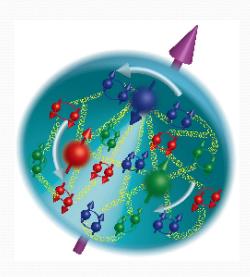
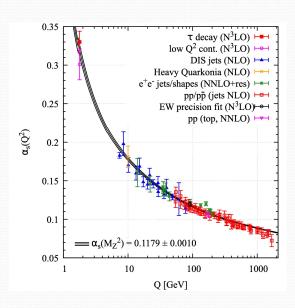
Bjorken Sum Rule and (Effective) Strong Coupling


Jian-ping Chen, Jefferson Lab, Virginia, USA Low-Q-2023, May 15-21, 2023


- Introduction
- Bjorken Sum Rule and Strong Coupling
- Experimental Extraction of Bjorken Sum at Low-q and (Effective) Strong Coupling
- Summary

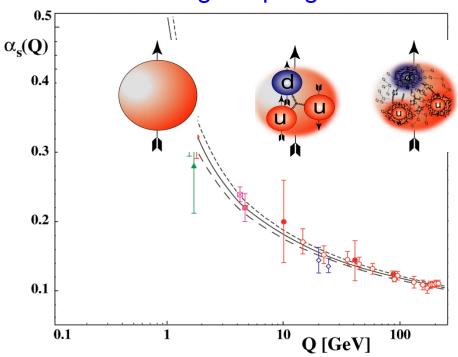
Acknowledgment: Thanks to Alexandre Deur and collaborators for the work in this talk and for providing slides

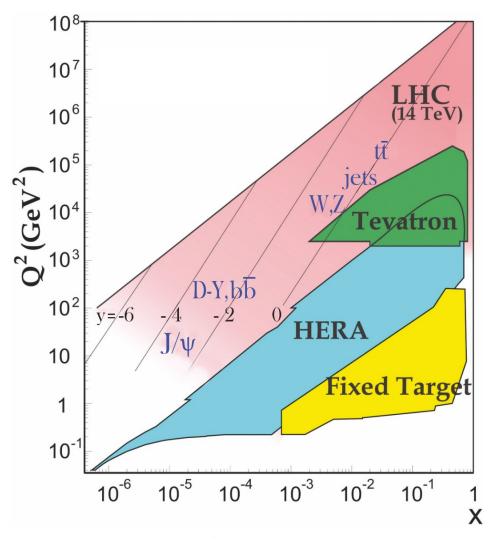
Introduction

Nucleon Spin Structure and Strong Interaction,

Nucleon Structure and Strong Interaction/QCD

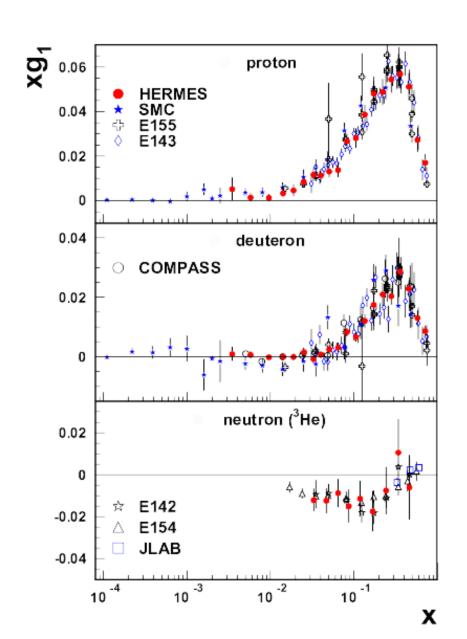
- Nucleon Structure: discoveries
 - -- anomalous magnetic moment (1943 Nobel)
 - -- elastic: form factors (1961 Nobel)
 - -- DIS: parton distributions (1990 Nobel)
- Strong interaction, running coupling ~1
 - -- asymptotic freedom (2004 Nobel) perturbation calculation works at high energy
 - -- interaction significant at intermediate energy, quark-gluon correlations
 - -- interaction strong at low energy confinement
- A major challenge in fundamental physics:
 - -- Understand QCD in all regions, including strong (confinement) region
- Nucleon: most convenient lab to study QCD
- Theoretical Tools:
 pQCD, Lattice QCD, ChEFT, Sum Rules, ...

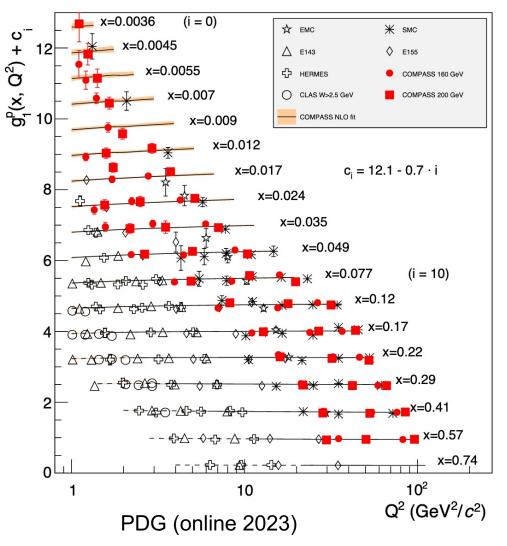




running coupling "constant"

UNPOLARIZED STRUCTURE FUNCTIONS




Q² evolution: the best test of QCD

Experiment – Theory Dialogue

- Theorist to experimentalist: (some time ago)
 give us spin structure functions in full phase space
 full range of x [0-1], full range of Q²: [0, ∞],
 we will take care of the rest (comparisons, understanding physics, ...)
- Experimentalist: hmm..., we can only measure at limited region with some precision, and BTW, we also like to work with you to understand physics
- T: how about moments? we have some predictions at high Q² (PQCD) and low Q² (ChEFT)
- E: yes, we can measure moments in certain region
- T: we can make predictions on moments with LQCD and we are developing a method and might be able to predict x dependence (recently)
- E: great, we are continuing to produce data, let's find out how well data comparison with (PQCD, ChEFT, LQCD, ...) predictions
 - and how they can help us to understand QCD

POLARIZED STRUCTURE FUNCTIONS

Experiment Summary $(Q^2 > 0)$

Observable	H target	D target	³ He target	
$g_1, g_2, \Gamma_1 \& \Gamma_2$	SLAC	SLAC	SLAC	
at high Q^2			JLAB E97-117	
	JLAB SANE		JLAB E01-012	
			JLAB E06-014	
g_1 & Γ_1 at high Q^2	SMC	SMC		
COMPASS	HERMES	HERMES	HERMES	
RHIC-Spin	JLAB EG1	JLAB EG1		
Γ_1 & Γ_2 at low Q^2	JLab RSS	JLab RSS	JLab E94-010	
			JLab E97-103	
Γ_1 at low Q^2	SLAC	SLAC		
	HERMES	HERMES	HERMES	
	JLAB EG1	JLAB EG1		
Γ_1 , $Q^2 << 1 \text{ GeV}^2$	JLab EG4	JLab EG4	JLab E97-110	
Γ_2 , $Q^2 << 1 \text{ GeV}^2$	JLab E08-027		JLab E97-110	

JLab12

 $Q^2=0$

Mainz, Bonn, LEGS, HIGS

Bjorken Sum Rule and Q² dependence

Bjørken Sum Rule

$$\Gamma_1^p(Q^2) - \Gamma_1^n(Q^2) = \int \{g_1^p(x, Q^2) - g_1^n(x, Q^2)\} dx = \frac{1}{6}g_A C_{NS}$$

 g_A : axial charge (from neutron β -decay)

 C_{NS} : Q²-dependent QCD corrections (for flavor non-singlet)

- A fundamental relation relating an integration of spin structure functions to axial-vector coupling constant (axial charge)
- Based on Operator Product Expansion within QCD or Current Algebra
- Valid at large Q² (higher-twist effects negligible)
- Data are consistent with the Bjørken Sum Rule at 5-10 % level

(Generalized) Bjørken Sum Rule

$$\Gamma_{1}^{p-n} = \frac{g_{A}}{6} \left[1 - \frac{\alpha_{s}}{\pi} - 3.58 \left(\frac{\alpha_{s}}{\pi} \right)^{2} - 20.21 \left(\frac{\alpha_{s}}{\pi} \right)^{3} + \cdots \right] + \sum_{i=2,3,\dots}^{\infty} \frac{\mu_{2i}^{p-n}(Q^{2})}{Q^{2i-2}},$$

- A fundamental relation relating an integration of spin structure functions to axial-vector coupling constant (axial charge)
- Based on Operator Product Expansion within QCD or Current Algebra
- Valid at large Q² (higher-twist effects negligible)
- Data are consistent with the Bjørken Sum Rule at 5-10 % level

Gerasimov-Drell-Hearn Sum Rule

Circularly polarized photon on longitudinally polarized nucleon

$$\int_{v_{in}}^{\infty} \left(\sigma_{1/2}(v) - \sigma_{3/2}(v) \right) \frac{dv}{v} = -\frac{2\pi^2 \alpha_{EM}}{M^2} \kappa^2$$

- A fundamental relation between the nucleon spin structure and its anomalous magnetic moment
- Based on general physics principles
 - Lorentz invariance, gauge invariance → low energy theorem
 - unitarity → optical theorem
 - casuality → unsubtracted dispersion relation applied to forward Compton amplitude
- Measurements on proton up to 800 MeV (Mainz) and up to 3 GeV (Bonn) agree with GDH with assumptions for contributions from un-measured regions New measurements on p, d and ³He from LEGS, MAMI(2), ...

Generalized GDH Sum Rule

- Many approaches: Anselmino, Ioffe, Burkert, Drechsel, ...
- Ji and Osborne (J. Phys. G27, 127, 2001):

Forward Virtual-Virtual Compton Scattering Amplitudes: $S_1(Q^2, v)$, $S_2(Q^2, v)$

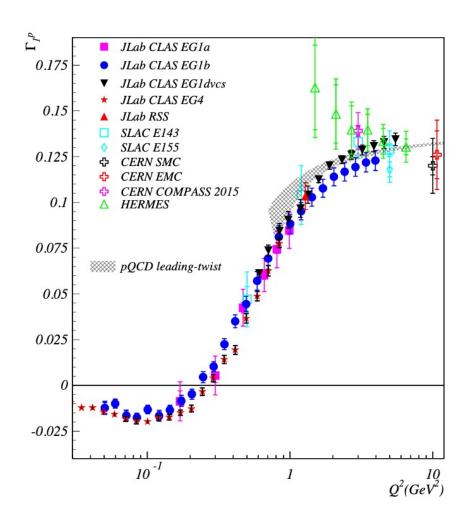
Same assumptions: no-subtraction dispersion relation optical theorem (low energy theorem)

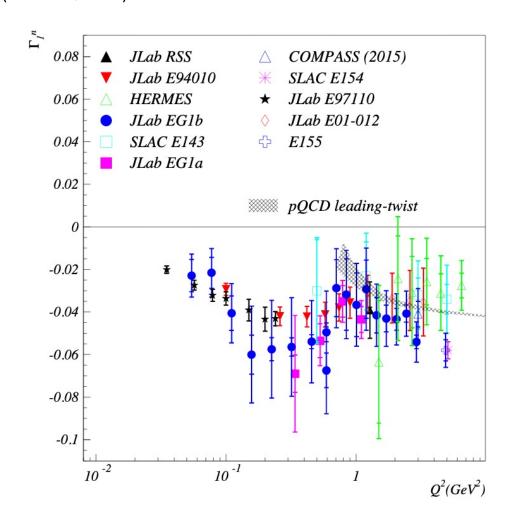
Generalized GDH Sum Rule

$$S_1(Q^2) = 4 \int_{el}^{\infty} \frac{G_1(Q^2, v) dv}{v}$$

Connecting GDH with Bjorken Sum Rules

- Q²-evolution of GDH Sum Rule provides a bridge linking strong QCD to pQCD
 - Bjorken and GDH sum rules are two limiting cases

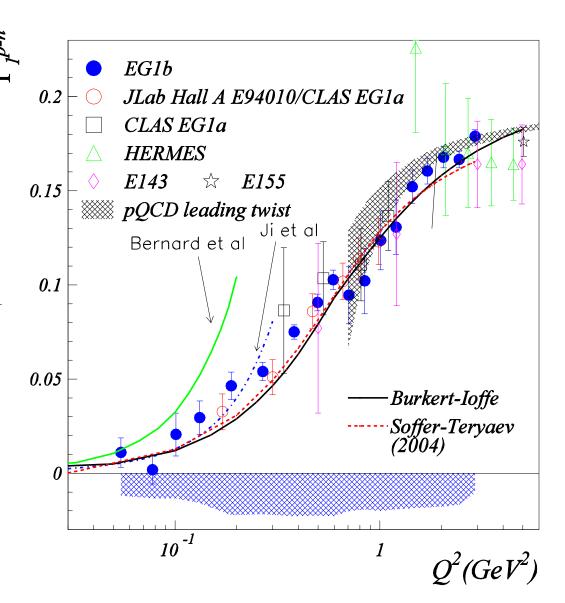

```
High Q<sup>2</sup>, Operator Product Expansion : S_1(p-n) \sim g_A \rightarrow Bjorken Q^2 \rightarrow 0, Low Energy Theorem: S_1 \sim \kappa^2 \rightarrow GDH
```


- High Q² (> ~1 GeV²): Operator Product Expansion
- Intermediate Q² region: Lattice QCD calculations?
- Low Q² region (< ~0.1 GeV²): Chiral Perturbation Theory

Calculations: BχPT: Ji, Kao,...,Vanderhaeghen,...
Lensky, Alarcon & Pascalutsa
Bernard, Hemmert, Meissner

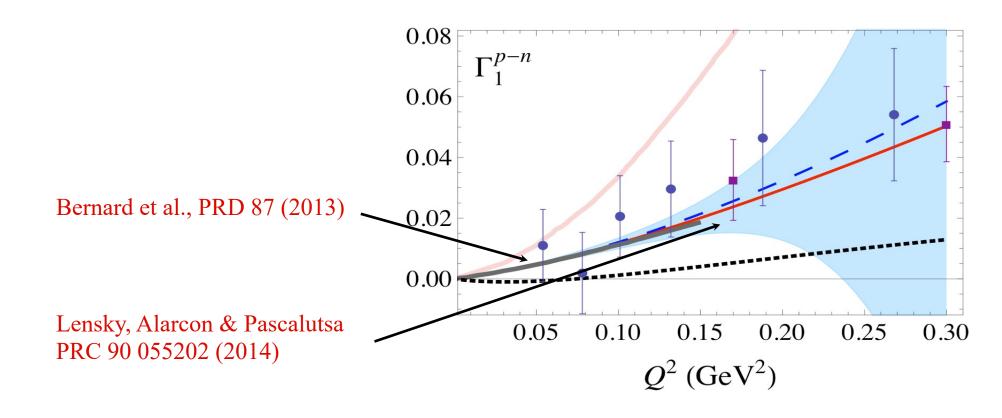
World data on Γ_1 *for proton and neutron*

Previous Publications and New Low-Q data: talks on EG4 (A. Deur for M. Ripani onTuesday and E97-110 (A. Deur, next)

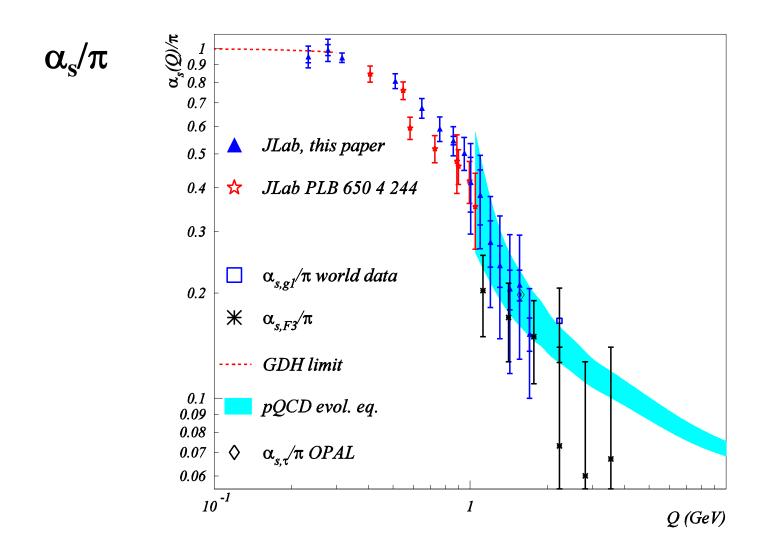


Bjorken Sum: Γ_1 of p-n (before new low-Q data)

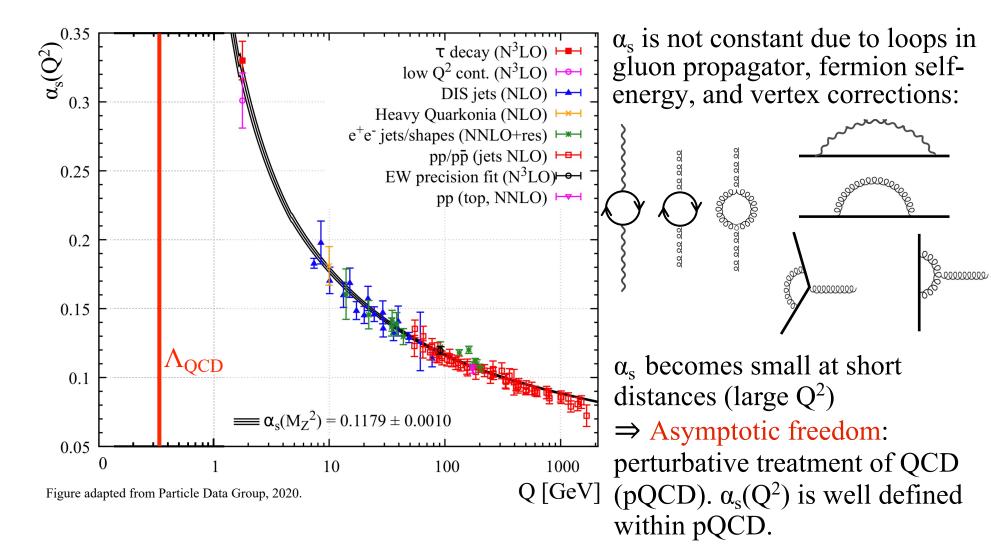
A. Deur, et al.


EG1b, PRD 78, 032001 (2008)

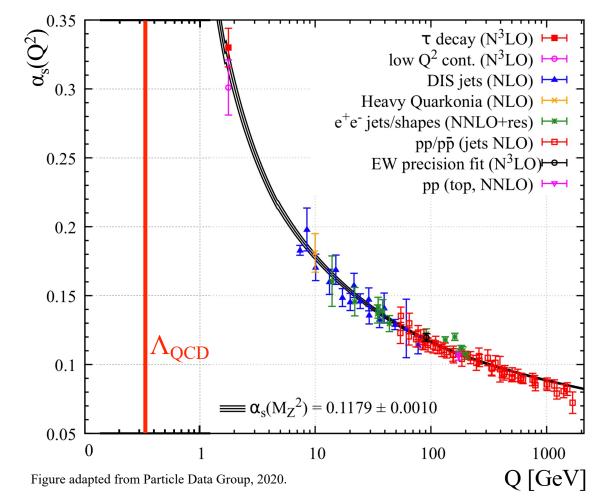
E94-010 + EG1a: PRL 93 (2004) 212001


Bjorken Sum (p-n) (before new low-Q)

•Low Q^2 : test of χ pt calculations



Effective α_s Extracted from Bjorken Sum (before new low-Q)

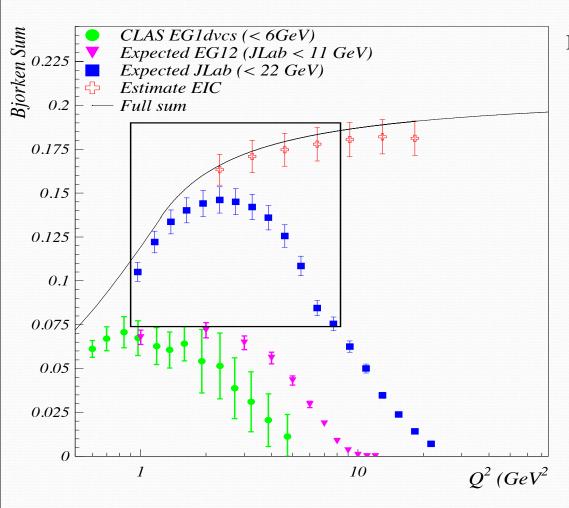

A. Deur, V. Burkert, J. P. Chen and W. Korsch PLB 650, 244 (2007) and PLB 665, 349 (2008)

The strong coupling α_s at short distances (large Q^2)

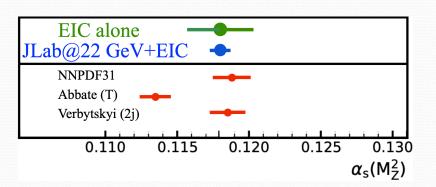
The strong coupling α_s at short distances (large Q^2)

 $\alpha_s(Q^2)$ \Rightarrow needs data or nonperturbative methods to get $\alpha_s(Q^2)$.

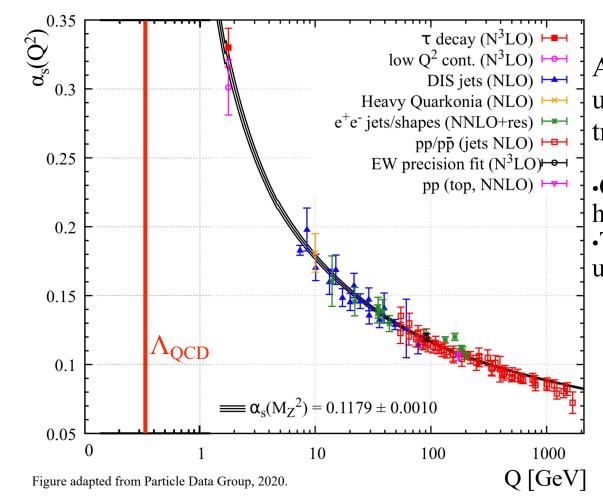
Lattice calculations: currently most accurate determination of $\alpha_s(Mz^2)$.


Otherwise, $\alpha_s(Q^2)$ is extracted from data, e.g. Bjorken sum rule:

$$\int (g_1^p - g_1^n) dx = \frac{1}{6} g_A (1 - \frac{\alpha_s}{\pi} - 3.58 (\frac{\alpha_s}{\pi})^2 - ...)$$


Projection of JLab22 (+ EIC) on Extraction of α_s

JLab22 + EIC can make a significant improvement in the extraction of α_s

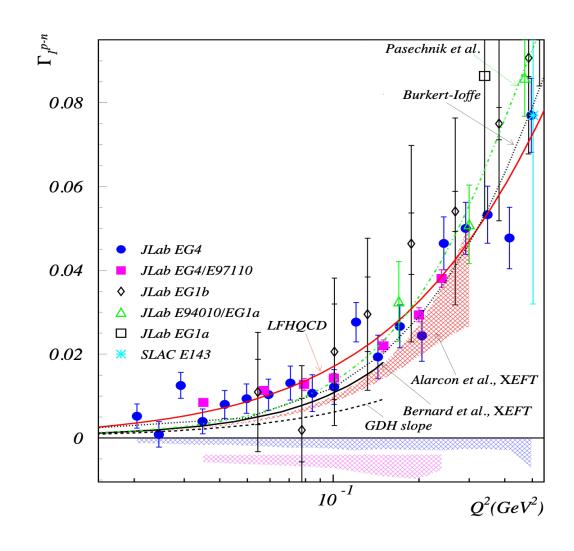

A.Deur, contribution to the JLab22 Whitepaper (to be published)

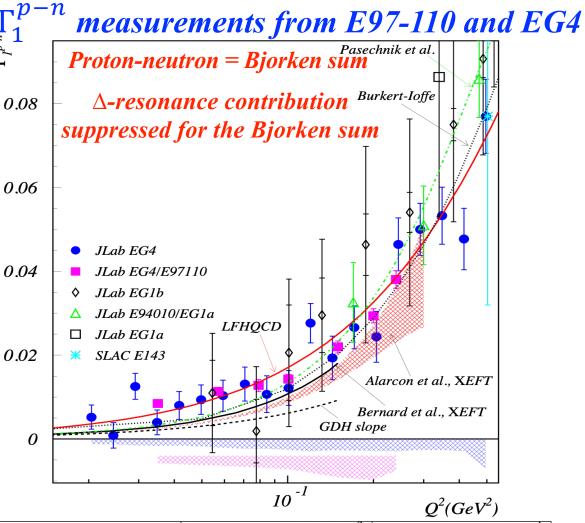
$$\Gamma_1^{p-n} = \frac{1}{6}g_A \left[1 - \frac{\alpha_s}{\pi} - 3.58 \left(\frac{\alpha_s}{\pi} \right)^2 - 20.21 \left(\frac{\alpha_s}{\pi} \right)^3 - 175.7 \left(\frac{\alpha_s}{\pi} \right)^4 - 893 \left(\frac{\alpha_s}{\pi} \right)^5 \right] + \frac{a}{Q^2}.$$

α_s from high to low Q^2

At $Q^2 \lesssim 1 \text{GeV}^2$, pQCD cannot be used to define α_s : if pQCD is trusted, $\alpha_s \rightarrow \infty$ when $Q \rightarrow \Lambda_{\text{OCD}}$.

- •Contradict the perturbative hypothesis;
- •The divergence (Landau pôle) is unphysical..


Definition and computation of α_s at long distance?


Bjorken Sum at Low-Q and Effective α_s

Bjorken Sum: Γ_1 of p-n (EG4 and E97-110)

A. Deur, et al.

EG4 and E97-110, Phys. Lett. B 825 (2022) 136878

Fit Γ1	$=bQ^2+cQ^4:$
	χEFT prediction

		2 (30)		
Data set	$b \pm uncor \pm cor$ [GeV ⁻²]	$c \pm uncor \pm cor \ [\text{GeV}^{-4}]$		
World data	$0.182 \pm 0.016 \pm 0.034$	$-0.117 \pm 0.091 \pm 0.095$		
GDH Sum Rule	0.0618			
$\chi \text{EFT Bernard } et \ a\iota.$	0.07	0.3		
χ EFT Alarcón et al.	0.066(4)	0.25(12)		
Burkert-Ioffe	0.09	0.3		
Pasechnik et al.	0.09	0.4		
LFHQCD	0.177	-0.067		

α_s at long distance (low Q)

Prescription: Define effective couplings from an observable's perturbative series truncated to first order in α_s .

G. Grunberg, PLB B95 70 (1980); PRD 29 2315 (1984); PRD 40 680(1989).

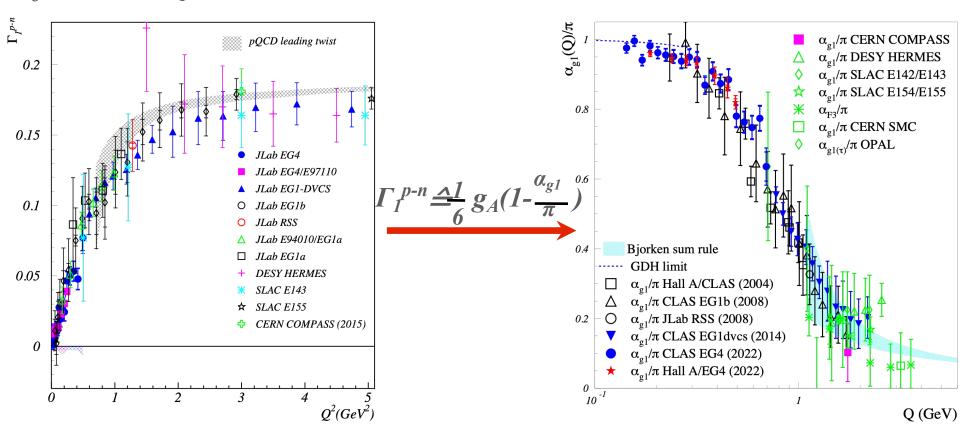
Ex: Bjorken sum rule:

$$\int (g^{p}_{I} - g^{n}_{I}) dx \triangleq \Gamma_{I}^{p-n} = \frac{1}{6} g_{A} (1 - \frac{a_{s}}{\pi} - 3.58 (\frac{a_{s}}{\pi})^{2} - ...) + \frac{M^{2}}{9Q^{2}} [a_{2}(\alpha_{s}) + 4d_{2}(\alpha_{s}) + 4f_{2}(\alpha_{s})] + ...$$

$$Nucleon \ axial \ charge. \ (gluon \ bremsstrahlung)$$

$$Figher \ Twists: 1/Q^{2n} \ corrections.$$

$$Non-perturbative \ quantities.$$


$$Express \ correlations \ between \ parton \ distributions \ and \ confinement \ forces.$$

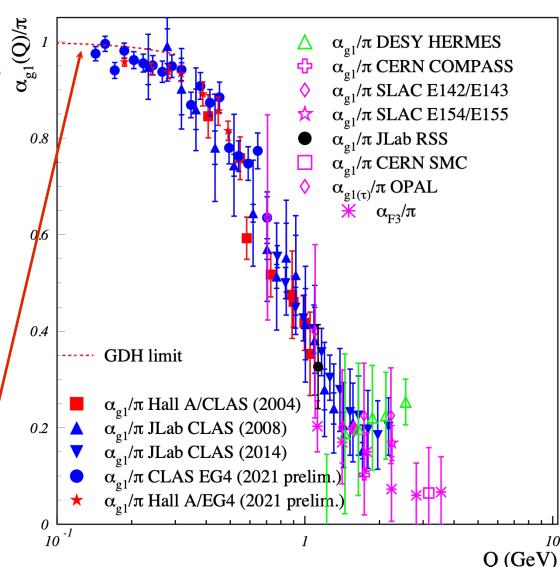
This means that additional short distance effects, and long distance confinement force and parton distribution correlations are now folded into the definition of α_s .

Analogy with the original coupling constant becoming an effective coupling when short distance quantum loops are folded into its definition.

α_{g1} Extracted from the Bjorken Sum data

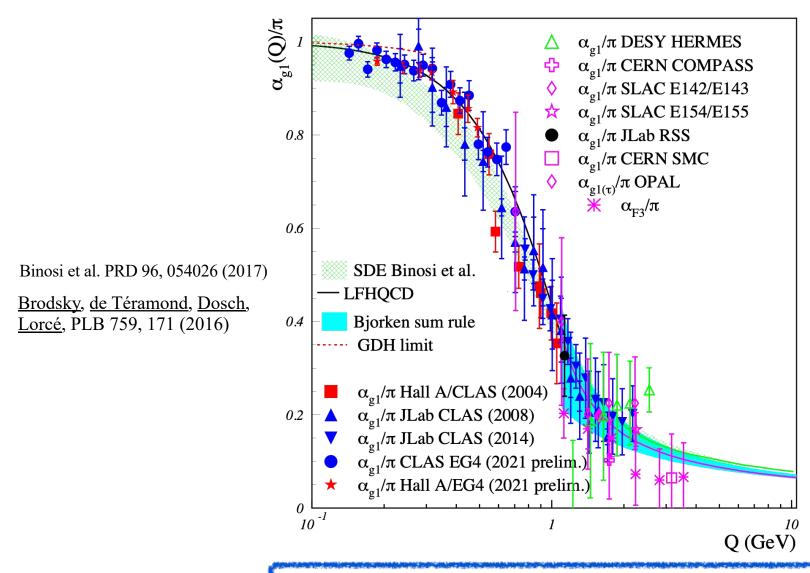
Bjorken sum Γ_I^{p-n} measurements

Low Q limit


At $Q^2 = 0$, a sum rule related to the Bjorken sum rule exists: the Gerasimov-Drell-Hearn (GDH) sum rule:

At $Q^2 = 0$, GDH sum rule:

$$\Gamma_1 = \frac{-\kappa^2 Q^2}{8M^2}$$


 \Rightarrow Q² = 0 constraints:

$$\Rightarrow \begin{cases} \frac{d\alpha_{g1}}{dQ^2} = \frac{3\pi}{4g_A} \left(\frac{\kappa_n^2}{M_n^2} - \frac{\kappa_p^2}{M_p^2} \right) \end{cases}$$

First experimental evidence of nearly *conformal behavior* (i.e. no Q^2 -dependence) of QCD at low Q^2 .

Comparisons with SDE and LFHQCD Calculations

⇒ SDE, LFHQCD and data agree very well.

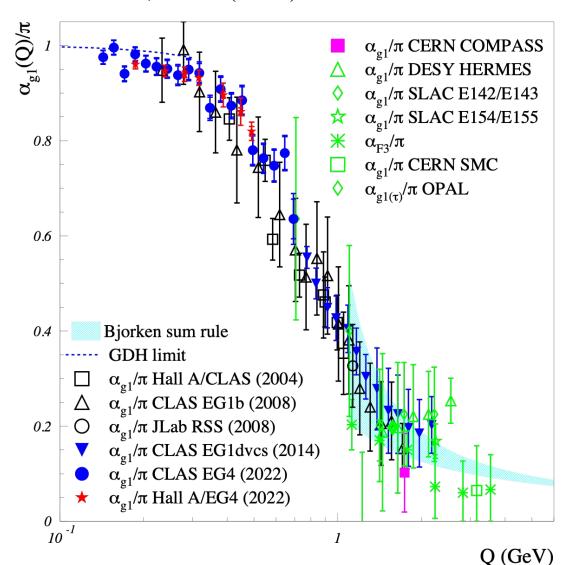
Effective Coupling and Impact

Featured as Cover Featured in JLab News https://phys.org/news/2022-08strength-strong.html

Featured in YouTube

https://www.youtube.com/watch?v=8BT ZOz850GI&t=497s

hailed as


"accidental discovery"

"pretty major breakthrough"

Base for understanding of emergence of hadron properties, can have impact on:

hadron spectroscopy PDFs and GPDs quark mass functions pion decay constant scale of QCD, As QCD Phase/Hot QCD


A. Deur, V. Burkert, J. P. Chen and W. Korsch Particles, 5-171 (2022)

Summary

- Bjorken Sum Rule: Link flavor non-singleton (isovector) part of the nucleon spin structure moment with the axial charge
- Generalized Bjorken/GDH Sum Rules provide a tool to study QCD in full Q² range
 - Extractions of (effective) strong coupling α_s (α_{g1})
- Experimental Data on Bjorken Sum Over a Wide Q² range
- High Q2: PQCD, extraction of strong coupling α_s , potential of JLab22 + EIC
- Intermediate Q2: Transition from PQCD to Strong QCD region
- Low Q2: Strong QCD region, 1st extraction of effective strong coupling α_{g1} Extracted effective strong coupling from the new JLab low-Q data
- → conformal behavior, providing a potential base for understanding strong QCD

significant impact

Data set	$(a \pm uncor \pm cor)$	$(b \pm uncor \pm cor)$ [GeV ⁻²]	$c \pm uncor \pm cor \ [\text{GeV}^{-4}]$	$d \pm uncor \pm cor [\text{GeV}^{-6}]$	$\chi^2/n.d.f.$
EG4, no low- x	NA	$0.093 \pm 0.032 \pm 0.000$	$-0.137 \pm 0.191 \pm 0.000$	NA	1.24
EG4/E97110, no low- x	NA	$0.112 \pm 0.022 \pm 0.028$	$-0.123 \pm 0.118 \pm 0.078$	NA	1.00
EG4	NA	$0.170 \pm 0.032 \pm 0.000$	$-0.046 \pm 0.191 \pm 0.000$	NA	1.04
EG4/E97110	NA	$0.185 \pm 0.023 \pm 0.027$	$-0.144 \pm 0.123 \pm 0.075$	NA	1.00
World data	NA		$-0.117 \pm 0.091 \pm 0.095$	NA	1.00
World data	NA	$b^{ m GDH} \equiv 0.0618$	$1.41 \pm 0.17 \pm 0.39$	$-4.30 \pm 0.80 \pm 1.48$	1.97
World data	$(4.3 \pm 1.8 \pm 0.1) \times 10^{-3}$	$0.092 \pm 0.042 \pm 0.031$	$0.213 \pm 0.167 \pm 0.086$	NA	0.82

Coupling constants

When charges are quantized: (coupling constant)^{1/2} normalizes the unit charge to 1 (e.g. α) \Rightarrow set the magnitude of the force (classical domain) or the probability amplitude to emit a

Force=coupling constant \times charge₁ \times charge₂ \times f(r) (static case) /coupling (SUSY) Gravity α (QED), α_s (QCD), GF (Weak Force), GN (gravity) Quantum effects induce an energy dependence. (effective couplings: the couplings are "running") Weak Strong

α_s at long distance (low Q^2)

The effective coupling is then:

Extractable at any Q²;
Free of divergence;

Renormalization scheme independent.

But it is:

Process dependent.

 \Rightarrow There is *a priori* a different α_s for each different process.

However these α_s can be related (Commensurate Scale Relations).

S. J. Brodsky & H. J. Lu, PRD 51 3652 (1995)
S. J. Brodsky, G. T. Gabadadze, A. L. Kataev, H. J. Lu, PLB 372 133 (1996)

 \Rightarrow pQCD retains it predictive power.

Such definition of α_s using a particular process is equivalent to a particular choice of renormalization scheme.

(process dependence) ⇔ (scheme dependence)

 α_{g1} = α_s in the "g1 scheme". Relations between g1 scheme and other schemes are known in pQCD domain, e.g. Λ_{g1} = $2.70\Lambda_{\overline{MS}}$ = $1.48\Lambda_{MOM}$ = $1.92\Lambda_{V}$ = $0.84\Lambda_{\tau}$.