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Theoretical approaches to low-energy QCD
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Standard Model

Electroweak   QCD

presently the best theory of (nearly!) everything



PRECISION SEARCHES FOR NEW PHYSICS
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Muon anomalies

Muon g-2Proton radius

5.6 𝜎 discrepancy

NOW: from Puzzle to Precision

1 State of the art and preliminary work

The applicants of this Research Unit (RU) have been playing most visible roles in all of the
above-mentioned research directions, either by carrying out precision experiments at various
facilities worldwide (A2@MAMI, BABAR, BESIII, KLOE-2, WASA-at-COSY, ATLAS@LHC), by
providing theoretical support for these experiments, or by directly calculating the quantities of
interest as for example the hadronic LbL contribution to (g � 2)µ. For these calculations both
ab-initio methods such as lattice quantum chromodynamics (lattice QCD) or phenomenological
approaches are used. In the following we discuss in more detail the current state of research
and our contributions to the above-mentioned topics.

The current status of the anomalous magnetic moment of the muon, aµ = (g � 2)µ/2, is
displayed in Fig. 2 [5]. The discrepancy between the averaged experimental result and the
recommended value of the “Muon g-2 Theory Initiative” [9] amounts to 4.2 standard deviations.
The FNAL g�2 experiment will base its final result on a data set with a factor 20 higher statistics
compared to the initial publication [5]. This will yield an improvement in accuracy compared to
the BNL measurement [6] by a factor of four.

Figure 2: Status of the anomalous magnetic moment of the muon after the recent FNAL measure-
ment [5]. A deviation between the experimental average and the SM value with a significance of 4.2
standard deviations is observed. The SM value is taken from the “Muon g-2 Theory Initiative” White
Paper [9]. Figure taken from [5].

The SM prediction [9], a
SM
µ = 116 591 810(43) ⇥ 10�11, receives contributions from quantum

electrodynamics (QED), weak, and strong interactions, where the QED contribution is by far the
dominating one. Due to the non-perturbative nature of strong interactions, the current precision
of a

SM
µ is however entirely dominated by hadronic effects, which are subdivided into the hadronic

vacuum polarization (HVP), as well as the hadronic light-by-light (HLbL) contributions (Fig. 3) 1

a
HVP, LO
µ + a

HVP, NLO
µ + a

HVP, NNLO
µ = 6845(40) ⇥ 10�11

, (1)

a
HLbL
µ + a

HLbL, NLO
µ = 92(18) ⇥ 10�11

. (2)

1Please note that within the "Muon g-2 Theory Initiative," when combining the HVP estimates of [17] and [18],
the uncertainty of HVP has increased compared to the individual estimates due to unresolved inconsistencies. In
the evaluation of [18] the uncertainties of HVP and HLbL were found to be of similar size .

4 September 10, 2021
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Chapter	1


Sum	rules


(2003	—	…)
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Kramers-Kronig type of relations
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Abstract

A uni!ed presentation is given on the use of dispersion relations in the real and virtual Compton scattering
processes o" the nucleon. The way in which dispersion relations for Compton scattering amplitudes establish
connections between low energy nucleon structure quantities, such as polarizabilities or anomalous magnetic
moments, and the nucleon excitation spectrum is reviewed. We discuss various sum rules for forward real
and virtual Compton scattering, such as the Gerasimov–Drell–Hearn sum rule and its generalizations, the
Burkhardt–Cottingham sum rule, as well as sum rules for forward nucleon polarizabilities, and review their
experimental status. Subsequently, we address the general case of real Compton scattering (RCS). Various
types of dispersion relations for RCS are presented as tools for extracting nucleon polarizabilities from the
RCS data. The information on nucleon polarizabilities gained in this way is reviewed and the nucleon structure
information encoded in these quantities is discussed. The dispersion relation formalism is then extended to vir-
tual Compton scattering (VCS). The information on generalized nucleon polarizabilities extracted from recent
VCS experiments is described, along with its interpretation in nucleon structure models. As a summary, the
physics content of the existing data is discussed and some perspectives for future theoretical and experimental
activities in this !eld are presented.
c© 2003 Elsevier Science B.V. All rights reserved.

PACS: 11.55.Fv; 13.40.−f; 13.60.Fz; 14.20.Dh

Keywords: Dispersion relations; Electromagnetic processes and properties; Elastic and Compton scattering; Protons and
neutrons
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A derivative of the Gerasimov–Drell–Hearn sum rule
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Abstract

We derive a sum rule which establishes a linear relation between a particle’s anomalous magnetic moment and a quantity
connected to the photoabsorption cross section. This quantity cannot be measured directly. However, it can be computed within
a given theory. As an example, we demonstrate validity of the sum rule in QED at tree level—the renowned Schwinger’s
correction to the anomalous magnetic moment is readily reproduced. In the case of the strong interactions, we also consider the
calculation of the nucleon magnetic moment within chiral theories.
 2004 Elsevier B.V. All rights reserved.

PACS: 11.55.Hx; 13.40.Em; 25.20.Dc

The well-known Gerasimov–Drell–Hearn (GDH) sum rule (SR) [1],

(1)
πα

M2s
κ2 = 1

π

∞∫

0

dω

ω
%σ (full)(ω),

relates the anomalous magnetic moment (a.m.m.)1 κ of a particle with spin s and mass M to the integral of the
difference of polarized total photoabsorption cross sections:

(2)%σ (full)
s (ω) = σ

(full)
1+s (ω) − σ

(full)
1−s (ω),

where σ
(full)
1±s are the photoabsorption cross sections for total helicity (1± s), and the superscript ‘full’ refers to the

sum over all possible final states. Below we consider only the case of a spin-1/2 particle, hence%σ = σ3/2−σ1/2.

E-mail addresses: vlad@jlab.org (V. Pascalutsa), holstein@physics.umas.edu (B.R. Holstein), marcvdh@jlab.org (M. Vanderhaeghen).
1 Here by the a.m.m. we understand κ = (g − 2)s , i.e., deviation from the gyromagnetic ratio g from its natural value of 2 for arbitrary

spin [2].

0370-2693/$ – see front matter  2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2004.09.006
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Selected Ph. D. descendents of 

Andreas von Ettingshausen 
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0. Andreas von Ettingshausen (Wien,1817) 0. Andreas von Ettingshausen (Wien,1817) 

1. Jozef Stefan (Wien, 1858) 1. Francesco Rossetti (Wien, 1857)

2. Ludwig Boltzmann (Wien, 1866) 2. Andrea Naccari (Padova, 1862)

3. Paul Ehrenfest (Wien, 1904) 3. Angelo Batelli (Torino, 1884)

4. Hendrik Kramers (Leiden, 1919) 4. Luigi Puccianti (Pisa, 1898)

5. Nicolaas van Kampen (Leiden, 1952) 5. Enrico Fermi (Pisa, 1922)

6. John Tjon (Utrecht, 1964) 6. Tsung-Dao Lee (Chicago, 1946)

7. Vladimir Pascalutsa (Utrecht, 1998) 7. Carl-Edwin Carlson (Columbia, 1968)

From: Carl E Carlson <carlson@jlab.org>
Subject: Super Gran Père Andreas

Date: 9. June 2014 at 17:08:49 CEST
To: Vladimir Pascalutsa <vladipas@kph.uni-mainz.de>

mailto:carlson@jlab.org
mailto:vladipas@kph.uni-mainz.de


Dispersion relation             .

• Work into 




• Drop the  term.  O.k. if  falls at high .


• Can view as standard or as dramatic assumption.

H1(ν, Q2) =
𝖱𝖾𝗌 H1(ν, Q2)

el

ν2
el − ν2

+
1
π ∫cut

𝖨𝗆 H1(ν′￼, Q2)
ν′￼

2 − ν2
dν′￼

2 +
1

2πi ∫|ν′￼|=∞

H1(ν′￼, Q2)
ν′￼

2 − ν2
dν′￼

2

|ν | = ∞ H1 ν

8

Re ν2

Im ν2

ν2

From	Carl’s	talk:

Bernabéu-Tarrach sum rule: (in)validation?

8

Neutral pion contribution to the 

Compton scattering off the proton

The Compton scattering off the 

neutron

In these cases the dispersion relation 

for 𝑇𝐿 must be modified as follows:

[Sugawara and Kanazawa, PhysRev (1961)]

From	Volodymir’s	talk:
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Bernabeu-Tarrach and a sum rule 
for the subtraction function
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FOR5327

Perturbative verification of new sum rules and 
relations for Compton scattering

[arXiv:2305.08814]

Volodymyr Biloshytskyi

in collaboration with
V. Pascalutsa, F. Hagelstein, V. Lensky, I. Ciobotaru-Chriscu

II low-Q Workshop, Kolymbari, Crete, Greece, 2023

Bernabéu-Tarrach sum rule

6

[Bernabéu and Tarrach, PLB (1975)]

Bernabéu-Tarrach sum rule:

The Compton helicity amplitude with two longitudinally polarized photons:

is the anomalous magnetic moment of the nucleon.

Sum rule for the subtraction function

12

Siegert theorem: Dispersion relation for 𝑇1:

This sum rule is also validated in the manifestly covariant 
baryon χPT for the 𝑂 𝑝3 contribution to the proton electric 
polarizability that comes from the charged pion loops.

Note that at this order we only verify the polarizability 
contribution (no contributions from the possible non-pole Born
terms)

Dispersion relation for 𝑇𝐿:

• The sum rules are invalid only if the integral diverges!
“Fixed-poles” is a conspiracy theory
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Pion-production channel contribution

to BT and Baldin sum rules

10

Saturation of the sum rule integral

10

±

source 𝜶𝑬𝟏 [× 𝟏𝟎−𝟒 𝐟𝐦𝟑]
𝐼𝐵𝑇(MAID) 

extrapolated
5.4
≃7

Kappa term 0.5

resonances* 0.5-1*

total 
(w/o Regge region)

8-8.5*

[PDG] 11.2±0.4

*Currently, we have no parametrization 
of the existing data, which has a stable 
behavior within the limit 𝑄2 → 0

We	need	to	develop	parametrizations	of	inclusive	longitudinal	cross-section	

(akin	to	Bosted-Christy)	with	good	low-Q	limit!
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Chapter	2


Effective	Field	Theory


(2001	—	…)
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Chiral	EFT	( EFT)χ
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 Steven Weinberg, Phenomenological Lagrangians, Physica A (1979)

     Origin of EFTs


‘Chiral’	and	‘Perturbative’	go	together:	

					pions	are	Goldstone	bosons	of	spontaneous	Chiral	Sym.	Breaking,

					interaction	goes	with	powers	of	energy,	vanishes	at	E=0	

					perturbative	expansion	in	energy	and	pion	mass	(but	not	a	series	expansion!)


		


Most	general	Lagrangian	(allowed	by	symmetries),	hence	infinitely	many	constants	(LECs)	
parametrising	the	short-range	physics.


	Predictive,	provided:	Hierarchy	of	scales	and	Naturalness


pµ

4⇡f⇡
, or

|~p|
4⇡f⇡

,
m⇡

4⇡f⇡
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Baryon PTχ
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E (GeV)

1

0.1 

0.3

4⇡f⇡

MN

m⇢

m⇡

M� �MN

The	1st	nucleon	excitation	—	Delta(1232)	is	within	reach	of	
chiral	perturbation	theory	(293	MeV	excitation	energy	is	a	
light	scale)


Include	into	the	chiral	effective	Lagrangian	as	explicit	dof


Power-counting	for	Delta	contributions	(SSE	or	``delta-
counting”)	depends	on	what	chiral	order	is	assigned	to	the	
excitation	scale.


PT + Nucleons + Delta(1232)χ

Jenkins	&	Manohar	PLB	(1991)

Hemmert,	Holstein	&	Kambor	JPhys	G	(1998)

VP	&	Phillips	PRC	(2003)

Δ (1232) M1/E2

McGovern	
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B PT of (Real) Compton scattering on the nucleonχ
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size of the red blob

LO

NLO NNLO

Lensky & VP, EPJC (2010)

Lensky, McGovern & VP,  EPJC (2015) 




Vladimir Pascalutsa — NUCLEON STRUCTURE — Annual GDR-PH meeting — Saclay, Nov 25-27

Unpolarized cross sections

15

Data points:
MAMI/TAPS 
(2001)
SAL (1993)
Illinois (1991)

Curves:

Klein-Nishina

Born + WZW

+ p-qube

Total NNLO

Lensky & V.P.,EPJC (2010)
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Proton polarizabilities
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Separation of Proton Polarizabilities with the Beam Asymmetry of Compton Scattering

Nadiia Krupina and Vladimir Pascalutsa
PRISMA Cluster of Excellence Institut für Kernphysik, Johannes Gutenberg–Universität Mainz, 55128 Mainz, Germany

(Received 3 April 2013)

1 We propose to determine the magnetic dipole polarizability of the proton from the beam asymmetry of

low-energy Compton scattering based on the fact that the leading non-Born contribution to the asymmetry

is given by the magnetic polarizability alone; the electric polarizability cancels out. The beam asymmetry

thus provides a simple and clean separation of the magnetic polarizability from the electric one.

Introducing polarizabilities in a Lorentz-invariant fashion, we compute the higher-order (recoil) effects

of polarizabilities on beam asymmetry and show that these effects are suppressed in forward kinematics.

With the prospects of precision Compton experiments at the Mainz Microtron and High Intensity Gamma

Source facilities in mind, we argue why the beam asymmetry could be the best way to measure the elusive

magnetic polarizability of the proton.

DOI: PACS numbers: 13.60.Fz, 14.20.Dh, 25.20.Dc

The current Particle Data Group (PDG) [1] values of the
electric- and magnetic-dipole polarizabilities of the proton
[2,3], i.e.,

!E1 ¼ ð12:0# 0:6Þ % 10&4 fm3; (1a)

"M1 ¼ ð1:9# 0:5Þ % 10&4 fm3 (1b)

are in significant disagreement with the most recent post-
dictions of chiral effective field theory [4,5], as can be seen
in Fig. 1. The state-of-the-art chiral effective field theory
calculations, based on either the baryon (B) or heavy-
baryon (HB) chiral perturbation theory (ChPT) with octet
and decuplet fields [6], are in excellent agreement with the
experimental Compton-scattering cross sections, but not
necessarily in agreement with the polarizabilities extracted
from these data by the experimental groups, cf. [7] for
review. The situation is becoming more acute as the
demand for precise knowledge of nucleon polarizabilities
is growing; they are for instance the main source of uncer-
tainty in the extraction of the proton charge radius from the
muonic hydrogen Lamb shift (see [8] for a recent review).

A likely source of these discrepancies is an underesti-
mate of model dependence in the extraction of polarizabil-
ities from Compton-scattering data. In principle, one
should opt for a model-independent extraction, based on
the low-energy expansion (LEX) of Compton-scattering
observables, where the leading-order terms, beyond the
Born term, are expressed through polarizabilities. For ex-
ample, the non-Born part of the unpolarized differential
cross section for Compton scattering off a target with mass
M and charge Ze is given by [2]

d#ðNBÞ

d!L
¼ &Z2!em

M

!
$0

$

"
2
$$0½!E1ð1þ cos2%LÞ

þ 2"M1 cos%L) þOð$4Þ; (2)

where $ ¼ ðs&M2Þ=2M and $0 ¼ ð&uþM2Þ=2M are,
respectively, the energies of the incident and scattered

photon in the lab frame, %L (d!L ¼ 2& sin%Ld%L) is the
scattering (solid) angle; s, u, and t ¼ 2Mð$0 & $Þ are the
Mandelstam variables; and !em ¼ e2=4& is the fine-
structure constant. Hence, given the exactly known Born
contribution [9] and the experimental angular distribution
at very low energy, one could in principle extract the
polarizabilities with a negligible model dependence. In
reality, however, in order to resolve the small polarizability
effect in the tiny Compton cross sections, most of the
measurements are done at energies exceeding 100 MeV,
i.e., not small compared to the pion mass m&. It is m&, the
onset of the pion-production branch cut, that severely
limits the applicability of a polynomial expansion in

-2
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FIG. 1 (color online). The scalar polarizabilities of the proton.
Magenta blob represents the PDG summary [1]. Experimental
results are from Federspiel et al. [15], Zieger et al. [16],
MacGibbon et al. [17], and TAPS [18]. ‘‘Sum Rule’’ indicates
the Baldin sum rule evaluations of !E1 þ "M1 [18] (broader
band) and [19]. ChPT calculations are from [4] (B'PT—red
blob) and the ‘‘unconstrained fit’’ of [5] (HB'PT—blue ellipse).

P HY S I CA L R EV I EW LE T T E R S

1 ! 2013 American Physical Society 1
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�M1 = (1.9± 0.5)⇥ 10�4 fm3 [PDG]

�M1 = (4.0± 0.7)⇥ 10
�4

fm
3
[BChPT@NNLO]

	McGovern,	Mornacci,	Howell,	Pedroni

Dream	of	BT	sum	rule

BChPT	
Lensky, 
Pascalutsa(2010)

HBChPT	
Griesshammer, 
McGovern, 
Phillips(2013)
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(Straightforward) Extensions to 

17

Virtual Compton scattering (VCS)

 Lensky,	VP	&	Vanderhaeghen,	EPJC	(2017)

	 	Sparveris	


Forward doubly-virtual-CS (VVCS)

Lensky,	Alarcon	&	VP,	PRC	(2014)

Alarcon,	Hagelstein,	Lensky	&	VP,	PRD	(2020)


 	Vanderhaeghen,	Deur,	Slifer,	J-P	Chen


Two-photon exchange in the Lamb shift and hfs


Alarcon,	Lensky	&	VP,	EPJC	(2014)

Hagelstein	&	VP,	PoS	CD15	(2016)

Hagelstein,	PhD	thesis	(2017)

Hagelstein	et	al.,	arXiv		(May	17,	2023)


	
Hagelstein

Nucleon	spin	polarizabiliZes	with	virtual	photons:	VVCS

!10

�LT (Q
2) =

4e2M2

⇡Q6

Z x0

0
dx x2

�
g1(x,Q

2) + g2(x,Q
2)
 

�0(Q
2) =

4M2e2

⇡Q6

Z x0

0
dx x2

⇢
g1(x,Q

2)� 4M2

Q2
x2 g2(x,Q

2)

�

higher	moments	of	spin	structure	func@ons:	spin	polarizabili@es

�0, Q2 ! 0

provide	strong	test	for	theory: chiral	EFT	calcula@ons	/	lamce	QCD

see	talks:	Deur,	Peng,	Ripani,		
																			Ruth,	Slifer	

 Zheng et al.(2021)

JLab/CLAS	data	�0
p

see	talk:	Pascalutsa	

�LT
p JLab/Hall	A	data	

 Ruth et al.(2022)
Ruth	et	al,	Nat.	Phys.	(2022)
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Judith McGovern: “I don’t think 
most people took [the 2000 result] 
really seriously, I think they assumed 
that it would go away, and, if I’m 
quite honest, I think most 
people will still assume that it 
will go away.”

Nikolaos Sparveris: “It is certainly 
puzzling for the physics of the strong interaction, 
if this thing persists … So, the ball now is 
on the side of the [standard model] 
theory.”

Vladimir Pascalutsa: “Usually, behaviors 
of these things are quite, let’s say, smooth and 
there are no bumps … don’t want to kill 
the buzz, but yeah, I’m quite 
skeptical as a theorist that this thing 
is going to stay.”

Nature | www.nature.com | 5

(see Fig. 4d). The dominant contribution to this effect is expected to 
arise from the deformation of the mesonic cloud in the proton under 
the influence of an external electromagnetic field. We derive the mean 
square magnetic polarizability radius from the magnetic polarizability 
measurements, following a procedure that is equivalent to the extrac-
tion of the mean square electric polarizability radius (see Methods for 
details) and find that r" # = 0.63 ± 0.31 fmβ

2 2
M

.
In conclusion, we have studied the response of the proton to an 

external electromagnetic field and its dependence on the distance 
scale within the system. We show evidence of a local enhancement in 
the electric generalized polarizability of the proton that the nuclear 
theory cannot explain. We provide a definitive answer to the exist-
ence of an anomaly in this fundamental property and have measured 
with high precision the magnitude and the dynamical signature of 
this effect. The reported data suggest the presence of a dynamical 
mechanism in the system that is not accounted for in the theory at 
present. They pose a challenge to the chiral effective field theory, 
the prevalent effective theory for the strong interaction, and they 
serve as high-precision benchmark data for the upcoming lattice 
QCD calculations. The measurements of the proton’s electromag-
netic generalized polarizabilities complement the counterpart of 
the spin-dependent generalized polarizabilities of the nucleon32–34. 
Together, the two components of the generalized polarizabilities 
provide a puzzling picture of the nucleon’s dynamics that emerge at 
long distance scales. The proton has the unique role of being nature’s 
only stable composite building block. Consequently, the observed 
anomaly in a fundamental system property comes with a unique scien-
tific interest. It calls for further measurements so that the underlying 
dynamics can be mapped with precision and highlights the need for 
an improved theory so that a fundamental property of the proton 
can be reliably described.

 
Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-022-05248-1.
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Fig. 4 | The generalized polarizabilities of the proton. a, The electric 
generalized polarizability measured in this experiment (red circles). The world 
data8–13,31,41–43 (open symbols) are shown for results that involve the dispersion- 
relations (circles) and low-energy-expansion analysis (boxes). The theoretical 
calculations of BChPT17, NRQCM28, LSM23, ELM25 and DR14–16 are also shown.  
The experimental fit that includes all the world data is also shown. b, The magnetic 
generalized polarizability. The definitions of symbols and curves are the same as 
in a. c, Induced polarization in the proton when submitted to an electro-

magnetic field as a function of the transverse position with photon 
polarization along the x axis for by = 0. The x–y defines the transverse plane, 
with the z axis being the direction of the fast-moving protons. d, The proton 
electric polarizability radius r r≡ " #α α

2
E E

 derived from this work (red point).  
The measurements of the proton charge radius rE (refs. 39,40,44–49) (blue points) 
are shown for comparison. The error bars and the uncertainty bands 
correspond to the total (statistical + systematic) uncertainty, at the 1σ or 68% 
confidence level.

Electric dipole polarizability extracted from virtual Compton scattering differs from 
theoretical expectation

!26

Proton gluonic radius  
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Chapter	3


Lattice	QCD


(2005	—	…)

19

Alexandrou,	Orginos,	Constantinou,	Frank	Lee,	Xu	Feng
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The	end


Thank	you	!


(Now)

20



Vladimir Pascalutsa — Low-Q CD —  LowQ2023 — May 15—21, 2023            

One	more	remark	on	Carl’s	talk


(Now	or	Saturday?)

21



Polarizability discrepancy
• Plot from Antognini, Hagelstein, Pascalutsa (2022),  

similar one in Hagelstein, Pascalutsa, Lensky (2022),

22

• Numbers explicit,     
                                 
                                            


• Bad: polarizability corrections calculated in different ways do not agree.


• (Happens that different authors results for total HFS are in decent 
agreement, because Zemach terms also different. That “agreement” 
seems like luck.  Want individual pieces to agree.) 

Δpol (Tomalak) = 364(89) ppm
Δpol (H & P) = 29(90) ppm

Difference = 322 ppm

From	Carl’s	talk:
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Best	constraint	for	hfs	in	μH
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The corresponding theory prediction is compiled in Equation 41.Compared with a previous com-
pilation by Volotka et al. (93), we have recalculated the µVP correction, which agrees with Refer-
ence 117. We have also updated the hVP, rescaling the recent result obtained for muonium (66).
These µVP and hVP results are considerably larger (roughly by a factor of 3 and 5, respectively)
than quoted in Reference 93.

InReferences 114 and 118, this high-precisionHFSmeasurement was already exploited to con-
strain the 2γ -exchange contribution and its effect in theHFS ofµH.Here we shall use a somewhat
different procedure, where all the uncertainty of rescaling from H to µH is limited to radiative
corrections. Combining the empirical and theoretical values for the 1S HFS in H (Equations 41
and 42), we deduce a subset of the 2γ -exchange contribution, containing the Zemach radius and
polarizability corrections:

EZ+pol
1S-HFS(H) = EF(H)

[
b1S(H)"Z(H) + c1S(H)"pol(H)

]
= −54.900(71) kHz, 43.

where b1S(H) " 1 + 2 × 10−5 + 0.01846 − 5α/4π and c1S(H) " 1 + 2 × 10−5 are the radiative
correction factors shown explicitly in Equation 41. The correction factors correspond to, respec-
tively, the one-loop eVP correction to the wave function (see Equation 20) and the one-loop eVP
insertion in the elastic 2γ -exchange diagram (see equation 43a of the Supplemental Text), as
well as self-energy and muon anomalous magnetic moment corrections to the Zemach radius
contribution (see equation 45 of the Supplemental Text). We choose not to lump in here the
recoil corrections because they are known rather precisely. We use "recoil(H) = 5.33(5) ppm and
"recoil(µH) = 846(6) ppm (81, 103).

To go from H to µH, we assume that only the radiative factors scale nontrivially with the
reduced mass, and that "Z and "pol scale linearly:

"i(H)
mr (H)

= "i(µH)
mr (µH)

, i = Z, pol. 44.

This scaling is obvious for the Zemach contribution (cf. Equation 15), whereas for the polarizabil-
ity contribution this has been veri!ed numerically to better than 2% (103). Therefore, the sum of
Zemach radius and polarizability corrections in µH, EZ+pol

nS-HFS(µH), can be expressed via the one in
the H 1SHFS, EZ+pol

1S-HFS(H), as follows:

EZ+pol
nS-HFS(µH)= EF(µH)mr (µH) bnS(µH)

n3EF(H)mr (H) b1S(H)
EZ+pol
1S-HFS(H)

− EF(µH)
n3

"pol(µH)
[
c1S(H)

bnS(µH)
b1S(H)

− cnS(µH)
]

︸ ︷︷ ︸
=−6×10−5 for n=1
=−5×10−5 for n=2

45.

where b1S(µH) " 1 + 0.00402 + 0.01846 − 5α/4π , b2S(µH) " 1 + 0.00326 + 0.01846 − 5α/4π ,
c1S(µH) " 1 + 0.00402, and c2S(µH) " 1 + 0.00326 are the radiative correction factors shown
explicitly in Equation 40. The second term in Equation 45 is negligible because the coef!cient
given by the square brackets is very small. We thus evaluate only the !rst term and obtain the
following:

EZ+pol
1S-HFS(µH) = −1.318(2)meV, EZ+pol

2S-HFS(µH) = −0.1646(2)meV. 46.

The main source of uncertainty here is the 2γ -recoil contribution"recoil(H). Adding the 2γ -recoil
contribution "recoil(µH) to Equation 46, we obtain a prediction for the full 2γ -exchange and hVP
contributions to the HFS in µH:

E〈2γ〉
1S-HFS(µH) = −1.161(2)meV, E〈2γ〉

2S-HFS(µH) = −0.1450(2)meV. 47.
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The corresponding theory prediction is compiled in Equation 41.Compared with a previous com-
pilation by Volotka et al. (93), we have recalculated the µVP correction, which agrees with Refer-
ence 117. We have also updated the hVP, rescaling the recent result obtained for muonium (66).
These µVP and hVP results are considerably larger (roughly by a factor of 3 and 5, respectively)
than quoted in Reference 93.

InReferences 114 and 118, this high-precisionHFSmeasurement was already exploited to con-
strain the 2γ -exchange contribution and its effect in theHFS ofµH.Here we shall use a somewhat
different procedure, where all the uncertainty of rescaling from H to µH is limited to radiative
corrections. Combining the empirical and theoretical values for the 1S HFS in H (Equations 41
and 42), we deduce a subset of the 2γ -exchange contribution, containing the Zemach radius and
polarizability corrections:

EZ+pol
1S-HFS(H) = EF(H)

[
b1S(H)"Z(H) + c1S(H)"pol(H)

]
= −54.900(71) kHz, 43.

where b1S(H) " 1 + 2 × 10−5 + 0.01846 − 5α/4π and c1S(H) " 1 + 2 × 10−5 are the radiative
correction factors shown explicitly in Equation 41. The correction factors correspond to, respec-
tively, the one-loop eVP correction to the wave function (see Equation 20) and the one-loop eVP
insertion in the elastic 2γ -exchange diagram (see equation 43a of the Supplemental Text), as
well as self-energy and muon anomalous magnetic moment corrections to the Zemach radius
contribution (see equation 45 of the Supplemental Text). We choose not to lump in here the
recoil corrections because they are known rather precisely. We use "recoil(H) = 5.33(5) ppm and
"recoil(µH) = 846(6) ppm (81, 103).

To go from H to µH, we assume that only the radiative factors scale nontrivially with the
reduced mass, and that "Z and "pol scale linearly:

"i(H)
mr (H)

= "i(µH)
mr (µH)

, i = Z, pol. 44.

This scaling is obvious for the Zemach contribution (cf. Equation 15), whereas for the polarizabil-
ity contribution this has been veri!ed numerically to better than 2% (103). Therefore, the sum of
Zemach radius and polarizability corrections in µH, EZ+pol

nS-HFS(µH), can be expressed via the one in
the H 1SHFS, EZ+pol

1S-HFS(H), as follows:

EZ+pol
nS-HFS(µH)= EF(µH)mr (µH) bnS(µH)

n3EF(H)mr (H) b1S(H)
EZ+pol
1S-HFS(H)

− EF(µH)
n3

"pol(µH)
[
c1S(H)

bnS(µH)
b1S(H)

− cnS(µH)
]

︸ ︷︷ ︸
=−6×10−5 for n=1
=−5×10−5 for n=2

45.

where b1S(µH) " 1 + 0.00402 + 0.01846 − 5α/4π , b2S(µH) " 1 + 0.00326 + 0.01846 − 5α/4π ,
c1S(µH) " 1 + 0.00402, and c2S(µH) " 1 + 0.00326 are the radiative correction factors shown
explicitly in Equation 40. The second term in Equation 45 is negligible because the coef!cient
given by the square brackets is very small. We thus evaluate only the !rst term and obtain the
following:

EZ+pol
1S-HFS(µH) = −1.318(2)meV, EZ+pol

2S-HFS(µH) = −0.1646(2)meV. 46.

The main source of uncertainty here is the 2γ -recoil contribution"recoil(H). Adding the 2γ -recoil
contribution "recoil(µH) to Equation 46, we obtain a prediction for the full 2γ -exchange and hVP
contributions to the HFS in µH:

E〈2γ〉
1S-HFS(µH) = −1.161(2)meV, E〈2γ〉

2S-HFS(µH) = −0.1450(2)meV. 47.
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The	non-recoil	 	effects	have	simple	scalingO(α5)

Hence,

The corresponding theory prediction is compiled in Equation 41.Compared with a previous com-
pilation by Volotka et al. (93), we have recalculated the µVP correction, which agrees with Refer-
ence 117. We have also updated the hVP, rescaling the recent result obtained for muonium (66).
These µVP and hVP results are considerably larger (roughly by a factor of 3 and 5, respectively)
than quoted in Reference 93.

InReferences 114 and 118, this high-precisionHFSmeasurement was already exploited to con-
strain the 2γ -exchange contribution and its effect in theHFS ofµH.Here we shall use a somewhat
different procedure, where all the uncertainty of rescaling from H to µH is limited to radiative
corrections. Combining the empirical and theoretical values for the 1S HFS in H (Equations 41
and 42), we deduce a subset of the 2γ -exchange contribution, containing the Zemach radius and
polarizability corrections:

EZ+pol
1S-HFS(H) = EF(H)

[
b1S(H)"Z(H) + c1S(H)"pol(H)

]
= −54.900(71) kHz, 43.

where b1S(H) " 1 + 2 × 10−5 + 0.01846 − 5α/4π and c1S(H) " 1 + 2 × 10−5 are the radiative
correction factors shown explicitly in Equation 41. The correction factors correspond to, respec-
tively, the one-loop eVP correction to the wave function (see Equation 20) and the one-loop eVP
insertion in the elastic 2γ -exchange diagram (see equation 43a of the Supplemental Text), as
well as self-energy and muon anomalous magnetic moment corrections to the Zemach radius
contribution (see equation 45 of the Supplemental Text). We choose not to lump in here the
recoil corrections because they are known rather precisely. We use "recoil(H) = 5.33(5) ppm and
"recoil(µH) = 846(6) ppm (81, 103).

To go from H to µH, we assume that only the radiative factors scale nontrivially with the
reduced mass, and that "Z and "pol scale linearly:

"i(H)
mr (H)

= "i(µH)
mr (µH)

, i = Z, pol. 44.

This scaling is obvious for the Zemach contribution (cf. Equation 15), whereas for the polarizabil-
ity contribution this has been veri!ed numerically to better than 2% (103). Therefore, the sum of
Zemach radius and polarizability corrections in µH, EZ+pol

nS-HFS(µH), can be expressed via the one in
the H 1SHFS, EZ+pol

1S-HFS(H), as follows:

EZ+pol
nS-HFS(µH)= EF(µH)mr (µH) bnS(µH)

n3EF(H)mr (H) b1S(H)
EZ+pol
1S-HFS(H)

− EF(µH)
n3

"pol(µH)
[
c1S(H)

bnS(µH)
b1S(H)

− cnS(µH)
]

︸ ︷︷ ︸
=−6×10−5 for n=1
=−5×10−5 for n=2

45.

where b1S(µH) " 1 + 0.00402 + 0.01846 − 5α/4π , b2S(µH) " 1 + 0.00326 + 0.01846 − 5α/4π ,
c1S(µH) " 1 + 0.00402, and c2S(µH) " 1 + 0.00326 are the radiative correction factors shown
explicitly in Equation 40. The second term in Equation 45 is negligible because the coef!cient
given by the square brackets is very small. We thus evaluate only the !rst term and obtain the
following:

EZ+pol
1S-HFS(µH) = −1.318(2)meV, EZ+pol

2S-HFS(µH) = −0.1646(2)meV. 46.

The main source of uncertainty here is the 2γ -recoil contribution"recoil(H). Adding the 2γ -recoil
contribution "recoil(µH) to Equation 46, we obtain a prediction for the full 2γ -exchange and hVP
contributions to the HFS in µH:

E〈2γ〉
1S-HFS(µH) = −1.161(2)meV, E〈2γ〉

2S-HFS(µH) = −0.1450(2)meV. 47.
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The	effect	in	muonic	hydrogen	is	expressed	through	the	effect	in	H	!

The	coefficients	b	and	c	are	well-known	in	both	hydrogens.

Antognini, Hagelstein & VP,  Ann. Rev. Nucl. Part. 72 (2022)[arXiv:2205.10076]
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Hence	prediction	for	muonic-hydrogen	hfs
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Figure 8

Experimental values and theoretical predictions for the 1S and 2S hfs in H and µH.

The main source of uncertainty here is the 2� recoil contribution �recoil(H). Adding the

2� recoil contribution �recoil(µH) to Eq. 46, we obtain a prediction for the full 2�-exchange

and hVP contributions to the hfs in µH:

E
2�+hVP

1S-hfs
(µH) = −1.159(2)meV, E

2�+hVP

2S-hfs
(µH) = −0.1448(2)meV. 47.

With this, we arrive at a complete prediction of the hfs in µH:

E1S-hfs(µH) = 182.634(8)meV, E2S-hfs(µH) = 22.8130(9)meV, 48.

where we have also included an uncertainty due to possible scaling violation of �pol at the

level of 2% (assuming a very generous size for this contribution, �pol(µH) = 400ppm). Our

result is shown in Fig. 8, together with the existing µH 2S hfs measurement. The theory

predictions based on the empirical hfs in H, Eq. 48, are up to a factor 5 better than results

that do not use the H hfs.

Note that all theory predictions shown in Fig. 8 are in agreement, even though the

data-driven dispersive evaluations and the B�PT prediction disagree in the polarizability

contribution (cf. Fig. 6, Table 3). This is because most works use the experimental H

hfs to refine their prediction for the total 2�-exchange e↵ect. Hence the discrepancy in

polarizability is compensated by slightly di↵erent Zemach radii.

In future, reversing the above procedure to obtain a prediction of the hadronic con-

tributions to the 1S hfs in H from a measurement of the 1S hfs in µH, might allow for a

benchmark test of the H hfs theory. This, however, would also require further improvements

for the recoil corrections from 2� exchange, as well as for the uncertainty from missing con-

tributions in the µH theory. Note that a better benchmark test (� ∼ 2×10−9) of bound-state
QED for a hyperfine transitions can be achieved for the muonium hfs, which the MuSEUM

experiment (114) aims to measure with � ∼ 2×10−9 relative accuracy. To test the muonium

hfs on this level, the MuMass experiment (115, 116) has to determine the mµ�me ratio to

better than � ∼ 1 × 10−9 from the 1S-2S transition in muonium.

5. Bound-state QED tests of simple atomic and molecular systems

The simplicity of two- and three-body atomic-molecular systems combined with the preci-

sion of laser spectroscopy permit unique confrontations between theory and experiments.

The predictive power of bound-state QED, however, depends on the knowledge of funda-

mental constants such as the masses of the involved particles, ↵, R∞, and nuclear properties

such as the nuclear charge radii or magnetic moments.
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Figure 3 shows the two measured mp res-
onances. Details of the data analysis are given
in (12). The laser frequency was changed every
few hours, and we accumulated data for up to
13 hours per laser frequency. The laser frequen-
cy was calibrated [supplement in (6)] by using
well-known water absorption lines. The reso-
nance positions corrected for laser intensity ef-
fects using the line shape model (12) are

ns ¼ 54611:16(1:00)stat(30)sysGHz ð2Þ

nt ¼ 49881:35(57)stat(30)sysGHz ð3Þ

where “stat” and “sys” indicate statistical and sys-
tematic uncertainties, giving total experimental un-
certainties of 1.05 and 0.65 GHz, respectively.
Although extracted from the same data, the fre-
quency value of the triplet resonance, nt, is slightly
more accurate than in (6) owing to several improve-
ments in the data analysis. The fitted line widths
are 20.0(3.6) and 15.9(2.4) GHz, respectively, com-
patible with the expected 19.0 GHz resulting from
the laser bandwidth (1.75 GHz at full width at half
maximum) and the Doppler broadening (1 GHz)
of the 18.6-GHz natural line width.

The systematic uncertainty of each measure-
ment is 300 MHz, given by the frequency cal-
ibration uncertainty arising from pulse-to-pulse
fluctuations in the laser and from broadening
effects occurring in the Raman process. Other
systematic corrections we have considered are
the Zeeman shift in the 5-T field (<60 MHz),
AC and DC Stark shifts (<1 MHz), Doppler
shift (<1 MHz), pressure shift (<2 MHz), and
black-body radiation shift (<<1 MHz). All these
typically important atomic spectroscopy system-
atics are small because of the small size of mp.

The Lamb shift and the hyperfine splitting.
From these two transition measurements, we
can independently deduce both the Lamb shift
(DEL = DE2P1/2−2S1/2) and the 2S-HFS splitting
(DEHFS) by the linear combinations (13)

1
4
hns þ

3
4
hnt ¼ DEL þ 8:8123ð2ÞmeV

hns − hnt ¼ DEHFS − 3:2480ð2ÞmeV ð4Þ

Finite size effects are included in DEL and
DEHFS. The numerical terms include the cal-
culated values of the 2P fine structure, the 2P3/2
hyperfine splitting, and the mixing of the 2P
states (14–18). The finite proton size effects on
the 2P fine and hyperfine structure are smaller
than 1 × 10−4 meV because of the small overlap
between the 2P wave functions and the nu-
cleus. Thus, their uncertainties arising from
the proton structure are negligible. By using
the measured transition frequencies ns and nt
in Eqs. 4, we obtain (1 meV corresponds to
241.79893 GHz)

DEexp
L ¼ 202:3706(23) meV ð5Þ

DEexp
HFS ¼ 22:8089(51) meV ð6Þ

The uncertainties result from quadratically
adding the statistical and systematic uncertain-
ties of ns and nt.

The charge radius. The theory (14, 16–22)
relating the Lamb shift to rE yields (13):

DEth
L ¼ 206:0336(15Þ − 5:2275(10Þr2E þ DETPE

ð7Þ

where E is in meV and rE is the root mean
square (RMS) charge radius given in fm and
defined as rE

2 = ∫d3r r2 rE(r) with rE being the
normalized proton charge distribution. The first
term on the right side of Eq. 7 accounts for
radiative, relativistic, and recoil effects. Fine and
hyperfine corrections are absent here as a con-
sequence of Eqs. 4. The other terms arise from
the proton structure. The leading finite size effect
−5.2275(10)rE2 meV is approximately given by
Eq. 1 with corrections given in (13, 17, 18).
Two-photon exchange (TPE) effects, including the
proton polarizability, are covered by the term
DETPE = 0.0332(20) meV (19, 24–26). Issues
related with TPE are discussed in (12, 13).

The comparison of DEth
L (Eq. 7) with DEexp

L
(Eq. 5) yields

rE ¼ 0:84087(26)exp(29)th fm
¼ 0:84087(39) fm ð8Þ

This rE value is compatible with our pre-
vious mp result (6), but 1.7 times more precise,
and is now independent of the theoretical pre-
diction of the 2S-HFS. Although an order of
magnitude more precise, the mp-derived proton
radius is at 7s variance with the CODATA-2010
(7) value of rE = 0.8775(51) fm based on H spec-
troscopy and electron-proton scattering.

Magnetic and Zemach radii. The theoretical
prediction (17, 18, 27–29) of the 2S-HFS is (13)

DEth
HFS ¼ 22:9763(15Þ − 0:1621(10)rZ þ DEpol

HFS

ð9Þ

where E is in meVand rZ is in fm. The first term is
the Fermi energy arising from the interaction
between the muon and the proton magnetic mo-
ments, corrected for radiative and recoil con-
tributions, and includes a small dependence of
−0.0022rE2 meV = −0.0016 meVon the charge
radius (13).

The leading proton structure term depends
on rZ, defined as

rZ ¼ ∫d3r∫d3r′r′rE(r)rM(r − r′) ð10Þ

with rM being the normalized proton mag-
netic moment distribution. The HFS polariz-

Fig. 1. (A) Formation of mp in highly excited states and subsequent cascade with emission of “prompt”
Ka, b, g. (B) Laser excitation of the 2S-2P transition with subsequent decay to the ground state with Ka
emission. (C) 2S and 2P energy levels. The measured transitions ns and nt are indicated together with
the Lamb shift, 2S-HFS, and 2P-fine and hyperfine splitting.

25 JANUARY 2013 VOL 339 SCIENCE www.sciencemag.org418
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Formation of Muonic Hydrogen atom (µ-p) 

Muon stops in hydrogen 
 
Muon capture at high orbit and cascade to ground state 
 
Rapid conversion to lower hyperfine  state 
=> no muon polarization left 
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POLARIZABILITY EFFECT IN THE HFS
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Polarizability effect on the HFS is completely constrained by empirical information


ChPT calculation puts the reliability of dispersive calculations (and ChPT) to the test ?!

�pol =
↵m

2⇡(1 + )M
[�1 +�2]

�1 = 2

Z 1

0

dQ

Q

✓
5 + 4vl
(vl + 1)2

⇥
4I1(Q

2) + F 2
2 (Q

2)
⇤
� 32M4

Q4

Z x0

0
dxx2g1(x,Q

2)

⇥
⇢

1

(vl +
p
1 + x2⌧�1)(1 +

p
1 + x2⌧�1)(1 + vl)


4 +

1

1 +
p
1 + x2⌧�1

+
1

vl + 1

��◆

�2 = 96M2

Z 1

0

dQ

Q3

Z x0

0
dx g2(x,Q

2)

⇢
1

vl +
p
1 + x2⌧�1

� 1

vl + 1

�

<latexit sha1_base64="57ei3N/43T5c0ypgFK3n/lcuXRQ="></latexit><latexit sha1_base64="57ei3N/43T5c0ypgFK3n/lcuXRQ="></latexit><latexit sha1_base64="57ei3N/43T5c0ypgFK3n/lcuXRQ="></latexit><latexit sha1_base64="57ei3N/43T5c0ypgFK3n/lcuXRQ="></latexit>

Tension between the BChPT prediction and data-driven dispersive results:
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Smaller polarizability results in Zemach radius 

• E
(pol) = E(subt) +E(inel), the polarizability contribution,

• E
(el) the elastic structure functions (same as the Friar radius with recoil),

• E
�2�� = E(el) +E(pol), the total 2� exchange.

Despite the moderate e↵ect of the subtraction function, it does constitute the largest un-

certainty of the data-driven evaluations. Models of the subtraction function for the proton

are constrained at Q
2 = 0 by the magnetic polarizability �M1, and at asymptotically large

Q
2 by perturbative QCD (76). There is a new idea (85) of how to further constrain it from

the dilepton photoproduction (e−p→ e
−
p e
−
e
+), but that would be an extremely challenging

experiment. There is hope that it can soon be calculated in lattice QCD (86–90, 82).

3.2. Hyperfine splitting in H and µH

For the hfs, the 2�-exchange e↵ects are conventionally split into Zemach-radius, recoil and

polarizability contributions (93):

E
�2��
nS-hfs

= EF

n3
(�Z +�recoil +�pol) . 32.

Note that all of these e↵ects begin to contribute at order (Z↵)5. While the elastic con-

tributions are known to better than 1%, the absolute uncertainty of the numerically large

Zemach-radius contribution is not negligible. Still, the largest uncertainty comes from the

polarizability contribution. In what follows we discuss the Zemach and the polarizability

contributions in more detail.

3.2.1. Zemach radius, correlation with the charge radius. The Zemach-radius contribution,

defined as �Z = −2Z↵mrrZ, can be evaluated based on empirically known form factors

using Eq. 14. For example, the recent dispersive analysis of the nucleon electromagnetic

form factors from the Bonn group (26) yields:

rZp = 1.054 �+0.003−0.002�
stat
�+0.000−0.001�

sys
fm, �Z(µH) = −7403+21−16 ppm. 33.

On the other hand, one can determine this contribution from the experimental hfs, given

predictions for the remaining theory contributions. So far we have the measurements of

the 1S hfs in H and the 2S hfs in µH. The corresponding extractions of the Zemach radius

are shown in Table 2 and compared with the form-factor determinations. Since baryon

�PT (B�PT) gives a smaller prediction for the polarizability contribution than data-driven

evaluations, it also gives a smaller Zemach radius. This discrepancy will be discussed below

(cf. Figure 6).

There is an appreciable linear correlation between the Zemach and charge radius, il-

lustrated in Fig. 5. The black dashed line represents the usual dipole approximation,

1�(1+Q2�⇤2)2, for the form factors GE and GM . This correlation is of course more general,

given that the proton size is set predominantly by one QCD scale, ⇤QCD. Essentially all

Table 2 Determinations of the proton Zemach radius rZp, in units of fm.

ep scattering µH 2S hfs H 1S hfs

Lin et al. (26) Borah et al. (91) Antognini et al. (2) B�PT (62) Volotka et al. (92) B�PT (62)

1.054+0.003−0.002 1.0227(107) 1.082(37) 1.041(31) 1.045(16) 1.012(14)

14 A. Antognini, F. Hagelstein and V. Pascalutsa
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MAMI vs HIGS - proton polarizabilities
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Theory	analyses:	

BChPT	
Lensky, 
Pascalutsa(2010)

HBChPT	
Griesshammer, 
McGovern, 
Phillips(2013)

PDG	’14	values:		

αE		=	(11.2	±	0.2)	×	10-4		fm3	

βM		=	(	2.5	±	0.4)	×	10-4		fm3	

αE=13.8±1.2±0.1±0.3

 βM=0.2∓1.2±0.1±0.3
αE=11.0±1.2±0.1±0.3

 βM=3.2∓1.2±0.1±0.3

	 Phys.Rev.Lett. 128 (2022) 
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Figure 9

Simplified scheme showing the impact of rp(µH) on improving fundamental constants and bound-state QED tests.

5.2. µ4He+ and He+: testing higher-order QED and nuclear models

An interesting test of bound-state QED can be obtained when the ongoing e↵orts to measure

the 1S-2S transition in the hydrogen-like He+ ion in LaserLaB, Amsterdam (35) and MPQ,

Garching (36) will be accomplished. To understand the interplay between measurements in

He+, µ4He+, H and µH we express the He+(1S-2S) with explicit Z-dependence

f2S−1S(He+) ≈ 3Z2
cR∞
4

1

1 + me
M↵

+QED
He+ �Z3.7

, Z
5...7� − 7(Z↵)c4

24⇡ a3

B

�h3
r
2

↵ 60a.

(1kHz) (9kHz) (40kHz) (61kHz) 60b.

with M↵ being the alpha-particle mass. The Bohr structure scales only with Z
2, the

finite size with Z
4, the one-loop QED contributions scale approximately as Z3.7, while the

challenging higher-order contributions scaling as Z5..7 (C50 scales as Z5, B60 scales as Z6)

are strongly enhanced in He+. Eq. 60b illustrates the uncertainties: 1 kHz uncertainty is

expected from the LaserLaB experiment in the first phase (35), while an analysis of typical

systematic e↵ects of the MPQ experiment promises uncertainties far below that level, on

the order Hz level (36). The 9 kHz is from the uncertainty of R∞(µH + H) (Eq. 59), the
40 kHz represents the present uncertainty of the QED theory (119, 117), and the 60 kHz is

the uncertainty resulting from the alpha particle charge radius r↵ = 1.67824(13)exp(82)th fm

from µ
4He+(10) spectroscopy limited by the uncertainty of the 2�-exchange contribution in

µ
4He+ (120, 121).

By considering these uncertainties, it is clear that the 1S-2S transition in He+ can be

tested after completion of the measurement in He+ down to an accuracy of 60 kHz limited

www.annualreviews.org • Nucleon structure in and out of muonic hydrogen 25

μ4He+

μD

μH

From: Antognini, Hagelstein & VP,  Ann. Rev. Nucl. Part. 72 (2022)[arXiv:2205.10076]
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Timely applications

Aldo Antognini INPC2019,   Glasgow   01.08.2019  6

Three ways to the proton radius

Proton charge radius [fm]
0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

CODATA-2010
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scatt. Mainz

scatt. JLab

p 2010µ

p 2013µ

σ6.7 

e-

µp spectroscopy

p

µ-

H spectroscopy

p

e--p scattering

 H 2 
e-

Pohl et al., Nature 466, 213 (2010)
Antognini et al., Science 339, 417 (2013)
Pohl et al., Science 353, 669 (2016)
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which is larger than the value accounted for in Ref. [5, Eq. (17)], but agrees with Ref. [6] within errors, cf. Table
VII. It is also in agreement with the empirical value, Eq. (66), but more than a factor 3 less precise. Our new theory
compilation will be used in Section VIA to extract rd(µD) from the experimental value for E2P�2S .

VI. CHARGE RADIUS EXTRACTIONS

2.11 2.12 2.13 2.14 2.15
 [fm]

Pohl et al. '17

Antognini et al. '13
N3LO pionless EFT

N3LO pionless EFT

CREMA '16
Kalinowski '19

N3LO pionless EFT

Sick & Trautmann '98

'14
'18

D spectroscopy

H-D isotope shift & (μH)

D 1S-2S & (CODATA)

μD spectroscopy

ed scattering

CODATA

FIG. 4. Comparison of deuteron charge radius determinations from fits to electron-deuteron scattering data, ordinary and
muonic-deuterium spectroscopy, and the 2S � 1S hydrogen-deuterium isotope shift combined with the proton radius from
muonic hydrogen.

A. Deuteron Charge Radius

This section compares three independent extractions of the deuteron charge radius: from the spectroscopy of the
µD Lamb shift, the 2S � 1S transition in D and the 2S � 1S H-D isotope shift, respectively. With the experimental
value for the µD Lamb shift in Eq. (63), the theoretical prediction in Eq. (65), and our result for the 2�-exchange
e↵ects, Eq. (68), we can extract the deuteron charge radius from µD spectroscopy:

rd(µD) = 2.12763(13)exp(77)theory = 2.12763(78) fm, (69)

where the uncertainty budget remained the same as in the original extraction from Ref. [3], see Eq. (1b). In addition,
we consider the extraction from the measured 2S � 1S transition in D [60]:

f
D
2S�1S = 2466 732 407 522.88(91) kHz, (70)

and the theory prediction in Eq. (F2), which leads to:

rd(D, 2S � 1S) = 2.12767(49) fm. (71)

Note that the entering Rydberg constant, R1 in Eq. (E4), is strongly driven by rp(µH). The third extraction from
the H-D isotope shift and rp(µH) has been presented in Section IVB:

rd(µH & iso) = 2.12788(16) fm.

All results are shown in Fig. 4, together will older extractions, results from electron-deuteron scattering and the
CODATA recommended values. We can see that the spectroscopy of ordinary and muonic hydrogen isotopes, after
the recent theory updates, cf. Ref. [6], gives consistent results for the deuteron charge radius.
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Abstract

Advances in laser spectroscopy of light muonic atoms led to an order-of-

magnitude improvement in the determination of the proton, deuteron,

and helium-4 charge radii. This resulted in a number of tensions with

previous measurements based on electron scattering and spectroscopy of

ordinary atoms—most notably, the proton radius puzzle[**AU: Quo-

tation marks are used for direct quotation or nonstandard

use of words, per house style. All other uses have been re-

moved throughout.**]. We start with an introduction to nuclear

e↵ects in hydrogen-like atoms, including a discussion of radiative cor-

rections. We briefly review the current status of the nucleon structure

quantities (form factors, polarized and unpolarized structure functions,

polarizabilities) and of their e↵ect in the Lamb shift and hyperfine

splitting (HFS) of muonic hydrogen (µH) through forward two-photon

exchange. Updated theory predictions for the Lamb shift and HFS in

µH are presented. Focusing on the ground-state HFS in µH, we review

the challenges of the ongoing e↵ort to produce a first-ever measurement

of this fundamental quantity and of its potential impact on our under-

standing of the nucleon spin structure. We show that by leveraging

radiative corrections, a novel theory prediction based on the empirical

HFS in hydrogen helps narrow down the search for the transition con-

siderably. We summarize recent developments in the spectroscopy of

simple atomic and molecular systems and emphasize how they, together

with the scattering studies, allow for precise determinations of funda-

mental constants, bound-state QED tests, and New Physics searches.

We conclude with prospects for theoretical developments and an out-

look on the ongoing and planned experiments at scattering and atomic

facilities.[**AU: Abstracts should be no more than 150 words,

per house style. Please trim as appropriate.**]
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Proton	radius	puzzle:	what	could	it	mean	?

different					radii					

Lamb	shift	


difference	of						

≈	330	μeV					

μH	expt.	wrong	?		

μH	theory	wrong	?							

-	hadronic	corrections			

	-	check	with	different	targets			

-	QED	bound	state	corrections					

eH	theory	wrong	?		

eH	expt.	wrong	?	->	R∞	wrong		

	+	ep	scattering	wrong	?		

-	radiative	corrections					

-	2γ	corrections					

-	low	Q2	extrapolation					
new	physics	?					

 ΔELS$=$206.0336$(15)$$/$$5.2275$(10)$$RE2$$$+$$$ΔETPE$$$$$$$$$$meV$

Carlson(2015)  see	PPNP	review					


