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A Puzzle Caused By Tenacious Graduate Students
Randolf Pohl, Aldo Antognini, et al., Nature 466 (2010) 213–216. 

Figure by APS/Alan Stonebraker

The signal was nearly not found as they had been scanning frequencies assuming a large radius.
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How do we typically do elastic electron scattering measurements?
• Beam of electrons from an accelerator (E)

• Place target material in the beam 

• Foils are easy, nearly point (typically thin) targets and thickness is easy to determine

• Cryo-targets are challenging (e.g. boiling effects, energy loss)   

• Since target thickness cannot be exactly determined, floating normalizations are often used.

• For elastic measurement can measure scattered electron (E’) and/or proton.

• Over determined reaction

• Spectrometers are typically used 

• Magnetic fields, wire-chambers, reconstructed  tracks, sieve data, etc.
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Electron Scattering Charge Radii from Nuclei

Fourier Transformation of Ideal Charge Distributions.

Example Plots Made By R. Evan McClellan while Jefferson Lab Postdoc now Professor at Pensacola State College) 

e.g. for Carbon: Stanford high Q2 data from I. Sick and J.S. McCarthy, Nucl. Phys. A150 (1970) 631.
National Bureau of Standards low Q2 data from L. Cardman et. al., Phys. Lett. B91 (1980) 203.
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Determining the Charge Radius of Carbon

High Q2 data from I. Sick and J.S. McCarthy, Nucl. Phys. A150 (1970) 631.
National Bureau of Standards low Q2 data from L. Cardman et. al., Phys. Lett. B91 (1980) 203.

See the L. Cardman’s paper for details of the carbon radius ( 2.46 fm ) analysis.
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Charge Radius of the Proton
• Proton GE has no measured minima and is far too light for the 

Fourier transformation to work in a model independent way.

• Thus for the proton we make use of the fact that as Q2 goes to zero 
the charge radius is proportional to the slope of GE

This definition of rP has been shown to be consistent with the radius extracted from the muonic hydrogen data.

M. I. Eides, H. Grotch and V. A. Shelyuto, Phys. Rept.342 (2001) 63.  http://doi.org/10.1016/S0370-1573(00)00077-6
Gerald A. Miller, Phys. Rev. C 99 (2019) 035202. https://doi.org/10.1103/PhysRevC.99.035202

As we cannot measure at exactly Q2=0 this will be an extrapolation problem.
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Elastic Electron Scattering from Spin-1/2 Particles

From relativistic quantum mechanics one can derive the formula for electron-proton 
scattering where one has assumed the exchange of a single virtual photon.   

where GE and GM form factors take into account the finite size of the proton. 

Q2 = 4 E E’ sin2(θ/2) and τ = Q2 /4mp
2

GE = GE(Q2), GM = GM (Q2);  GE(0)=1, GM(0) = μp

Elastic cross sections at small angles and small Q2’s are dominated by GE ( JLab PRad Hall B )

Elastic cross sections at large angles and large Q2’s are dominated by GM ( JLab GMP Hall A )

For moderate Q2’s one can separate GE and GM with the  Rosenbluth technique (same Q2 different E,θ).
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GE and GM Contributions To The Cross Section 
Plots by Ethan Buck (Jefferson Lab SULI Student and W&M undergraduate) 

Global fits, like typically done with the Mainz 2010 data, need several normalization, GE and GM

Experiments like PRad (Hall B) go to small angle to maximize GE and minimize GM contribution.. 
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PRad: Hall B Proton Radius Experiment 
Small angle and small Q2 to minimize the effects of GM and provide best measurement of GE

Gas Target (the proton), GEM Detectors (scattering angles), Calorimeter (energy & position)
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Model Selection For PRad BEFORE Seeing The Data
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Shown are a subset of the results of fitting the full range of expected data with lots of different charge form factor functions and radii.

Z. Yan, DH, et al., Phys. Rev. C 98 (2018) 025204; https://doi.org/10.1103/PhysRevC.98.025204

Since we know the true radius for these 
functions we can calculation the bias: the 
offset from the true value.

https://doi.org/10.1103/PhysRevC.98.025204


PRad Cross Section Results
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W. Xiong et al., Nature 575 (2019) 147–150. https://doi.org/10.1038/s41586-019-1721-2

The horizonal line indicates the lowest Q2 point of the Bernauer data of 0.00384 [(GeV/c)2]
The lowest Q2 point of the PRad data is 0.000215 [(GeV/c)2]

https://doi.org/10.1038/s41586-019-1721-2


PRad Cross Section Results
W. Xiong et al., Nature 575 (2019) 147–150. https://doi.org/10.1038/s41586-019-1721-2

https://doi.org/10.1038/s41586-019-1721-2


From Nature Paper Supplemental Material



How Analytic Choices Can Affect the Extraction of Electromagnetic Form 
Factors from Elastic Electron Scattering Cross Section Data

15

https://doi.org/10.1103/PhysRevC.102.015205
https://arxiv.org/abs/1902.08185

One example in the paper shows, that with all other things 
fixed, changing the Mainz 1422 data point fit from an 
unbounded polynomial fit (results shown in light grey) to one 
where the polynomial parameters are forced to alternate sign 
(results shown in black) the normalization values to change and 
the charge radius changes from 0.882 fm to 0.854 fm.

https://doi.org/10.1103/PhysRevC.102.015205
https://arxiv.org/abs/1902.08185


Q2 [(GeV/c)2]
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The bounded fit approximates a completely monotone function by alternating signs of terms. 
Notice how the bounded fit is smoother then the unbound, but unbounded will always give the lower chi2.

Scott Barcus, DH, Randall E. McClellan, https://doi.org/10.1103/PhysRevC.102.015205

Comparison of Form Factors

https://doi.org/10.1103/PhysRevC.102.015205


Comparing PRad and Fit Results



Comparing PRad and Fit Results

And of course one can fit the sets of data simultaneously.



Summary and Outlook

• A lot of effort has gone into understanding the proton radius puzzle
• MANY re-analysis of old and new scattering data 
• PRad (no spectrometer) proton radius 0.831(7) fm
• New Atomic Lamb shift results mostly consistent with small radius

• 2020 blinded analysis from Candana was consistent http://doi.org/10.1126/science.aau7807
• 2017 CRÈME result also consistent with smaller value http://doi.org/10.1126/science.aah6677
• But 2018 French result still gives previous value  https://doi.org/10.1103/PhysRevLett.120.183001

• MUSE, New Mainz A1 Data, MESA, Compass, PRAD-II and more still to come 

• From Hohler in 1976 to the Dispersively Improved Chiral Effective Field Theory 
of Alarcon and Weiss in 2022, conventional nuclear theory seems consistent 
with a smaller radius, thus it would seem the larger radius is the one that 
would point to new physics.

• As was shown in the analytic choice paper, in complex regressions, small 
changes can have large impact on the results.

Douglas W. Higinbotham (Jefferson Lab) 20
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VERY TENATIVE LONG TERM SCHEDULE FOR JEFFERSON Lab



Robust Regressions
https://doi.org/10.1103/PhysRevC.102.015205

• Ordinary Least Squares 
Regressions are easily 
“pulled” by a single point.

• Robust regressions tend to  
follow the global trends.
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https://doi.org/10.1103/PhysRevC.102.015205
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