Upcoming Measirraments of the $\mathrm{N} \rightarrow \mathrm{A}$ manstion rown ractors atedefisson lab

Low-q workshop, Island of Grete, Greece, May 192023
Michael Paolone, New Mexico State University

The $N-\Delta$ transition

Proton (938 MeV)
 Delta (1232 MeV)

The dominant transition from proton to delta involves a dipole (M1) transition (spherical S-wave proton WF -> spherical S-wave Delta WF)

The $N-\Delta$ transition

There also exists a quadrupole (E2 or C2) transition from proton to delta. (The quadrupole amplitudes are associated with the existence of non-spherical components in the proton and Delta WF)

The $N-\Delta$ transition

There also exists a quadrupole (E2 or C2) transition from proton to delta. (The quadrupole amplitudes are associated with the existence of non-spherical components in the proton and Delta WF)
The quadrupole to dipole ratio (E2/M1 or C2/M1) is non-zero... Why?
Electric-Quadrupole to Magnetic-Dipole Ratio = EMR = E2/M1
Coulomb-Quadrupole to Magnetic-Dipole Ratio $=\mathbf{C M R}=\mathrm{C} 2 / \mathrm{M} 1$

The $N-\Delta$ transition

There also exists a quadrupole (E2 or C2) transition from proton to delta. (The quadrupole amplitudes are associated with the existence of non-spherical components in the proton and Delta WF)
The quadrupole to dipole ratio (E2/M1 or C2/M1) is non-zero... Why?
Non-central (tensor) interactions between quarks can account for some of the spherical deviation, but not all...

The $N-\Delta$ transition

There also exists a quadrupole (E2 or C2) transition from proton to delta. (The quadrupole amplitudes are associated with the existence of non-spherical components in the proton and Delta WF)
The quadrupole to dipole ratio (E2/M1 or C2/M1) is non-zero... Why?
At low Q2, the dynamics of a meson cloud are important to describe the structure of the nucleon.

The $N-\Delta$ transition

There also exists a quadrupole (E2 or C2) transition from proton to delta. (The quadrupole amplitudes are associated with the existence of non-spherical components in the proton and Delta WF)
The quadrupole to dipole ratio (E2/M1 or C2/M1) is non-zero... Why? At high Q2, perturbative calculations should become more reliable and helicity conserving amplitudes are expected to dominate.

World data and status of TFFs

Low $\mathbf{Q}^{2} \mathbf{N}-\Delta$ transition form factors

Low $\mathbf{Q}^{2} \mathbf{N}-\Delta$ transition form factors

Low Q^{2} landscape is an important region to measure:

- Mesonic cloud effects are predicted to be:
- dominant in explaining the magnitude of the TFFs
- changing most rapidly over all Q^{2}
- Provides an excellent test bed for ChEFT and LQCD calculations
- Relates the excitation mechanism to spatial information of the proton and the Delta.
- Tests the predicted convergence of EMR and CMR as $\mathrm{Q}^{2} \rightarrow 0$.
- Sparsely measured region.

Low $\mathbf{Q}^{2} \mathbf{N}-\Delta$ transition form factors

Low $\mathbf{Q}^{2} \mathbf{N}-\Delta$ transition form factors

CMR (\%) Region that new experiment will cover.

Low Q^{2} landscape is an important region to measure:

- Mesonic cloud effects are predicted to be:
- dominant in explaining the magnitude of the TFFs
- changing most rapidly over all Q^{2}
- Provides an excellent test bed for ChEFT and LQCD calculations
- Relates the excitation mechanism to spatial information of the proton and the Delta.
- Tests the predicted convergence of EMR and CMR as $\mathrm{Q}^{2} \rightarrow 0$.
- Sparsely measured region.

Lattice Calculations

- Updated LQCD calculations are in progress \rightarrow new calculations will have a physical pion mass and uncertainties comparable to experiment.
- Extended Twisted mass collaboration results expected within 2 years.
- Efforts are partly motivated to understand baryon structure for neutrino scattering.
- Low Q^{2} data will provide a precision benchmark for LQCD calculations.

What can we say about the geometry (shape) of the nucleon?

- What is the "shape" of the nucleon?
- Is it spherically symmetric or deformed?
- If deformed, what is the origin of the deformation?
- Exactly how are shape and structure related?
- How can one explore shape?
- Quadrupole moment of the ground state is identically 0 for a spin $1 / 2$ system.
- Pure proton scattering without spin excitation can't give you any information.
- The only isolated spin-excitation resonance of the proton is the $\Delta^{+}(1232)$.
- A more comprehensive review can be found at:
- C. Alexandrou, C. Papanicolas, M. Vanderhaeghen,
- "The shape of hadrons", Rev. Mod. Phys. 84, 1231 (2012)
- A. Bernstein, C. Papanicolas
- "Overview: The shape of hadrons" , AIP Conf. Proc. 904, 1 (2007)

Imaging the Δ and the $N-\Delta$ transition

Empirical transverse charge transition densities

Eur. Phys. J. Special Topics 198, 141 (2011)

Fig. 18. Quark transverse charge density corresponding to the $p \rightarrow \Delta(1232) P_{33}$ e.m. tran sition. Upper left panel: p and Δ are in a light-front helicity $+1 / 2$ state ($\left.\rho_{0}^{p P_{33}}\right)$. Upper right ition. Upper left panel: p and Δ are in a light-front helicity $+1 / 2$ state $\left(\rho_{0}^{p P_{33}}\right)$. Upper right panel: p and Δ are polarized along the x-axis $\left(\rho_{T}^{p+33}\right)$ as in Fig. 14. The lower panel shows the quadrupole pattern, whose contribution to the polarized transition density is very small due to the weak $E 2 / C 2$ admixtures in the $N \Delta$ transition and practically invisible in the
upper right panel. The light (dark) regions correspond to positive (negative) densities. For upper right panel. The light (dark) regions correspond to positive (negative) d
the $p \rightarrow P_{33}(1232)$ e.m. transition FFs, we use the MAID2007 parametrization.

Probing hadron wave functions in Lattice QCD

Phys. Rev. D. 66, 094503 (2002)

FIG. 18. Three-dimensional contour plot of the correlator (black): upper for the rho state with 0 spin projection (cigar shape) and lower for the Δ^{+}state with $+3 / 2$ (slightly oblate) spin projection for two dynamical quarks at $\kappa=0.156$. Values of the correlator (0.5 for the rho, 0.8 for the Δ^{+}) were chosen to show large distances but avoid finite-size effects. We have included for comparison the contour of a sphere (grey)

Latice QCD: Quark transverse charge density in $\Delta+(1232)$

Phys. Rev. D. 79, 014507 (2009)

FIG. 10: Lattice QCD results for the quark transverse charge density $\rho_{T \frac{3}{2}}^{\Delta}$ in a $\Delta^{+}(1232)$ which is polarized along the positive x-axis. The light (dark) regions correspond to the largest (smallest) values of the density. In order to see the deformation more clearly, a circle of radius 0.5 fm is drawn for comparison. The density is obtained from quenched lattice QCD results at $m_{\pi}=410 \mathrm{MeV}$ for the Δ e.m. FFs [48]

Connections to the neutron structure

- There are long-known relations between the TFFs and the neutron FFs.
- Pascalutsa, V. \& Vanderhaeghen, M. : Phys. Rev. D 76 (2007) [Large-Nc]
© Grabmayr, P. \& Buchmann, A. J. : Phys. Rev. Lett. 86 (2001) [CQM + 2-body currents]
- G_{E}^{n} extraction from TFFs show strong agreement with world data.
- Allows access to low- Q^{2} region where direct measurement of G_{E}^{n} is difficult.
- The relations receive theoretical corrections that can be analyzed and confronted with experimental data e.g. they can be analyzed in a theoretical framework that combines ChPT with the $1 / \mathrm{Nc}$ expansion.

Impact on other domains of nuclear physics

- Generalized polarizabilities (GPs) of the proton:
- The TFFs enter as an input in the VCS cross section over the Δ resonance region - their precise knowledge is necessary for the precise extraction of the GPs from the measured cross sections
- Physics of interest:
- Electric polarizability puzzle
- Interplay of paramagnetism \& diamagnetism in the proton
- Extraction of the polarizability radii and imaging of the induced polarization density.
- Neutrino oscillation studies and neutrino-nucleus scattering
- Dominant source of systematic error: uncertainties in neutrinonucleus reaction cross sections in the nucleon-resonance region.

Thanks to Nikos Sparveris for his talk on Monday!

Experimental Methodology

Experimental Methodology

$$
\begin{aligned}
& R_{T T}=3 \sin ^{2} \theta\left(E 2 M 1+M 1^{2}+\ldots \Sigma_{\text {background }}\right) \\
& R_{L T}=-6 \cos \theta \sin \theta\left(C 2 M 1+\ldots \Sigma_{\text {background }}\right) \\
& R_{T}+R_{L}=M 1^{2}+\ldots \Sigma_{\text {background }}
\end{aligned}
$$

Fit parameterized models to data

$R_{T T} \rightarrow$ sensitive to the EMR
 $R_{L T} \rightarrow$ sensitive to the CMR

$R_{T}+R_{L} \rightarrow$ sensitive to M1

Use model independent statistical methods to identify and determine with maximal precision parameters that are sensitive to the data: AMIAS (Eur. Phys. J. A 56 (2020) 10, 270)

Proposed to PAC49 and PAC50: low-Q2 TFF measurements in Hall-C

Measurement Settings

Setting	SHMS θ (deg)	SHMS P (MeV/c)	HMS θ (deg)	HMS P (MeV/c)	S/N	Time (hrs)
1a			18.77	532.53	2	7
2a			25.17	527.72	2	7
3a			33.7	506.61	3.2	6
4a	7.29	952.26	42.15	469.66	4.3	5
5a			50.44	418.56	4.9	5
6 a			54.47	388.38	4.9	5
7a			12.37	527.72	2.7	6
1b			22.01	547.54	1.2	6
2b			28.24	542.61	1.4	6
3b			36.52	520.95	2.5	5
4b	8.95	946.93	44.64	483.08	3.4	4
5 b			52.68	430.78	3.7	4
6 b			56.53	399.92	3.5	4
7b			12.46	535.98	1.6	5
1c			24.40	562.00	1.5	9
2c			30.47	556.95	1.9	9
3 c			38.52	534.79	3.5	6
4 c	10.37	941.61	46.47	496.06	4.4	6
5c			54.17	442.64	4.8	6
6 c			57.85	411.16	4.8	6
7c			12.69	543.24	2	6
1d			26.24	575.96	1.8	12
2d			32.16	570.80	2.5	11
3d			40.01	548.17	4.5	8
4 d	11.63	936.28	47.73	508.64	5.5	8
5 d			55.18	454.17	6.9	7
6d			58.71	422.13	6	8
7 d			12.47	548.17	2.1	10

- Cover a Q^{2} range of 0.015 to $0.055(\mathrm{GeV} / \mathrm{c})^{2}$
- 28 arm configurations
- Coverage for $9 \mathrm{Q}^{2}$ bins.
- 8 days production
- 3 days other (dummy, calibration, etc..)

Projected CMR and EMR measurements

Resolution	$2 \%-3 \%$
Acceptance	1%
Scattering angle	$0.4 \%-0.6 \%$
Beam energy	$0.7 \%-1.2 \%$
Beam charge	1%
Target density	0.5%
Detector efficiencies	0.5%
Target cell background	0.5%
Target length	0.5%
Dead-time corrections	0.5%
Total	$2.8 \%-3.8 \%$

- High precision in very low Q^{2} region that is sparsely populated
- Region where pion-cloud effects are expected to be prominent

Projected CMR and EMR measurements

Resolution	$2 \%-3 \%$
Acceptance	1%
Scattering angle	$0.4 \%-0.6 \%$
Beam energy	$0.7 \%-1.2 \%$
Beam charge	1%
Target density	0.5%
Detector efficiencies	0.5%
Target cell background	0.5%
Target length	0.5%
Dead-time corrections	0.5%
Total	$2.8 \%-3.8 \%$

Proposed to PAC49:

Extraction of Neuton

 Charge Radius

Projected CMR and EMR measurements

Resolution	$2 \%-3 \%$
Acceptance	1%
Scattering angle	$0.4 \%-0.6 \%$
Beam energy	$0.7 \%-1.2 \%$
Beam charge	1%
Target density	0.5%
Detector efficiencies	0.5%
Target cell background	0.5%
Target length	0.5%
Dead-time corrections	0.5%
Total	$2.8 \%-3.8 \%$

Proposed to PAC45:

Extraction of Neuta

Charge Radiunt ${ }^{2} 04$

Total
2.8\%-3.8\%

Projected CMR and EMR measurements

Resolution	$2 \%-3 \%$
Acceptance	1%
Scattering angle	$0.4 \%-0.6 \%$
Beam energy	$0.7 \%-1.2 \%$
Beam charge	1%
Target density	0.5%
Detector efficiencies	0.5%
Target cell background	0.5%
Target length	0.5%
Dead-time corrections	0.5%
Total	$2.8 \%-3.8 \%$

Proposed to PAC50: Extraction of TFFs at low Q2

Projected CMR and EMR measurements

Resolution	$2 \%-3 \%$
Acceptance	1%
Scattering angle	$0.4 \%-0.6 \%$
Beam energy	$0.7 \%-1.2 \%$
Beam charge	1%
Target density	0.5%
Detector efficiencies	0.5%
Target cell background	0.5%
Target length	0.5%
Dead-time corrections	0.5%
Total	$2.8 \%-3.8 \%$

11 days, to run sometime in the "near" future.

Future Analyses at JLab

- CLAS12 has single-pion production coverage up to $\mathrm{Q} 2=12 \mathrm{GeV} 2$ over a large range of W .
\bigcirc Program focused on large range Nucleon excitation resonances.
- Specific sensitivity of expected data to EMR and CMR extraction is unclear.
- How does low-luminosity affect rates at large Q2?
- SoLID:
- Can detect azimuthal 2π with high luminosity:
- Limited somewhat by polar angle acceptance and resolution

TFFs with SoLID at JLab (J/psi Set-up)

- 15 cm LH2 target
- 11.0 GeV beam Energy
- Luminosity $=10^{37} \mathrm{~N} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- 4 possible kinematics:

○ $p-\pi^{0}$

- Electron detected w small angle
- Electron detected w large angle - $n-\pi^{+}$
- Electron detected w small angle
- Electron detected w large angle

TFFs with SoLID at JLab (J/psi Set-up)

- 15 cm LH2 target
- 11.0 GeV beam Energy
- Luminosity $=10^{37} \mathrm{~N} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- 4 possible kinematics:

○ $p-\pi^{0}$

- Electron detected w small angle
- Electron detected w large angle ○ $n-\pi^{+}$
- Electron detected w small angle
- Electron detected w large angle

TFFs with SoLID at JLab (J/psi Set-up)

- 15 cm LH2 target
- 11.0 GeV beam Energy
- Luminosity $=10^{37} \mathrm{~N} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- 4 possible kinematics:

○ $p-\pi^{0}$

- Electron detected w small angle
- Electron detected w large angle - $n-\pi^{+}$
- Electron detected w small angle
- Electron detected w large angle

TFFs with SoLID at JLab (J/psi Set-up)

- Small angle electrons vs large angle electrons:
- Advantages for small angle:
- Better resolutions
- LGC for PID
- Standard Trigger Setup
- Better systematics
\bigcirc Advantages for large angle:
- Higher O2 reach
- Better $\theta_{c m}$ and $\phi_{c m}$ coverage

TFFs with SoLID at JLab (J/psi Set-up)

- Resolutions of large angle vs small angle electron detection (Tracking only)

Small angle Large Angle

TFFs with SoLID at JLab (J/psi Set-up)

- $\theta_{c m}$ and $\phi_{c m}$ coverage

Small angle electrons: Q2=5.7 GeV

Large angle electrons: $\mathbf{Q 2}=8.0 \mathrm{GeV}$

Cross-Section Extrapolations

- MAID used for rate estimations, but only provides calculations up to Q2 $=5.0$
- For Q2 > 5.0
- Fix W, theta_cm, pi_cm
- Allow beam and scattered energy to scale to obtain cross-sections below Q2 = 5.0
- Fit trend and extrapolate to higher Q2:

Where MAID and SAID disagree at $\mathrm{Q} 2=5$, take more conservative cross-section in estimates

TFFs with SoLID at JLab (J/psi Set-up)

- Projections

TFFs with SoLID at JLab @ 20 GeV

- Q2 reach

Summary

- The $N \rightarrow \Delta$ TFFs represent a central element of the nucleon dynamics \& has been an important part of Jefferson Lab's experimental program (Halls A, B \& C)
- Newly approved experiment will extend these measurements in the low Q^{2} region:
- Test bed for ChEFT calculations
- High precision benchmark data for the Lattice QCD calculations
- New constraints and input to the theoretical models
- Insight to the mesonic-cloud dynamics within a region where they are dominant and rapidly changing
- Insight to the origin of non-spherical components in the nucleon wave-function
- Will test if the OCD prediction that CMR \& EMR converge as $\mathrm{Q}^{2} \rightarrow 0$
$\bigcirc \mathbf{N} \rightarrow \Delta$ TFFs enter as an input in scientific problems that extend from hadronic to neutrino physics, and will advance our understanding of the baryon structure \& beyond - At Solid:
- We can extend world data for high Q2 and test pQCD predictions while running parasitic with $\mathrm{J} / \mathrm{psi}$

Backup Slides

Singles Rates

Maximum accidental rate with 100 ns trigger $\sim 100 \mathrm{~Hz}$ BEFORE subdivision into theta/phi COM bins and missing mass cuts

Singles Rates

Maximum accidental rate with 100 ns trigger $\sim 1.5 \mathrm{kHz}$ BEFORE subdivision into theta/phi COM bins and missing mass

