Polarizabilities from four-point functions in lattice QCD

Frank Lee (GW)
Collaborators: Andrei Alexandru (GW), Chris Culver (Liverpool), Walter Wilcox (Baylor)

Outline

1) Motivation
2) Background field method
3) Four-point function method
4) Lattice simulations and results
5) Conclusion

Supported in part by U.S. Department of Energy grant DE-FG02-95ER40907
Nucleon Structure at Low Q, 16 May 2023, Crete, Greece

Polarizability of hydrogen atom

$2^{\text {nd }}$ order perturbation in quantum mechanics:

$$
\begin{gathered}
H=H_{0}+(-e \mathcal{E} z) \\
\Delta H=\sum_{n \neq 1, l, m} \frac{\left.\left|\langle n l m| H^{\prime}\right| 100\right\rangle\left.\right|^{2}}{E_{n}-E_{1}} \equiv-\frac{1}{2} \alpha_{E} \mathcal{E}^{2} \\
E_{n}=-\frac{13.6}{n^{2}}(\mathrm{eV}) \\
\alpha_{E}=4.5 a_{0}^{3} \quad a_{0}=0.529 \AA
\end{gathered}
$$

ε
Electric field

1) Polarizability is measured by volume of system.
2) Hydrogen atom is electrically soft.

Hadron polarizabilities (in units of $10^{-4} \mathrm{fm}^{3}$)

- Polarizabilities encode information on charge and current distributions inside hadrons at low energies.
- An active community in nuclear physics is engaged in the effort (experiment, theory, lattice QCD)

Charged pion ($\pi^{ \pm}$) $\quad \alpha_{E}=2.0(6)(7)=-\beta_{M}$ (PDG)

$$
\alpha_{\mathrm{E}}=2.93(5), \beta_{\mathrm{M}}=-2.77(11)(\mathrm{ChPT})
$$

Neutral pion (π^{0}) $\quad \alpha_{E}=-0.69(7)(4)=-\beta_{M}$ (PDG)

$$
\alpha_{\mathrm{E}}=-0.40(18), \beta_{\mathrm{M}}=1.50 \text { (27) (ChPT) }
$$

Charged kaon $\left(K^{ \pm}\right) \quad \alpha_{E}=0.58=-\beta_{M}(C h P T)$

Proton	$\alpha_{\mathrm{E} 1}=11.2(0.4)$,	$\beta_{\mathrm{M} 1}=2.5(1.2)$ (PDG)
	$\alpha_{\mathrm{E} 1}=11.2(0.7)$,	$\beta_{\mathrm{M} 1}=3.9(0.7)(\mathrm{ChPT})$
	$\gamma_{\mathrm{E} 1 \mathrm{E} 1}=-3.3(0.8)$,	$\gamma_{\mathrm{M} 1 \mathrm{M} 1}=2.9(1.5)$,
Neutron	$\gamma_{\mathrm{E} 1 \mathrm{M} 2}=-0.2(0.2)$,	$\gamma_{\mathrm{M} 1 \mathrm{E} 2}=1.1(0.3)(\mathrm{ChPT})$
	$\alpha_{\mathrm{E} 1}=11.8(1.1)$,	$\beta_{\mathrm{M} 1}=3.7(1.2)($ PDG
	$\alpha_{\mathrm{E} 1}=13.7(3.1)$,	$\beta_{\mathrm{M} 1}=4.6(2.7)(\mathrm{ChPT})$
	$\gamma_{\mathrm{E} 1 \mathrm{E} 1}=-4.7(1.1)$,	$\gamma_{\mathrm{M} 1 \mathrm{M} 1}=2.9(1.5)$,
	$\gamma_{\mathrm{E} 1 \mathrm{M} 2}=0.2(0.2)$,	$\gamma_{\mathrm{M} 1 \mathrm{E} 2}=1.6(0.4)(\mathrm{ChPT})$

1) Hadrons are hard
2) $Q C D+Q E D$

IJMPA34 (2019) ,
Moinester and Scherer

Eur. Phys. J. C75 (2015)
Lensky, McGovern,
Pascalutsa
Symmetry (2020),
Hagelstein.

Background field method in QCD

$$
\uparrow \text { E or B field }
$$

Interaction Hamiltonian for weak fields:

$$
\begin{aligned}
H= & -\vec{p} \cdot \vec{E}-\vec{\mu} \cdot \vec{B}-\frac{1}{2} \alpha E^{2}-\beta B B^{2} \\
& -\frac{1}{2}\left(\gamma_{E 1} \vec{\sigma} \cdot \vec{E} \times \vec{E}+\gamma_{M 1} \vec{\sigma} \cdot \vec{B} \times \vec{B}-2 \gamma_{E 2} E_{i j} \sigma_{i} B_{j}+2 \gamma_{M 2} B_{i j} \sigma_{i} E_{j}\right) \\
& -\frac{1}{2}\left(\alpha_{E \nu} \overrightarrow{\dot{E}}^{2}+\beta_{M \nu} \overrightarrow{\dot{B}}^{2}\right)-\frac{1}{12} 4 \pi\left(\alpha_{E 2} E_{i j}^{2}+\beta_{M 2} B_{i j}^{2}\right)+\cdots .
\end{aligned}
$$

It works well for neutral hadrons ($\pi^{0}, \mathrm{~K}^{0}, \mathrm{n}$)

Examples from background field method

$\pi^{0}: \alpha_{E} \simeq-0.5$

$$
\begin{aligned}
& \pi^{0}: \alpha_{E}=-0.69(7)(4)=-\beta_{M} \text { (PDG) } \\
& K^{0}: \alpha_{E}=0.58=-\beta_{M}(C h P T)
\end{aligned}
$$

New challenges arise for charged particles:

- Acceleration in electric fields
- Landau levels in magnetic field
- They come at leading order (polarizabilities at $2 n d$ order)
- Their energies must be disentangled from the total to obtain the deformation energy on which polarizabilities are defined.

Alternative approach: four-point functions

- Mimics the Compton scattering process on the lattice
- Instead of background field, electromagnetic currents couple to quarks
- All photon, gluon, and quark interactions are included
- Charged and neutral hadrons are on equal footing

Compton scattering amplitude

$$
\mathcal{T}=\alpha \epsilon_{2}^{\mu *} T_{\mu \nu} \epsilon_{1}^{\nu} \quad \frac{d \sigma}{d \Omega} \propto|\mathcal{T}|^{2}
$$

Four-point tensor

$$
T_{\mu \nu}=i \int d^{4} x e^{i k_{2} \cdot x}\left(\pi\left(p_{2}\right)\left|T j_{\mu}(x) j_{\nu}(0)\right| \pi\left(p_{1}\right)\right)
$$

Kinematics,

$$
p_{2}+k_{2}=k_{1}+p_{1}
$$

Low-energy parametrization,

$$
\begin{aligned}
& \alpha \epsilon_{2}^{\mu *} T_{\mu \nu} \epsilon_{1}^{\nu}= \\
& \hat{\epsilon}_{1} \cdot \hat{\epsilon}_{2}^{*}\left[-\frac{\alpha}{m}\left(1+\frac{\left\langle r^{2}\right\rangle}{6}\left(k_{1}^{2}+k_{2}^{2}\right)\right)+\alpha_{E} \omega_{1} \omega_{2}\right] \\
& +\beta_{M}\left(\hat{\epsilon}_{1} \times \vec{k}_{1}\right) \cdot\left(\hat{\epsilon}_{2}^{*} \times \vec{k}_{2}\right)
\end{aligned}
$$

Compton tensor

- Lorentz invariant
- Gauge invariant
- Crossing symmetry

$$
\begin{aligned}
& \sqrt{2 E_{1} 2 E_{2}} T_{\mu \nu}= \\
& -\frac{T_{\mu}\left(p_{1}+k_{1}, p_{1}\right) T_{\nu}\left(p_{2}, p_{2}+k_{2}\right)}{\left(p_{1}+k_{1}\right)^{2}-m^{2}} \\
& -\frac{T_{\mu}\left(p_{2}, p_{2}-k_{1}\right) T_{\nu}\left(p_{1}-k_{2}, p_{1}\right)}{\left(p_{1}-k_{2}\right)^{2}-m^{2}}+2 g_{\mu \nu} \\
& +A\left(k_{1}^{2} g_{\mu \nu}-k_{1 \mu} k_{1 \nu}+k_{2}^{2} g_{\mu \nu}-k_{2 \mu} k_{2 \nu}\right) \\
& +B\left(k_{1} \cdot k_{2} g_{\mu \nu}-k_{2 \mu} k_{1 \nu}\right) \\
& +C\left(k_{1} \cdot k_{2} Q_{\mu} Q_{\nu}+Q \cdot k_{1} Q \cdot k_{2} g_{\mu \nu}\right. \\
& \left.-Q \cdot k_{2} Q_{\mu} k_{1 \nu}-Q \cdot k_{1} Q_{\nu} k_{2 \mu}\right), \\
& \text { Born } \\
& \text { (or elastic) } \\
& \text { Non-Born } \\
& \text { (or inelastic) } \\
& Q=p_{1}+p_{2}
\end{aligned}
$$

form factor:

$$
T_{\mu}\left(p^{\prime}, p\right)=\left(p_{\mu}^{\prime}+p_{\mu}\right) F_{\pi}\left(q^{2}\right)+q_{\mu} \frac{p^{\prime 2}-p^{2}}{q^{2}}\left(1-F_{\pi}\left(q^{2}\right)\right)
$$

small q expansion: $\quad F_{\pi}\left(q^{2}\right)=1+\frac{\left\langle r^{2}\right\rangle}{6} q^{2}+\frac{\left\langle r^{4}\right\rangle}{120} q^{4}$

Charged pion polarizability formulas

$$
\alpha_{E}=\frac{\alpha\left\langle r_{E}^{2}\right\rangle}{3 m_{\pi}}+\frac{2 \alpha}{\boldsymbol{q}^{2}} \int_{0}^{\infty} d t\left[Q_{44}(\boldsymbol{q}, t)-Q_{44}^{\text {elas }}(\boldsymbol{q}, t)\right]
$$

$$
\beta_{M}=-\frac{\alpha\left\langle r_{E}^{2}\right\rangle}{3 m_{\pi}}+\frac{2 \alpha}{\boldsymbol{q}^{2}} \int_{0}^{\infty} d t\left[Q_{11}^{i n e l}(\boldsymbol{q}, t)-Q_{11}^{\text {inel }}(\mathbf{0}, t)\right]
$$

Charge radius can be extracted from elastic part of the same Q_{44},

$$
Q_{44}^{e l a s}(\boldsymbol{q}, t)=\frac{\left(E_{\pi}+m_{\pi}\right)^{2}}{4 E_{\pi} m_{\pi}} F_{\pi}^{2}\left(\boldsymbol{q}^{2}\right) e^{-a\left(E_{\pi}(\boldsymbol{q})-m_{\pi}\right) t}
$$

Proton Compton tensor

$B=\frac{2 m \beta_{M}}{\alpha}$

$$
\begin{aligned}
& \sqrt{2 E_{1} 2 E_{2}} T_{\mu \nu}=T_{\mu \nu}^{B o r n}+B\left(k_{1} \cdot k_{2} g_{\mu \nu}-k_{2 \mu} k_{1 \nu}\right) \quad C=-\frac{\alpha_{E}+\beta_{M}}{2 m \alpha} \\
& +C\left(k_{1} \cdot k_{2} Q_{\mu} Q_{\nu}+Q \cdot k_{1} Q \cdot k_{2} g_{\mu \nu}-Q \cdot k_{2} Q_{\mu} k_{1 \nu}-Q \cdot k_{1} Q_{\nu} k_{2 \mu}\right)
\end{aligned}
$$

$$
T_{\mu \nu}^{\text {Born }}=\frac{\bar{u}\left(p_{2}, s_{2}\right) \Gamma_{\mu}\left(-k_{2}\right)\left(p_{1}+k_{1}+m_{p}\right) \Gamma_{\nu}\left(k_{1}\right) u\left(p_{1}, s_{1}\right)}{m_{p}^{2}-s}
$$

(Gasser, Leutwyler,

$$
+\frac{\bar{u}\left(p_{1}, s_{2}\right) \Gamma_{\mu}\left(k_{1}\right)\left(p_{2}-k_{2}+m_{p}\right) \Gamma_{\nu}\left(-k_{2}\right) u\left(p_{2}, s_{1}\right)}{m_{p}^{2}-u}
$$ arXiv:1506.06747)

form factors: $\quad \Gamma_{\mu}(q) \equiv \gamma_{\mu} F_{1}(q)+\frac{i F_{2}(q)}{2 m_{p}} \sigma_{\mu \lambda} q^{\lambda}, \quad q=p^{\prime}-p$

$$
F_{1}=\frac{G_{E}+\tau G_{M}}{1+\tau}, \quad F_{2}=\frac{G_{M}-G_{E}}{1+\tau}, \quad \tau \equiv \frac{-q^{2}}{4 m_{p}^{2}}
$$

small q expansion: $\quad G_{E}(q)=1+\frac{\left\langle r_{E}^{2}\right\rangle}{6} q^{2}+\frac{\left\langle r_{E}^{4}\right\rangle}{120} q^{4}+\cdots$

$$
G_{M}(q)=(1+\kappa)\left(1+\frac{\left\langle r_{M}^{2}\right\rangle}{6} q^{2}+\frac{\left\langle r_{M}^{4}\right\rangle}{120} q^{4}+\cdots\right)
$$

Proton formulas

$$
\begin{gathered}
\alpha_{E}=\frac{\alpha\left\langle r_{E}^{2}\right\rangle}{3 m_{p}}+\frac{\alpha\left(1+\kappa^{2}\right)}{4 m_{p}^{3}}+\frac{2 \alpha}{\boldsymbol{q}^{2}} \int_{0}^{\infty} d t\left[Q_{44}(\boldsymbol{q}, t)-Q_{44}^{\text {elas }}(\boldsymbol{q}, t)\right] \\
\beta_{M}=-\frac{\alpha\left\langle r_{E}^{2}\right\rangle}{3 m_{p}}-\frac{\alpha\left(1+\kappa+\kappa^{2}\right)}{2 m_{p}^{3}}+\frac{2 \alpha}{\boldsymbol{q}^{2}} \int_{0}^{\infty} d t\left[Q_{11}(\boldsymbol{q}, t)-Q_{11}^{\text {elas }}(\boldsymbol{q}, t)-Q_{11}(\mathbf{0}, t)\right] \\
Q_{44}^{\text {elas }}(\boldsymbol{q}, t) \underset{t \gg 1}{\longrightarrow}\left[1-\boldsymbol{q}^{2}\left(\frac{1}{4 m_{p}^{2}}+\frac{\left\langle r_{E}^{2}\right\rangle}{3}\right)\right] e^{-\left(E_{p}-m_{p}\right) t} \\
Q_{11}^{\text {elas }}(\boldsymbol{q}, t) \xrightarrow[t \gg 1]{\longrightarrow} \frac{(1+\kappa)^{2}}{4 m_{p}^{2}} \boldsymbol{q}^{2} e^{-\left(E_{p}-m_{p}\right) t} \\
\text { NRD104 (2021), Wilcox, Lee } \\
\\
\text { Neutron formulas }
\end{gathered}
$$

$$
\begin{aligned}
& \alpha_{E}=\frac{\alpha \kappa^{2}}{4 m_{p}^{3}}+\frac{2 \alpha}{\boldsymbol{q}^{2}} \int_{0}^{\infty} d t\left[Q_{44}(\boldsymbol{q}, t)-Q_{44}^{\text {elas }}(\boldsymbol{q}, t)\right] \\
& \beta_{M}=-\frac{\alpha \kappa^{2}}{2 m_{p}^{3}}+\frac{2 \alpha}{\boldsymbol{q}^{2}} \int_{0}^{\infty} d t\left[Q_{11}(\boldsymbol{q}, t)-Q_{11}^{\text {elas }}(\boldsymbol{q}, t)-Q_{11}(\mathbf{0}, t)\right]
\end{aligned}
$$

$$
Q_{11}^{\text {elas }}(\boldsymbol{q}, t) \underset{t \gg 1}{\longrightarrow} \frac{\kappa^{2}}{4 m_{p}^{2}} \boldsymbol{q}^{2} e^{-\left(E_{p}-m_{p}\right) t}
$$

Four-point function in lattice QCD

$\frac{\sum_{\boldsymbol{x}_{3}, \boldsymbol{x}_{2}, \boldsymbol{x}_{1}, \boldsymbol{x}_{0}} e^{-i \boldsymbol{q} \cdot \boldsymbol{x}_{2}} e^{i \boldsymbol{q} \cdot \boldsymbol{x}_{1}}\langle\Omega| \psi^{\dagger}\left(x_{3}\right): j_{\mu}^{L}\left(x_{2}\right) j_{\nu}^{L}\left(x_{1}\right): \psi\left(x_{0}\right)|\Omega\rangle}{\sum_{\boldsymbol{x}_{3}, \boldsymbol{x}_{0}}\langle\Omega| \psi^{\dagger}\left(x_{3}\right) \psi\left(x_{0}\right)|\Omega\rangle}$
$\equiv Q_{\mu \nu}\left(\boldsymbol{q}, t_{3}, t_{2}, t_{1}, t_{0}\right)$

Kinematics

(zero-momentum Breit frame)

Path integrals in Euclidean

Proof-of-concept simulation:

- Quenched Wilson action on $24^{3} \times 48$ lattice with spacing $a=0.085 \mathrm{fm}$.
spacetime

- Dirichlet boundary condition in time, periodic in space.
- Quark mass parameter $\kappa=0.1520,0.1543,0.1555,0.1565$ corresponding to pion mass $m_{\pi}=1100,800,600,370 \mathrm{MeV}$. Analyzed 1000 configurations for each mass.
- 5 momenta $\mathbf{q}=\{0,0,0\},\{0,0,1\},\{0,1,1\},\{1,1,1\},\{0,0,2\}$ per mass

Operators

$$
\begin{aligned}
& \frac{\sum_{\boldsymbol{x}_{3}, \boldsymbol{x}_{2}, \boldsymbol{x}_{1}, \boldsymbol{x}_{0}} e^{-i \boldsymbol{q} \cdot \boldsymbol{x}_{2}} e^{i \boldsymbol{q} \cdot \boldsymbol{x}_{1}}\langle\Omega| \psi^{\dagger}\left(x_{3}\right): j_{\mu}^{L}\left(x_{2}\right) j_{\nu}^{L}\left(x_{1}\right): \psi\left(x_{0}\right)|\Omega\rangle}{\sum_{\boldsymbol{x}_{3}, \boldsymbol{x}_{0}}\langle\Omega| \psi^{\dagger}\left(x_{3}\right) \psi\left(x_{0}\right)|\Omega\rangle} \\
& \equiv Q_{\mu \nu}\left(\boldsymbol{q}, t_{3}, t_{2}, t_{1}, t_{0}\right)
\end{aligned}
$$

Charged pion: $\quad \psi_{\pi^{+}}(x)=\bar{d}(x) \gamma_{5} u(x)$
Local current: $\quad j_{\mu}^{(P C)}=Z_{V}\left(q_{u} \bar{u} \gamma_{\mu} u+q_{d} \bar{d} \gamma_{\mu} d\right)$

Conserved current ($\mathrm{Z}_{\mathrm{v}}=1$):

$$
\begin{aligned}
j_{\mu}^{(P S)}(x) & =q_{u} \kappa\left[-\bar{u}(x)\left(1-\gamma_{\mu}\right) U_{\mu}(x) u(x+a \hat{\mu})+\bar{u}(x+a \hat{\mu})\left(1+\gamma_{\mu}\right) U_{\mu}^{\dagger}(x) u(x)\right] \\
& +q_{d} \kappa\left[-\bar{d}(x)\left(1-\gamma_{\mu}\right) U_{\mu}(x) d(x+a \hat{\mu})+\bar{d}(x+a \hat{\mu})\left(1+\gamma_{\mu}\right) U_{\mu}^{\dagger}(x) d(x)\right]
\end{aligned}
$$

Current conservation leads to following property for $\mathrm{Q}_{44}(\mathbf{q}=0)$,

$$
\frac{\sum_{x_{3}, \boldsymbol{x}_{2}, \boldsymbol{x}_{1}, \boldsymbol{x}_{0}}\langle\Omega| \psi\left(x_{3}\right) j_{4}^{L}\left(x_{2}\right) j_{4}^{L}\left(x_{1}\right) \psi^{\dagger}\left(x_{0}\right)|\Omega\rangle}{\sum_{x_{3}, \boldsymbol{x}_{0}}\langle\Omega| \psi\left(x_{3}\right) \psi^{\dagger}\left(x_{0}\right)|\Omega\rangle}=q_{1} q_{2}
$$

(used for numerical validation of the diagrams)

Wick contractions

$$
\equiv Q_{\mu \nu}\left(\boldsymbol{q}, t_{3}, t_{2}, t_{1}, t_{0}\right)
$$

$\bar{u} d$

$u \bar{u}+d \bar{d} u \bar{u}+d \bar{d}$

Two-point functions

Pion wall-to-point correlators at $m_{\pi}=600 \mathrm{MeV}$

- Measured m_{π} and m_{ρ} from a1 correlators.
- Current 1 fixed at where ground state dominates.
- Limited 'window of opportunity' for four-point functions.

Four-point functions Q_{44} for α_{E}

Diagram b and c have unphysical contact interactions (we avoid $\mathrm{t}_{1}=\mathrm{t}_{2}$)

Four-point functions Q_{11} for β_{M}

Extracting pion form factor

$Q_{44}^{e l a s}(\mathbf{q}, t)=\frac{\left(E_{\pi}+m_{\pi}\right)^{2}}{4 E_{\pi} m_{\pi}} F_{\pi}^{2}\left(\mathbf{q}^{2}\right) e^{-a\left(E_{\pi}-m_{\pi}\right) t}$ (switch x -axis to $\mathrm{t}=\mathrm{t}_{2}-\mathrm{t}_{1}$)

Horizontal lines are continuum dispersion relation

$$
E_{\pi}=\sqrt{\mathbf{q}^{2}+m_{\pi}^{2}}
$$

Fit $Q^{(a b)}{ }_{44}$ data to $Q^{\text {(elas) }}{ }_{44}$ function treating both F_{π} and E_{π} as free parameters.

Starts at $\mathrm{t}=1$

Charge radius from pion form factor

1) Monopole (vector meson dominance)

$$
F_{\pi}\left(\mathbf{q}^{2}\right)=\frac{1}{1+\frac{\mathbf{q}^{2}}{m_{V}^{2}}}
$$

2) z-expansion

$$
\begin{aligned}
& F_{\pi}\left(\boldsymbol{q}^{2}\right)=1+\sum_{k=1}^{k_{\max }} a_{k} z^{k} \\
& \text { where } z \equiv \frac{\sqrt{t_{c u t}-t}-\sqrt{t_{c u t}-t_{0}}}{\sqrt{t_{c u t}-t}+\sqrt{t_{c u t}-t_{0}}} \\
& \text { and } t=-\boldsymbol{q}^{2}, t_{c u t}=4 m_{\pi}^{2}
\end{aligned}
$$

Solid green $=$ z-expansion fit with $k_{\text {max }}=3$ Dashed green = monopole fit
Dashed blue $=$ monopole with measured m_{ρ} Solid black = monopole with physical m_{ρ}

$$
\left\langle r_{E}^{2}\right\rangle=-\left.6 \frac{d F_{\pi}\left(q^{2}\right)}{d q^{2}}\right|_{q^{2} \rightarrow 0}
$$

Chiral extrapolation of charge radius

$$
\begin{aligned}
& a+b m_{\pi}+c m_{\pi}^{2}
\end{aligned}
$$

Elastic contribution:

$$
\frac{a}{m_{\pi}}+b+c m_{\pi}
$$

Time integrals

$$
\alpha_{E}^{\pi}=\frac{\alpha\left\langle r_{E}^{2}\right\rangle}{3 m_{\pi}}+\frac{2 \alpha a}{\boldsymbol{q}^{2}} \int_{0}^{\infty} d t\left[Q_{44}(\boldsymbol{q}, t)-Q_{44}^{e l a s}(\boldsymbol{q}, t)\right]
$$

$$
\beta_{E}^{\pi}=-\frac{\alpha\left\langle r_{E}^{2}\right\rangle}{3 m_{\pi}}+\frac{2 \alpha a}{\boldsymbol{q}^{2}} \int_{0}^{\infty} d t\left[Q_{11}(\boldsymbol{q}, t)-Q_{11}(\mathbf{0}, t)\right]
$$

Signal is negative of shaded area
Extrapolation

Signal is positive shaded area

Extrapolation to $\mathbf{q}^{2}=0$

$$
\alpha_{E}^{\pi}=\frac{\alpha\left\langle r_{E}^{2}\right\rangle}{3 m_{\pi}}+\frac{2 \alpha a}{\boldsymbol{q}^{2}} \int_{0}^{\infty} d t\left[Q_{44}(\boldsymbol{q}, t)-Q_{44}^{e l a s}(\boldsymbol{q}, t)\right]
$$

$$
\beta_{M}=-\frac{\alpha\left\langle r_{E}^{2}\right\rangle}{3 m_{\pi}}+\frac{2 \alpha}{\boldsymbol{q}^{2}} \int_{0}^{\infty} d t\left[Q_{11}^{i n e l}(\boldsymbol{q}, t)-Q_{11}^{i n e l}(\mathbf{0}, t)\right]
$$

Chiral extrapolation

$$
\alpha_{E}^{\pi}=\frac{\alpha\left\langle r_{E}^{2}\right\rangle}{3 m_{\pi}}+\frac{2 \alpha a}{\boldsymbol{q}^{2}} \int_{0}^{\infty} d t\left[Q_{44}(\boldsymbol{q}, t)-Q_{44}^{\text {elas }}(\boldsymbol{q}, t)\right] \quad \beta_{M}=-\frac{\alpha\left\langle r_{E}^{2}\right\rangle}{3 m_{\pi}}+\frac{2 \alpha}{\boldsymbol{q}^{2}} \int_{0}^{\infty} d t\left[Q_{11}^{\text {inel }}(\boldsymbol{q}, t)-Q_{11}^{\text {inel }}(\mathbf{0}, t)\right]
$$

arXiv:2301.05200,
Lee, Alexandru, Culver, Wilcox

$\frac{a}{m_{\pi}}+b m_{\pi}+c m_{\pi}^{3}$

$\alpha_{\mathrm{E}}+\beta_{\mathrm{M}}$

 $\alpha_{E}^{\pi}=\frac{\alpha\left\langle r_{E}^{2}\right\rangle}{3 m_{\pi}}+\frac{2 \alpha a}{\boldsymbol{q}^{2}} \int_{0}^{\infty} d t\left[Q_{44}(\boldsymbol{q}, t)-Q_{44}^{e l a s}(\boldsymbol{q}, t)\right]$$\beta_{E}^{\pi}=-\frac{\alpha\left\langle r_{E}^{2}\right\rangle}{3 m_{\pi}}+\frac{2 \alpha a}{\boldsymbol{q}^{2}} \int_{0}^{\infty} d t\left[Q_{11}(\boldsymbol{q}, t)-Q_{11}(\mathbf{0}, t)\right]$

Momentum dependence

Pion mass dependence

Summary table for

charged pion electric and magnetic polarizabilities from four-point functions in lattice QCD

TABLE I. Summary of results in physical units from two-point and four-point functions. Results for charge radius and α_{E} are taken from previous work [37]. Elastic β_{M} and total β_{M} are chirally extrapolated to the physical point. Inelastic β_{M} at the physical point is taken as the difference of the two. Known values from ChPT and PDG are listed for reference. All polarizabilities are in units of $10^{-4} \mathrm{fm}^{3}$.

	$\kappa=0.1520$	$\kappa=0.1543$	$\kappa=0.1555$	$\kappa=0.1565$	physical point	known value
$m_{\pi}(\mathrm{MeV})$	1104.7 ± 1.2	795.0 ± 1.1	596.8 ± 1.4	367.7 ± 2.2	138	138
$m_{\rho}(\mathrm{MeV})$	1273.1 ± 2.5	1047.3 ± 3.4	$930 . \pm 7$.	$830 . \pm 17$.	770	770
$\left\langle r_{E}^{2}\right\rangle\left(\mathrm{fm}^{2}\right)$	0.1424 ± 0.0029	0.195 ± 0.007	0.257 ± 0.005	0.304 ± 0.016	0.40 ± 0.05	$0.434 \pm 0.005(\mathrm{PDG})$
α_{E} elastic	0.618 ± 0.012	1.17 ± 0.04	2.07 ± 0.04	3.97 ± 0.21	13.9 ± 1.8	15.08 ± 0.13 (PDG)
α_{E} inelastic	-0.299 ± 0.019	-0.672 ± 0.030	-0.92 ± 0.11	-1.27 ± 0.13	-9.7 ± 1.9	
α_{E} total	0.319 ± 0.023	0.50 ± 0.05	1.15 ± 0.11	2.70 ± 0.25	4.2 ± 0.5	2.93 ± 0.05 (ChPT)
						$2.0 \pm 0.6 \pm 0.7$ (PDG)
β_{M} elastic	-0.618 ± 0.012	-1.17 ± 0.04	-2.07 ± 0.04	-3.97 ± 0.21	-13.9 ± 1.8	-15.08 ± 0.13 (PDG)
β_{M} inelastic	0.705 ± 0.021	1.24 ± 0.05	1.91 ± 0.09	3.10 ± 0.15	10.7 ± 2.0	
β_{M} total	0.087 ± 0.024	0.07 ± 0.06	-0.16 ± 0.09	-0.87 ± 0.26	-3.2 ± 0.9	-2.77 ± 0.11 (ChPT)
						$-2.0 \pm 0.6 \pm 0.7$ (PDG)

Neutral pion

Momentum dependence

$$
\begin{aligned}
& \alpha_{E}^{\pi}=\frac{\alpha\left\langle\chi_{E}^{2}\right\rangle}{3 m_{\pi}}+\frac{2 \alpha a}{\boldsymbol{q}^{2}} \int_{0}^{\infty} d t\left[Q_{44}(\boldsymbol{q}, t)-Q_{44}^{e l \boldsymbol{d}}\langle(\boldsymbol{q}, t)]\right. \\
& \beta_{E}^{\pi}=-\frac{\alpha\left\langle r_{E}^{2}\right\rangle}{3 m_{\pi}}+\frac{2 \alpha a}{\boldsymbol{q}^{2}} \int_{0}^{\infty} d t\left[Q_{11}(\boldsymbol{q}, t)-Q_{11}(\mathbf{0}, t)\right]
\end{aligned}
$$

Pion mass dependence

"Pion electric polarizabilities from lattice QCD"

X. Feng, T. Izubuchi, L. Jin, M. Golterman arXiv:2201.01396 (Lattice 2021)

Domain-wall ensembles at physical pion mass

	Volume	$a^{-1}(\mathrm{GeV})$	$L(\mathrm{fm})$	$M_{\pi}(\mathrm{MeV})$	$t_{\text {sep }}(a)$
48I	$48^{3} \times 96$	$1.730(4)$	5.5	135	12
64I	$64^{3} \times 128$	$2.359(7)$	5.4	135	18
24D	$24^{3} \times 64$	$1.0158(40)$	4.7	142	8
32D	$32^{3} \times 64$	$1.0158(40)$	6.2	142	8

$$
\alpha_{\pi}(t)=-\int_{-t<t_{x}<t} \int_{\vec{x}} \frac{t_{x}^{2}}{24 \pi} \frac{1}{2 M_{\pi}}\langle\pi| T \vec{J}\left(t_{x}, \vec{x}\right) \cdot \vec{J}(0, \overrightarrow{0})|\pi\rangle-\alpha_{\pi}^{\text {Born }}
$$

$$
\alpha_{E}^{\pi}=\frac{\alpha\left\langle r_{E}^{2}\right\rangle}{3 m_{\pi}}+\frac{2 \alpha a}{\boldsymbol{q}^{2}} \int_{0}^{\infty} d t\left[Q_{44}(\boldsymbol{q}, t)-Q_{44}^{e l a s}(\boldsymbol{q}, t)\right]
$$

Conclusion

- Proof-of-concept simulations for charged pion show promise of four-point function methodology.
- Physics payouts: form factors, polarizabilities, etc.
- Clear pictures for α_{E} and β_{M}
- Requires 2 pt and 4 pt (but not $3 p t$) functions
- Open issues
- Fitting form factors (monopole vs z-expansion)
- Extrapolation to $\mathrm{t}=0$ (contact term)
- Extrapolation to $\mathbf{q}^{2}=0$ (static limit)
- Chiral extrapolation
- Quenched approximation
- Only connected contributions so far
- Outlook
- Dynamical ensembles (two-flavor nHYP-clover, 315 and 227 MeV , elongated geometries for volume study and smaller Q^{2})
- Disconnected contributions
- Next target: proton and neutron
(a) $+x=-$
(b)
(c)

(d)

(e)

(f)

Background field +4 pt function method

Perturbative expansion in the background field at the action level leads to the same diagrammatic structure in 4pt method.

Neutron electric polarizability: $\alpha_{\mathrm{E}}=-2.0(0.9)$ PRD76 (2007), Engelhardt

Neutron spin polarizability

arXiv1111.2686 (Lattice2011),
Engelhardt

From action to answers: how to calculate observables in QCD?

Correlation functions: vacuum expectation values via path integrals,

$$
\langle\Omega| O_{2}(t) O_{1}(0)|\Omega\rangle=\frac{\int D q D \bar{q} D G O_{2}[q, \bar{q}, G] O_{1}[q, \bar{q}, G] e^{-S_{Q C D}}}{\int D q D \bar{q} D G e^{-S_{Q C D}}}
$$

Quark fields anti-commute. They can be

$$
S_{Q C D}=S_{G}+\bar{q}\left(D D+m_{q}\right) q
$$ integrated out using Grassmann algebra,

$$
\left\langle O_{2}(t) \bar{O}_{1}(0)\right\rangle \equiv \frac{\int D[G] f\left(M^{-1}\right) ब \sqrt{\operatorname{det}(M) e^{-S_{G}}}}{\int D[G] \operatorname{det}(M) e^{-S_{G}}} \quad M=\not D+m_{q}
$$

It resembles a statistical system with a probability distribution.
Can be evaluated numerically on a spacetime lattice using Monte Carlo importance sampling methods.

$$
\langle O\rangle \approx \frac{1}{N} \sum_{i=1}^{N} O\left[G_{i}\right]
$$

