Hadronic contributions to precision quantities using Sum Rules vs. EFT vs. LQCD

Vladimir Pascalutsa

Institute for Nuclear Physics University of Mainz, Germany

Volodymir Biloshytskyi Franziska Hagelstein *et al.* Vadim Lensky Marc Vanderhaeghen *et al.* LQCD: Jeremy Green, Harvey Meyer *et al.*

Constantia Alexandrou, Carl Carlson, Judith McGovern, Kostas Orginos, ...

> @ 2nd Low-Q Workshop, Crete, 15-20 May

Theoretical approaches to low-energy QCD

Lattice QCD

BERMUDA TRIANGLE

EFTs ChPT SCET

> **Dispersive** data-driven

PRECISION SEARCHES FOR NEW PHYSICS

Muon anomalies

Proton radius

Muon g-2

NOW: from Puzzle to Precision

Chapter 1

Sum rules

(2003 — ...)

Kramers-Kronig type of relations

Available online at www.sciencedirect.com

PHYSICS REPORTS

Physics Reports 378 (2003) 99-205

www.elsevier.com/locate/physrep

Dispersion relations in real and virtual Compton scattering

D. Drechsel^a, B. Pasquini^{b, c, d}, M. Vanderhaeghen^{a,*}

^aInstitut für Kernphysik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany ^bECT*-European Centre for Theoretical Studies in Nuclear Physics and Related Areas, I-38050 Villazzano (Trento), Italy ^cINFN, Trento, Italy ^dDipartimento di Fisica, Università degli Studi di Trento, I-38050 Povo, Trento, Italy

> Accepted 10 December 2002 editor: W. Weise

Available online at www.sciencedirect.com

PHYSICS LETTERS B

Physics Letters B 600 (2004) 239-247

www.elsevier.com/locate/physletb

A derivative of the Gerasimov–Drell–Hearn sum rule

Vladimir Pascalutsa^{a,b}, Barry R. Holstein^{a,c}, Marc Vanderhaeghen^{a,b}

^a Theory Group, JLab, 12000 Jefferson Ave, Newport News, VA 23606, USA ^b Department of Physics, College of William & Mary, Williamsburg, VA 23188, USA ^c Department of Physics-LGRT, University of Massachusetts, Amherst, MA 01003, USA

Received 29 July 2004; received in revised form 3 September 2004; accepted 3 September 2004

Available online 11 September 2004

Editor: H. Georgi

From: Carl E Carlson <<u>carlson@jlab.org</u>>

Subject: Super Gran Père Andreas

Date: 9. June 2014 at 17:08:49 CEST

To: Vladimir Pascalutsa <<u>vladipas@kph.uni-mainz.de</u>>

Selected Ph. D. descendents of Andreas von Ettingshausen

0. Andreas von Ettingshausen (Wien.1817)	0. Andreas von Ettingshausen (Wien, 1817)	
1. Jozef Stefan (Wien, 1858)	1. Francesco Rossetti (Wien, 1857)	
2. Ludwig Boltzmann (Wien, 1866)	2. Andrea Naccari (Padova, 1862)	
3. Paul Ehrenfest (Wien, 1904)	3. Angelo Batelli (Torino, 1884)	
4. Hendrik Kramers (Leiden, 1919)	4. Luigi Puccianti (Pisa, 1898)	
5. Nicolaas van Kampen (Leiden, 1952)	5. Enrico Fermi (Pisa, 1922)	
6. John Tjon (Utrecht, 1964)	6. Tsung-Dao Lee (Chicago, 1946)	
7. Vladimir Pascalutsa (Utrecht, 1998)	7. Carl-Edwin Carlson (Columbia, 1968)	

- Drop the $|\nu| = \infty$ term. O.k. if H_1 falls at high ν .
- Can view as standard or as dramatic assumption.

From Volodymir's talk:

In these cases the dispersion relation for T_L must be modified as follows: [Sugawara and Kanazawa, PhysRev (1961)]

$$T_L(\nu, Q^2) - T_L(\infty, Q^2) = \frac{2}{\pi} \int_{\nu_0}^{\infty} d\nu' \, \nu'^2 \, \frac{\sigma_L(\nu', Q^2)}{\nu'^2 - \nu^2}$$

Bernabeu-Tarrach and a sum rule for the subtraction function

[arXiv:2305.08814]

$$\alpha_{E1} - \frac{\alpha_{em}\varkappa^2}{4M^3} = \frac{1}{2\pi^2} \int_0^\infty \mathrm{d}\nu \left[\frac{\sigma_L(\nu, Q^2)}{Q^2}\right]_{Q^2 \to 0}$$
[Bernabéu and Tarrach, PLB (1975)]

 ${\mathcal H}$ is the anomalous magnetic moment of the nucleon.

$$T_1(0,Q^2) = \frac{2}{\pi} Q^2 \int_{\nu_0}^{\infty} \frac{\mathrm{d}\nu}{\nu^2 + Q^2} \left[\sigma_T - \frac{\nu^2}{Q^2} \sigma_L \right] (\nu,Q^2)$$

• The sum rules are invalid only if the integral diverges! "Fixed-poles" is a conspiracy theory

Pion-production channel contribution to BT and Baldin sum rules

Saturation of the sum rule integral

$$I_{\rm BT}(\Lambda) = \frac{1}{2\pi^2} \int_{\nu_0}^{\Lambda} d\nu \left[\frac{\sigma_L(\nu, Q^2)}{Q^2} \right]_{Q^2 \to 0}$$
$$I_{\rm Baldin}(\Lambda) = \frac{1}{2\pi^2} \int_{\nu_0}^{\Lambda} d\nu \frac{\sigma_T(\nu)}{\nu^2}.$$

source	$lpha_{E1}$ [× 10 ⁻⁴ fm ³]		
I _{BT} (MAID)	5.4		
extrapolated	≃7		
Kappa term	0.5		
resonances*	0.5-1*		
total	8-8.5 <mark>*</mark>		
(w/o Regge region)			
[PDG]	11.2 <u>+</u> 0.4		

*Currently, we have no parametrization of the existing data, which has a stable behavior within the limit $Q^2 \rightarrow 0$

We need to develop parametrizations of inclusive longitudinal cross-section (akin to Bosted-Christy) with good low-Q limit!

Chapter 2

Effective Field Theory

(2001 — ...)

Chiral EFT (XEFT)

Steven Weinberg, *Phenomenological Lagrangians*, Physica A (1979) Origin of EFTs

'Chiral' and 'Perturbative' go together:

pions are Goldstone bosons of spontaneous Chiral Sym. Breaking,

interaction goes with powers of energy, vanishes at E=0

perturbative expansion in energy and pion mass (but not a series expansion!)

$$\frac{p^{\mu}}{4\pi f_{\pi}}, \quad \text{or} \quad \frac{\left|\vec{p}\right|}{4\pi f_{\pi}}, \ \frac{m_{\pi}}{4\pi f_{\pi}}$$

Most general Lagrangian (allowed by symmetries), hence infinitely many constants (LECs) parametrising the short-range physics.

Predictive, provided: *Hierarchy of scales and Naturalness*

Baryon χ PT

χ PT + Nucleons + Delta(1232)

Jenkins & Manohar PLB (1991) Hemmert, Holstein & Kambor JPhys G (1998) VP & Phillips PRC (2003)

E (GeV)

- The 1st nucleon excitation Delta(1232) is within reach of chiral perturbation theory (293 MeV excitation energy is a light scale)
- Include into the chiral effective Lagrangian as explicit dof
- Power-counting for Delta contributions (SSE or ``deltacounting") depends on what chiral order is assigned to the excitation scale.

$B_{\chi}PT$ of (Real) Compton scattering on the nucleon

Unpolarized cross sections

Vladimir Pascalutsa — NUCLEON STRUCTURE — Annual GDR-PH meeting — Saclay, Nov 25-27

Proton polarizabilities Dream of BT sum rule 8 Sum rule NNLO BχPT 30 **MAMI 01** Ο dơ/dΩ_{c.m.} (nb/sr) 6 **SAL 93** BχPT ΗΒχΡΤ 20 $\beta_{M1}~(10^{-4}~{ m fm}^3)$ 4 PDG Ma CO 10 2 $E_{\gamma} = 149 { m MeV}$ TAPS 0 0 90 180 $\theta_{\rm c.m.}$ (deg) -2 12 14 16 6 8 10 α_{E1} (10⁻⁴ fm³) $\beta_{M1} = (1.9 \pm 0.5) \times 10^{-4} \, \text{fm}^3 \, [\text{PDG}]$

BChPT

Lensky, Pascalutsa(2010)

HBChPT

Griesshammer, McGovern, Phillips(2013) $\beta_{M1} = (4.0 \pm 0.7) \times 10^{-4} \, \text{fm}^3 \, [\text{BChPT@NNLO}]$

McGovern, Mornacci, Howell, Pedroni

(Straighter or wat a train the second seco

 $\gamma_0(Q^2) = \frac{4M^2 e^2}{\pi Q^6} \int_0^{x_0} dx \, x^2 \left\{ g_1(x, Q^2) - \frac{4M^2}{Q^2} \, x^2 \, g_2(x, Q^2) \right\}$

Virtual Compton scattering (VCS) Lensky, VP & Vanderhaeghen, EPJC (2017) \rightarrow Sparveris

Forward doubly-virtual-CS (VVCS)

Lensky, Alarcon & VP, PRC (2014) Alarcon, Hagelstein, Lensky & VP, PRD (2020) → Vanderhaeghen, Deur, Slifer, J-P Chen

 $\gamma_0,$

Two-photon exchange in the Lamb shift and hfs

Alarcon, Lensky & VP, EPJC (2014) Hagelstein & VP, PoS CD15 (2016) Hagelstein, PhD thesis (2017) Hagelstein *et al., arXiv* (May 17, 2023)

→ Hagelstein

PROTON "STRECHINESS" ?

Electric dipole polarizability extracted from virtual Compton scattering differs from theoretical expectation

NewScie Judith McGove

most people took [tl really seriously, I thin that it would go awa quite honest, I t people will still assume that it will go away."

is going to stay."

tion, is

Chapter 3

Lattice QCD

(2005 — ...)

The end

Thank you !

(Now)

One more remark on Carl's talk

(Now or Saturday?)

From Carl's talk: Polarizability discrepancy

• Plot from Antognini, Hagelstein, Pascalutsa (2022), similar one in Hagelstein, Pascalutsa, Lensky (2022),

- Bad: polarizability corrections calculated in different ways do not agree.
- (Happens that different authors results for total HFS are in decent agreement, because Zemach terms also different. That "agreement" seems like luck. Want individual pieces to agree.)

Antognini, Hagelstein & VP, Ann. Rev. Nucl. Part. 72 (2022)[arXiv:2205.10076]

 $E_{1S-HFS}^{Z+pol}(H) = E_F(H) \left[b_{1S}(H) \Delta_Z(H) + c_{1S}(H) \Delta_{pol}(H) \right] = -54.900(71) \, \text{kHz},$

The coefficients b and c are well-known in both hydrogens.

The **non-recoil** $O(\alpha^5)$ effects have simple scaling

$$\frac{\Delta_i(\mathrm{H})}{m_r(\mathrm{H})} = \frac{\Delta_i(\mu \mathrm{H})}{m_r(\mu \mathrm{H})}, \quad i = \mathrm{Z, \, pol.}$$

Hence,

$$E_{nS-HFS}^{Z+pol}(\mu H) = \frac{E_F(\mu H) m_r(\mu H) b_{nS}(\mu H)}{n^3 E_F(H) m_r(H) b_{1S}(H)} E_{1S-HFS}^{Z+pol}(H) - \frac{E_F(\mu H)}{n^3} \Delta_{pol}(\mu H) \left[c_{1S}(H) \frac{b_{nS}(\mu H)}{b_{1S}(H)} - c_{nS}(\mu H) \right]$$

The effect in muonic hydrogen is expressed through the effect in H !

Hence prediction for muonic-hydrogen hfs

F=0

Backup slides

POLARIZABILITY EFFECT IN THE HFS

$$\begin{split} \Delta_{\text{pol}} &= \frac{\alpha m}{2\pi (1+\kappa)M} \left[\Delta_1 + \Delta_2 \right] \\ \Delta_1 &= 2 \int_0^\infty \frac{\mathrm{d}Q}{Q} \left(\frac{5+4v_l}{(v_l+1)^2} \left[4I_1(Q^2) + F_2^2(Q^2) \right] - \frac{32M^4}{Q^4} \int_0^{x_0} \mathrm{d}x \, x^2 g_1(x,Q^2) \right. \\ & \left. \times \left\{ \frac{1}{(v_l+\sqrt{1+x^2\tau^{-1}})(1+\sqrt{1+x^2\tau^{-1}})(1+v_l)} \left[4 + \frac{1}{1+\sqrt{1+x^2\tau^{-1}}} + \frac{1}{v_l+1} \right] \right\} \right) \\ \Delta_2 &= 96M^2 \int_0^\infty \frac{\mathrm{d}Q}{Q^3} \int_0^{x_0} \mathrm{d}x \, g_2(x,Q^2) \left\{ \frac{1}{v_l+\sqrt{1+x^2\tau^{-1}}} - \frac{1}{v_l+1} \right\} \end{split}$$

- Polarizability effect on the HFS is completely constrained by empirical information
- ChPT calculation puts the reliability of dispersive calculations (and ChPT) to the test ?!

Tension between the BChPT prediction and data-driven dispersive results:

ZEMACH RADIUS $\Delta_{Z} = \frac{8Z\alpha m_{r}}{\pi} \int_{0}^{\infty} \frac{\mathrm{d}Q}{Q^{2}} \left[\frac{G_{E}(Q^{2})G_{M}(Q^{2})}{1+\kappa} - 1 \right] \equiv -2Z\alpha m_{r}R_{Z}$

Smaller polarizability results in Zemach radius

Table 2 Determinations of the proton Zemach radius r_{Zp} , in units of fm.

ep sc	attering	μ H 2S hfs		H 1 S hfs	
Lin et al. (26)	Borah et al. (91)	Antognini et al. (2)	$B\chi PT$ (62)	Volotka et al. (92)	$B\chi PT$ (62)
$1.054_{-0.002}^{+0.003}$	1.0227(107)	1.082(37)	1.041(31)	1.045(16)	1.012(14)

MAMI vs HIGS - proton polarizabilities

Phys.Rev.Lett. 128 (2022)

 $\alpha_E = 11.0 \pm 1.2 \pm 0.1 \pm 0.3$ $\beta_M = 3.2 \mp 1.2 \pm 0.1 \pm 0.3$ $\alpha_E = 13.8 \pm 1.2 \pm 0.1 \pm 0.3$ $\beta_M = 0.2 \mp 1.2 \pm 0.1 \pm 0.3$

Theory analyses:

BChPT

Lensky, Pascalutsa(2010)

HBChPT

Griesshammer, McGovern, Phillips(2013)

PDG '14 values:

 $\alpha_{E} = (11.2 \pm 0.2) \times 10^{-4} \text{ fm}^{-3}$

 $\beta_{M} = (2.5 \pm 0.4) \times 10^{-4} \text{ fm}^{-3}$

INTERPLAY AND IMPACTS

Proton radius puzzle: what could it mean ?

see PPNP review Carlson (2015)