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Polarizability of hydrogen atom
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2nd order perturbation in quantum mechanics:

1) Polarizability is measured by volume of system.
2) Hydrogen atom is electrically soft.

ε
Electric field



Hadron polarizabilities (in units of 10–4 fm3 )
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αE  = 2.0(6)(7) = – βM (PDG)Charged pion (π±)

αE  = 2.93(5), βM = – 2.77(11) (ChPT)

IJMPA34 (2019) , 
Moinester and Scherer

αE  = – 0.69(7)(4) = – βM   (PDG)Neutral pion (π0)

αE  = – 0.40(18) , βM =  1.50 (27)  (ChPT)

Charged kaon (K±) αE  = 0.58 = – βM (ChPT)

Eur. Phys. J. C75 (2015) 
Lensky, McGovern, 
Pascalutsa

Symmetry (2020),
Hagelstein.

αE1  = 11.2(0.4), βM1 = 2.5(1.2)  (PDG)Proton

αE1  = 11.2(0.7),        βM1 = 3.9(0.7) (ChPT)

γE1E1  = – 3.3(0.8),    γM1M1 = 2.9(1.5), 
γE1M2  = – 0.2(0.2),    γM1E2 = 1.1(0.3) (ChPT)

αE1  = 11.8(1.1), βM1 = 3.7(1.2)  (PDG)Neutron

αE1  = 13.7(3.1),        βM1 = 4.6(2.7) (ChPT)

γE1E1  = – 4.7(1.1),    γM1M1 = 2.9(1.5), 
γE1M2  =  0.2(0.2),     γM1E2 = 1.6(0.4) (ChPT)

1) Hadrons are hard
2) QCD+QED

• Polarizabilities encode information on charge and current 
distributions inside hadrons at low energies.

• An active community in nuclear physics is engaged in the effort 
(experiment, theory, lattice QCD) 



Background field method in QCD
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It works well for neutral hadrons (π0, K0, n) 

Interaction Hamiltonian for weak fields:

E or B field



Examples from background field method

PRD94 (2016), Lujan, Alexandru, Freeman, Lee

π0:  αE  ≃ – 0.5
K0:  αE  = 0.356(74)

Neutron

K0: αE  = 0.58 = – βM (ChPT)

π0:  αE  = – 0.69(7)(4) = – βM   (PDG)
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New challenges arise for charged particles:
• Acceleration in electric fields
• Landau levels in magnetic field
• They come at leading order (polarizabilities at 2nd order)
• Their energies must be disentangled from the total to obtain 

the deformation energy on which polarizabilities are defined.

Alternative approach: four-point functions
• Mimics the Compton scattering process on the lattice
• Instead of background field, electromagnetic currents 

couple to quarks 
• All photon, gluon, and quark interactions are included
• Charged and neutral hadrons are on equal footing



Compton scattering amplitude

7

Four-point 
tensor

Low-energy parametrization,

Kinematics,



Compton tensor

8

form factor:

Born 
(or elastic) 

Non-Born 
(or inelastic) 

small q expansion:

▪ Lorentz invariant
▪ Gauge invariant
▪ Crossing symmetry



Charged pion polarizability formulas

Charge radius can be extracted from elastic part of the same Q44 ,

PRD104 (2021), Wilcox, Lee
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Proton Compton tensor
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form factors:

small q expansion:

(Gasser, Leutwyler, 
arXiv:1506.06747)



Proton formulas

PRD104 (2021), Wilcox, Lee
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Neutron formulas



Four-point function in lattice QCD

Kinematics 
(zero-momentum Breit frame)

Path integrals
in Euclidean 
spacetimeπ+ π+

t2

t3

t1

t0

Proof-of-concept simulation:
• Quenched Wilson action on 243x48 lattice with spacing a=0.085 fm. 
• Dirichlet boundary condition in time, periodic in space. 
• Quark mass parameter κ=0.1520, 0.1543, 0.1555, 0.1565 corresponding to pion mass 

mπ=1100,  800, 600, 370 MeV.  Analyzed 1000 configurations for each mass.
• 5 momenta q={0,0,0}, {0,0,1}, {0,1,1}, {1,1,1}, {0,0,2}  per mass



Operators
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Charged pion:

Local current:

Conserved current (ZV=1):

π+ π+t2

t3
t1

t0

Current conservation leads to following property for Q44 (q=0),
(used for 
numerical 
validation of the 
diagrams)



Wick contractions
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Quark propagator

Connected contributions

t3      t2        t1       t0



Two-point functions
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Pion wall-to-point correlators 
at mπ=600 MeV

• Measured mπ and mρ from a1 
correlators.

• Current 1  fixed at where ground 
state dominates.

• Limited `window of opportunity’ 
for four-point functions.

a1 a2



Four-point functions Q44 for αE
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Diagram a

(current conservation at q=0)

(current conservation at q=0)

(current conservation at q=0)

Diagram b and c have unphysical 
contact interactions (we avoid t1=t2)



Four-point functions Q11 for βM
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Extracting pion form factor
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Horizontal lines are continuum dispersion relation 

mπ=600 MeV

Fit Q(ab)
44 data to Q(elas)

44  function 
treating both Fπ and Eπ as free 
parameters.

(switch x-axis to t=t2-t1)

Starts at t=1



Charge radius from pion form factor
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1) Monopole (vector meson dominance)

2) z-expansion

Solid green = z-expansion fit with kmax=3
Dashed green = monopole fit
Dashed blue = monopole with measured mρ

Solid black = monopole with physical mρ

mρ=1047 MeV

mρ=930 MeV

mρ=830 MeV

mπ=800 MeV



Chiral extrapolation of charge radius
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✭ = PDG

✭ = PDG
Elastic contribution:



21Signal is negative of shaded area
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Time integrals

Extrapolation 
to t=0



Extrapolation to q2=0
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Chiral extrapolation

✭ = PDG
▼ = ChPT

arXiv:2301.05200, 
Lee, Alexandru, Culver, Wilcox
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αE  + βM
Momentum dependence

Pion mass dependence

▼’s =ChPT
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Summary table for 
charged pion electric and magnetic polarizabilities

from four-point functions in lattice QCD
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Neutral pion Momentum dependence

Pion mass dependence

Stars=ChPT



“Pion electric polarizabilities from lattice QCD”
X. Feng, T. Izubuchi, L. Jin, M. Golterman

arXiv:2201.01396 (Lattice 2021)

+=

Domain-wall ensembles
at physical pion mass



Conclusion
• Proof-of-concept simulations for charged pion 

show promise of four-point function methodology.

– Physics payouts: form factors, polarizabilities, etc.

– Clear pictures for αE and βM

– Requires 2pt and 4pt (but not 3pt) functions

• Open issues

– Fitting form factors (monopole vs z-expansion)

– Extrapolation to t=0 (contact term)

– Extrapolation to q2=0 (static limit)

– Chiral extrapolation 

– Quenched approximation

– Only connected contributions so far

• Outlook

– Dynamical ensembles (two-flavor nHYP-clover, 315 
and 227 MeV, elongated geometries for volume 
study and smaller Q2)

– Disconnected contributions

– Next target: proton and neutron
28



Reserve



Background field + 4pt function method

PRD76 (2007), EngelhardtNeutron electric polarizability:  αE  = － 2.0(0.9)

Perturbative expansion in the background field at the action level leads to 
the same diagrammatic structure in 4pt method.

arXiv1111.2686 (Lattice2011), 
Engelhardt

Neutron spin polarizability



From action to answers: 
how to calculate observables in QCD?
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Correlation functions: vacuum expectation values via path integrals,

It resembles a statistical system with a probability distribution.  
Can be evaluated numerically on a spacetime lattice using 
Monte Carlo importance sampling methods.

Quark fields anti-commute.  They can be 
integrated out using Grassmann algebra,


