Eν ∼ 20 GeV is
scattered by a glass target (Z = 10). We require that the contribution coming from the
interference of the SM and the U(1)X SM extension to the total cross-section should be
inside the one standard deviation region, i.e.

|σint
SM+X| < 0.57σSM. (56)

For the SM prediction, averaged over both neutrino and antineutrino scattering, we
obtained σSM = 1.8× 10−41cm2.
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Relic Abundance - χ fermion

Approximate formula for the WIMP relic density (P.Gondolo et al., NPB360 (1991))

Ωh2 ≈
3× 10−27cm3s−1

〈σannv〉
. (57)

with the thermal average computed at the freeze-out temperature Tf .o. w
mχ

20 .
General case

dY
dx

= −
(

45
πM2

P

)−1/2
g1/2
∗ mχ

x2
〈σv〉(Y 2 − Y 2

eq), (58)

by describing the evolution of the comoving abundance Y.
The variable x ≡ mχ

T , where T is the photon temperature. It is commonly taken
from x = 1, which defines the boundary for the condition Y = Yeq , to the present
value.
The abundance Y0 is related to the WIMP relic density through

Ωχh2 = 2.755× 105Y0
mχ

MeV
(59)

and must be consistent with the current measurement ΩCDM h2 = 0.1131(34)
(J.Silk et al., Cambridge U.Press, 2010. )

F. Correia & S. Fajfer KIAS & IJS Light X in SM ⊗ U(1)X November 7, 2019 26 / 34



Motivation - Z′ vs. Dark Photons U(1)X with RH fermions Constraints Outlook Conclusions

Relic Abundance - χ fermion
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Figure: (a) The differential thermal average dominated by a narrow resonance. In the example, mχ = 30 MeV.
In (b), the horizontal black band presents the 3σ region allowed by the current measurement of cold dark
matter density.
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Parameter Space
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Figure: The parameter space for κ = 3
2 c2

βgX . Notice, in (a), the excluded region for the dark photon (A′ )(light-

blue) is presented in comparison to the dark gauge boson (Z ′) region (dark-blue). In (b), the difference is
reduced when cβ = 0.95 which, on the other hand, produces a possible solution both for the (g − 2)µ
discrepancy and the ΩCDM (circled region).
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Outlook - Parity Non-Conserving Observables

LEP phenomenology should be repeated.

Figure: Forward-Backward Asymmetries in e+e− → f̄ f are important tests for axial-vector couplings. The model
would predict non-universality in for f = µ and f = τ . Here V = γ, Z , X .

The Forward-Backward Asymmetry is defined like

A(θ) ≡
dσ(θ)− dσ(π − θ)

dσ(θ) + dσ(π − θ)
(60)

Here we will focus on the energy region distant of both Z and X peaks, i.e.
2mµ �

√
s � mZ and we must compute the generic diagram of Fig.6 for V = γ,Z ,X .

For convenience, the generic vertex is written like

f̄ fVµ : ieγµ(vV
f − aV

f γ5) (61)

For instance, (vγf , a
γ
f ) = (−qf , 0) where qe = −1, qu = 2

3 , qd = − 1
3 .
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Outlook - Parity Non-Conserving Observables

The amplitude can then be expressed like

MV =
e2

s −m2
V

[v̄(p+)γµ(vV
e − aV

e γ5)u(p−)][ū(k−)γµ(vV
f − aV

f γ5)v(k+)] (62)

with |M|2 = |
∑

V =γ,Z ,X MV |2.

A(θ) ≈
[dσγZ (θ) + dσγX (θ)]− [dσγZ (π − θ) + dσγX (π − θ)]

dσγ(θ) + dσγ(π − θ)
(63)

In the CM reference frame it results in

A(θ) ≈
8scθ|k|

√
s

4c2
θ |k|2 + 4m2

f + s

[
aX

e aX
f

s −m2
X

+
aZ

e aZ
f

s −m2
Z

]
(64)

Here cθ is the scattering angle, and k the 3-momenta of the products. In the region
√

s � mµ the contribution from X exchange can be represented by δAX (θ) ∝ aX
e aX

f
s or

A(θ) ∝
[

aX
e aX

f
s
−

aZ
e aZ

f

m2
Z

]
(65)

Once aZ ∼ g and aX ∼ gX , where for instance
√

s ∼ mZ
10 the region gX ∼ 10−1g

would be highly constrained.
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Leptonic Meson Decays: M → l ′νl ′ ll
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Figure: Differential branching ratio as a function of the di-lepton invariant mass in the SM. In the plot (a), the IB
diagrams are dominant. In (b), the IB and SD contributions are presented for Ds decays.
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Leptonic Meson Decays: M → l ′νl ′ ll
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Figure: The normalized differential branching ratio corresponds to the probability P = 2.54% of measuring the
di-lepton mass in the interval 58 MeV < mee < 62 MeV at the resonance (g2

X ,mX ) = (4 × 10−4, 60).
P = 0.63%, in the SM framework.
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Lepton Flavor Universality

Possible test for lepton flavor universality:

R(f ) =
Br(Mf2µµ)

Br(Mf2ee)
, (66)

in a kinematic region far from resonances. In the SM the ratio is close to the unity
for q2 >> (2mµ)2 and different leptons in the final state. This case might be
potentially interesting, and it is kinetically allowed only for Bτ2ll .

For m2
ll far from the Xµ pole, any non-universality effects are negligible if

compared with the SM prediction.

For instance, for (1500)2 MeV2 < m2
ll < (1600)2 MeV2, we find

RX (τ) =
0.93 mX = 1550 MeV,
0.99 mX = 60 MeV, (67)

while for the SM value, RSM (τ) = 0.9998. In the region where the invariant mass of the
di-lepton pair is in (300)2 MeV2 < m2

ll < (400)2 MeV2 we find

RSM (τ) = 0.933, RX (τ) =
0.90 mX = 350 MeV,
0.931 mX = 60 MeV. (68)
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Conclusions

1 Light Z ′ and RH currents;

2 Dark Photons vs. Light Z’: Axial vector couplings may provide a larger room in the
parameter space;

3 Proton Puzzle must face (gµ − 2);

4 Sensibility in Meson Leptonic Decays;
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