NUCLEON STRUCTURE IN LIGHT MUONIC ATOMS

Franziska Hagelstein (JGU Mainz & PSI Villigen)

in collaboration with

Volodymyr Biloshytskyi, Vadim Lensky and Vladimir Pascalutsa (JGU)

2305.09633

PROTON RADIUS PUZZLE

5.6 σ discrepancy

μ H spectroscopy

$$[R_{Ep}^{\mu H} = 0.84087(39) \,\mathrm{fm}]$$

R. Pohl, A. Antognini et al., Nature **466**, 213 (2010) A. Antognini et al., Science **339**, 417 (2013)

ep scattering, eH spectroscopy

$$[R_{Ep}^{\text{CODATA }2014} = 0.8751(61) \,\text{fm}]$$

P. J. Mohr, et al., Rev. Mod. Phys. **84**, 1527 (2012)

PROTON RADIUS PUZZLE

Is it still a puzzle?

μ H spectroscopy

$$[R_{Ep}^{\mu H} = 0.84087(39) \,\text{fm}]$$

R. Pohl, A. Antognini et al., Nature **466**, 213 (2010) A. Antognini et al., Science **339**, 417 (2013)

ep scattering, eH spectroscopy

$$[R_{Ep}^{\text{CODATA }2014} = 0.8751(61) \,\text{fm}]$$

P. J. Mohr, et al., Rev. Mod. Phys. 84, 1527 (2012)

low-Q 2023

Franziska Hagelstein

17th May 2023

PROTON CHARGE RADIUS

- Muonic atoms allow for PRECISE extractions of nuclear charge and Zemach radii
- CODATA since 2018 included the μH result for r_p
- Still open issues: H(2S-8D) and H(1S-3S)
- Question:

PRECISION VS ACCURACY

FROM PUZZLE TO PRECISION

- Several experimental activities ongoing and proposed:
 - IS hyperfine splitting in μ H and μ He (CREMA, FAMU, J-PARC)
 - Improved measurement of Lamb shift in μ H, μ D and μ He⁺ possible (\times 5)
 - Medium- and high-Z muonic atoms
- Theory support is needed!

Muonic Atom Spectroscopy Theory Initiative

- First brainstorming meeting October 2022 @ PSI
- Initials objectives:
 - Accurate theory predictions for light muonic atoms to test fundamental interactions by comparing to electronic atoms
 - Community consensus on SM predictions
 - Emphasis on the hyperfine splitting in μH

- Join us Saturday to discuss hadronic contributions to atomic spectra
- Kick-off meeting (PREN & μASTI 2023): 26.06.2023 30.06.2023 @ JGU, Mainz
- Updates and mailing list on https://asti.uni-mainz.de

NUCLEAR STRUCTURE EFFECTS

Why muonic atoms?

Lamb shift:

wave function at the origin

$$\Delta E_{nl}(\text{LO+NLO}) = \delta_{l0} \frac{2\pi Z\alpha}{3} \frac{1}{\pi (an)^3} \left[R_E^2 - \frac{Z\alpha m_r}{2} R_{E(2)}^3 \right]$$

NLO becomes appreciable in µH

HFS:

$$\Delta E_{nS}(\text{LO} + \text{NLO}) = E_F(nS) [1 - 2 Z\alpha m_r R_Z]$$

Fermi energy:

$$E_F(nS) = \frac{8}{3} \frac{Z\alpha}{a^3} \frac{1+\kappa}{mM} \frac{1}{n^3}$$

with Bohr radius $a=1/(Z\alpha m_r)$

STRUCTURE EFFECTS THROUGH 27

Proton-structure effects at subleading orders arise through multi-photon processes

forward two-photon exchange (2γ)

polarizability contribution (non-Born VVCS)

elastic contribution:
finite-size recoil,
3rd Zemach moment (Lamb shift),
Zemach radius (Hyperfine splitting)

"Blob" corresponds to doubly-virtual Compton scattering (VVCS):

$$T^{\mu\nu}(q,p) = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right) T_1(\nu,Q^2) + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} q^{\mu}\right) \left(p^{\nu} - \frac{p \cdot q}{q^2} q^{\nu}\right) T_2(\nu,Q^2) - \frac{1}{M^2} \left(\gamma^{\mu\nu}q^2 + q^{\mu}\gamma^{\nu\alpha}q_{\alpha} - q^{\nu}\gamma^{\mu\alpha}q_{\alpha}\right) S_2(\nu,Q^2)$$

Proton structure functions:

$$f_1(x,Q^2), \ f_2(x,Q^2), \ g_1(x,Q^2), \ g_2(x,Q^2)$$
Lamb shift

Hyperfine splitting

7

2γ EFFECT IN THE LAMB SHIFT

 $\Delta E(nS) = 8\pi\alpha m \, \phi_n^2 \, \frac{1}{i} \int_{-\infty}^{\infty} \frac{\mathrm{d}\nu}{2\pi} \int \frac{\mathrm{d}\mathbf{q}}{(2\pi)^3} \, \frac{\left(Q^2 - 2\nu^2\right) T_1(\nu, Q^2) - \left(Q^2 + \nu^2\right) T_2(\nu, Q^2)}{Q^4 (Q^4 - 4m^2\nu^2)}$

dispersion relation & optical theorem:

$$T_1(\nu, Q^2) = T_1(0, Q^2) + \frac{32\pi Z^2 \alpha M \nu^2}{Q^4} \int_0^1 dx \, \frac{x f_1(x, Q^2)}{1 - x^2 (\nu/\nu_{el})^2 - i0^+}$$
$$T_2(\nu, Q^2) = \frac{16\pi Z^2 \alpha M}{Q^2} \int_0^1 dx \, \frac{f_2(x, Q^2)}{1 - x^2 (\nu/\nu_{el})^2 - i0^+}$$

Caution: in the data-driven dispersive approach the T₁(0,Q²) subtraction function is modelled!

low-energy expansion:

$$\lim_{Q^2 \to 0} \overline{T}_1(0, Q^2)/Q^2 = 4\pi \beta_{M1}$$

see talks by V. Pascalutsa and V. Biloshytskyi modelled Q² behavior:

$$\overline{T}_1(0, Q^2) = 4\pi \beta_{M1} Q^2 / (1 + Q^2 / \Lambda^2)^4$$

Assuming
ChPT is working, it should be best applicable to atomic systems, where the energies are very small!

POLARIZABILITY EFFECT FROM BCHPT

LO BChPT prediction with pion-nucleon loop diagrams:

$$\Delta E^{\text{(LO)pol}}(2S, \mu \text{H}) = -9.6^{+1.4}_{-2.9} \,\mu\text{eV}$$

J. M. Alarcon, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74 (2014) 2852

V. Lensky, FH, V. Pascalutsa, M. Vanderhaeghen, Phys. Rev. D **97** (2018) 074012

- Δ prediction from $\Delta(1232)$ exchange:
 - Uses large- N_c relations for the Jones-Scadron N-to- Δ transition form factors
 - Small due to the suppression of β_{MI} in the Lamb shift but important for the T_I subtraction function

$$\Delta E^{\langle \Delta - \text{excit} \rangle \text{pol}} (2S, \mu \text{H}) = 0.95 \pm 0.95 \,\mu\text{eV}$$

POLARIZABILITY EFFECT IN LAMB SHIFT

BChPT result is in good agreement with dispersive calculations !!!

Agreement also for the contribution of the T₁ subtraction function !!!

Table 1 Forward 2γ -exchange contributions to the 2S-shift in μ H, in units of μ eV.

Reference	$E_{2S}^{(\mathrm{subt})}$	$E_{2S}^{(\mathrm{inel})}$	$E_{2S}^{(\mathrm{pol})}$	$E_{2S}^{(\mathrm{el})}$	$E_{2S}^{\langle 2\gamma \rangle}$
DATA-DRIVEN					
(73) Pachucki '99	1.9	-13.9	-12(2)	-23.2(1.0)	-35.2(2.2)
(74) Martynenko '06	2.3	-16.1	-13.8(2.9)		
(75) Carlson <i>et al.</i> '11	5.3(1.9)	-12.7(5)	-7.4(2.0)		
(76) Birse and McGovern '12	4.2(1.0)	-12.7(5)	-8.5(1.1)	-24.7(1.6)	-33(2)
(77) Gorchtein et al.'13 $^{\rm a}$	-2.3(4.6)	-13.0(6)	-15.3(4.6)	-24.5(1.2)	-39.8(4.8)
(78) Hill and Paz '16					-30(13)
(79) Tomalak'18	2.3(1.3)		-10.3(1.4)	-18.6(1.6)	-29.0(2.1)
Leading-order $\mathrm{B}\chi\mathrm{PT}$					
(80) Alarcòn et al. '14			$-9.6^{+1.4}_{-2.9}$		
(81) Lensky $et~al.$ '17 $^{\rm b}$	$3.5^{+0.5}_{-1.9}$	-12.1(1.8)	$-8.6^{+1.3}_{-5.2}$		
LATTICE QCD					
(82) Fu et al. '22					-37.4(4.9)

see talk by Xu Feng

^aAdjusted values due to a different decomposition into the elastic and polarizability contributions.

^bPartially includes the $\Delta(1232)$ -isobar contribution.

LAMB SHIFT IN MUONIC ATOMS

THEORY

EXPERIMENT

	$\Delta E_{TPE} \pm \delta_{theo} \ (\Delta E_{TPE})$	Ref.	$\delta_{exp}(\Delta_{LS})$	Ref.
$_{ m \mu H}$	$33 \ \mu eV \pm 2 \ \mu eV$	Antognini et al. (2013)	$2.3~\mu \mathrm{eV}$	Antognini et al. (2013)
$\mu \mathrm{D}$	$1710~\mu \mathrm{eV} \pm 15~\mu \mathrm{eV}$	Krauth et al. (2015)	$3.4~\mu \mathrm{eV}$	Pohl et al. (2016)
$\mu^3 \mathrm{He}^+$	$15.30~\mathrm{meV} \pm 0.52~\mathrm{meV}$	Franke et al. (2017)	$0.05~\mathrm{meV}$	
$\mu^4 \mathrm{He}^+$	$9.34 \text{ meV} \pm 0.25 \text{ meV} \\ -0.15 \text{ meV} \pm 0.15 \text{ meV (3PE)}$	Diepold et al. (2018) Pachucki et al. (2018)	$0.05~\mathrm{meV}$	Krauth et al. (2020)

μΗ:

present accuracy comparable with experimental precision

μD, μ³He+, μ⁴He+:

present accuracy factor 5-10 worse than experimental precision

```
r_p = 0.84087(12)_{\rm sys}(23)_{\rm stat} (29)_{\rm theory} \quad {\rm fm} \quad {\rm (25)~2PE~(mainly~subtraction~term)} \\ r_d = 2.12562(5)_{\rm sys}(12)_{\rm stat} (77)_{\rm theory} \quad {\rm fm} \quad {\rm basically~only~nuclear~2PE} \\ r_\alpha = 1.67824(2)_{\rm sys}(13)_{\rm stat} (82)_{\rm theory} \quad {\rm fm} \quad {\rm (70)~2PE~(elastic~25,~nuclear~inelastic~36,~nucleon~inelastic~56)} \\ r_\alpha = 1.67824(2)_{\rm sys}(13)_{\rm stat} (82)_{\rm theory} \quad {\rm fm} \quad {\rm (42)~3PE~(inelastic~contribution~missing)} \\ {\rm (49~QED)} \quad {\rm (42)~3PE~(inelastic~contribution~missing)} \\ {\rm (40)~QED} \quad {\rm (42)~3PE~(inelastic~contribution~missing)} \\ {\rm (41)~QED} \quad {\rm (42)~3PE~(inelastic~contribution~missing)} \\ {\rm (42)~3PE~(inelastic~contribution~missing)} \\ {\rm (43)~3PE~(inelastic~contribution~missing)} \\ {\rm (44)~QED} \quad {\rm (42)~3PE~(inelastic~contribution~missing)} \\ {\rm (43)~3PE~(inelastic~contribution~missing)} \\ {\rm (44)~QED} \quad {\rm (45)~3PE~(inelastic~contribution~missing)} \\ {\rm (45)~3PE~(inelastic~con
```

SUBTRACTION FUNCTION

NLO BChPT δ -exp.

total without g_M dipole

πN loops πΔ loops

 Δ -exchange

J. Alarcon, FH, V. Lensky and V. Pascalutsa, Phys. Rev. D **102** (2020) 114026; ibid. **102** (2020) 114006

SUBTRACTION FUNCTION

NLO BChPT δ -exp. total without g_M dipole πN loops $\pi \Delta$ loops Δ -exchange

J. Alarcon, FH, V. Lensky and V. Pascalutsa, Phys. Rev. D **102** (2020) 114026; ibid. **102** (2020) 114006

V. Lensky, FH, V. Pascalutsa and M. Vanderhaeghen Phys. Rev. D **97** (2018) 074012

SUBTRACTION FUNCTION

NLO BChPT δ -exp. total without g_M dipole πN loops $\pi \Delta$ loops Δ -exchange

J. Alarcon, FH, V. Lensky and V. Pascalutsa, Phys. Rev. D **102** (2020) 114026; ibid. **102** (2020) 114006

V. Lensky, FH, V. Pascalutsa and M. Vanderhaeghen Phys. Rev. D **97** (2018) 074012

First lattice results!

CSSM-QCDSF-UKQCD Collaboration, 2207.03040.

EUCLIDEAN SUBTRACTION FUNCTION

- Once-subtracted dispersion relation for $\overline{T}_1(\nu,Q^2)$ with subtraction at $\nu_{\scriptscriptstyle S}=iQ$
- Dominant part of polarizability contribution:

$$\Delta E_{nS}^{'(\text{subt})} = \frac{2\alpha m}{\pi} \phi_n^2 \int_0^\infty \frac{\mathrm{d}Q}{Q^3} \frac{2 + v_l}{(1 + v_l)^2} \, \overline{T}_1(iQ, Q^2) \text{ with } v_l = \sqrt{1 + 4m^2/Q^2}$$

- Inelastic contribution for $\nu_{\scriptscriptstyle S}=iQ$ is order of magnitude smaller than for $\nu_{\scriptscriptstyle S}=0$
- Prospects for future lattice QCD and EFT calculations

FH, V. Pascalutsa, Nucl. Phys. A 1016 (2021) 122323

based on Bosted-Christy parametrization:

$$\Delta E_{2S}^{(\text{inel})}(\nu_s = 0) \simeq -12.3 \,\mu\text{eV}$$

$$\Delta E_{2S}^{'(\text{inel})}(\nu_s = iQ) \simeq 1.6 \,\mu\text{eV}$$

low-Q 2023 Franziska Hagelstein

DATA-DRIVEN EVALUATION

- New integral equations for data-driven evaluation of subtraction functions
- High-quality parametrization of σ_L at $Q \to 0$ needed

$$T_1(0,Q^2) = \frac{2Q^2}{\pi} \int_{\nu_0}^{\infty} \frac{\mathrm{d}\nu}{\nu^2 + Q^2} \left[\sigma_T - \frac{\nu^2}{Q^2} \sigma_L \right] (\nu, Q^2)$$

LO χ PT: πN -loops

 $HB\chi PT$ [Birse and McGovern, EPJA, (2012)]

Franziska Hagelstein

17th May 2023

HYPERFINE SPLITTING IN μ H

$$\Delta E_{\mathrm{HFS}}(nS) = [1 + \Delta_{\mathrm{QED}} + \Delta_{\mathrm{weak}} + \Delta_{\mathrm{structure}}] E_F(nS)$$

with
$$\Delta_{\mathrm{structure}} = \Delta_Z + \Delta_{\mathrm{recoil}} + \Delta_{\mathrm{pol}}$$

Zemach radius:

$$\Delta_Z = \frac{8Z\alpha m_r}{\pi} \int_0^\infty \frac{\mathrm{d}Q}{Q^2} \left[\frac{G_E(Q^2)G_M(Q^2)}{1+\kappa} - 1 \right] \equiv -2Z\alpha m_r R_Z$$

experimental value: $R_Z = 1.082(37) \, \mathrm{fm}$

A. Antognini, et al., Science 339 (2013) 417-420

Measurements of the μH ground-state HFS planned by the CREMA, FAMU and J-PARC / Riken-RAL collaborations

- Very precise input for the 2γ effect needed to narrow down frequency search range for experiment
- Zemach radius can help to pin down the magnetic properties of the proton

POLARIZABILITY FFFFCT IN THE HFS

Polarizability effect on the HFS is completely constrained by empirical information

$$\begin{split} \Delta_{\text{pol.}} &= \Delta_1 + \Delta_2 = \frac{\alpha m}{2\pi (1+\kappa) M} \left(\delta_1 + \delta_2 \right) \\ \delta_1 &= 2 \int_0^\infty \frac{\mathrm{d} Q}{Q} \left\{ \frac{5 + 4 v_l}{(v_l + 1)^2} \left[4 I_1(Q^2) + F_2^2(Q^2) \right] - \frac{32 M^4}{Q^4} \int_0^{x_0} \mathrm{d} x \, x^2 g_1(x, Q^2) \frac{1}{(v_l + v_x)(1+v_x)(1+v_l)} \left(4 + \frac{1}{1+v_x} + \frac{1}{v_l + 1} \right) \right\} \\ \delta_2 &= 96 M^2 \int_0^\infty \frac{\mathrm{d} Q}{Q^3} \int_0^{x_0} \mathrm{d} x \, g_2(x, Q^2) \left(\frac{1}{v_l + v_x} - \frac{1}{v_l + 1} \right) \\ & \text{with } v_l = \sqrt{1 + \frac{1}{\tau_l}}, \, v_x = \sqrt{1 + x^2 \tau^{-1}}, \, \tau_l = \frac{Q^2}{4 m^2} \text{ and } \tau = \frac{Q^2}{4 M^2} \end{split}$$

BChPT calculation puts the reliability of dispersive calculations (and BChPT) to the test

2305.09633

POLARIZABILITY EFFECT IN THE HFS

Polarizability effect on the HFS is completely constrained by empirical information

$$\begin{split} \Delta_{\text{pol.}} &= \Delta_1 + \Delta_2 = \frac{\alpha m}{2\pi (1+\kappa) M} \left(\delta_1 + \delta_2 \right) \\ \delta_1 &= 2 \int_0^\infty \frac{\mathrm{d} Q}{Q} \left\{ \frac{5 + 4 v_l}{(v_l + 1)^2} \left[4 I_1(Q^2) + F_2^2(Q^2) \right] - \frac{32 M^4}{Q^4} \int_0^{x_0} \mathrm{d} x \ x^2 g_1(x, Q^2) \frac{1}{(v_l + v_x)(1+v_x)(1+v_l)} \left(4 + \frac{1}{1+v_x} + \frac{1}{v_l + 1} \right) \right\} \\ \delta_2 &= 96 M^2 \int_0^\infty \frac{\mathrm{d} Q}{Q^3} \int_0^{x_0} \mathrm{d} x \ g_2(x, Q^2) \left(\frac{1}{v_l + v_x} - \frac{1}{v_l + 1} \right) \\ \text{with } v_l &= \sqrt{1 + \frac{1}{\tau_l}}, \ v_x = \sqrt{1 + x^2 \tau^{-1}}, \ \tau_l = \frac{Q^2}{4 m^2} \ \text{and} \ \tau = \frac{Q^2}{4 M^2} \end{split}$$

BChPT calculation puts the reliability of dispersive calculations (and BChPT) to the test

2305.09633

2γ EFFECT IN THE μ H HFS

Table 1 Forward 2γ -exchange contribution to the HFS in μ H.

Reference	$\Delta_{ m Z}$	$\Delta_{ m recoil}$	$\Delta_{ m pol}$	Δ_1	Δ_2	$E_{1S-\mathrm{hfs}}^{\langle 2\gamma \rangle}$
	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	$[\mathrm{meV}]$
DATA-DRIVEN						
Pachucki '96 (1)	-8025	1666	0(658)			-1.160
Faustov et al. '01 $(9)^a$	-7180		410(80)	468	-58	
Faustov et al. '06 (10) ^b			470(104)	518	-48	
Carlson et al. '11 $(11)^{c}$	-7703	931	351(114)	370(112)	-19(19)	-1.171(39)
Tomalak '18 $(12)^d$	-7333(48)	846(6)	364(89)	429(84)	-65(20)	-1.117(19)
HEAVY-BARYON $\chi \mathrm{PT}$						
Peset et al. '17 (13)						-1.161(20)
Leading-order $\chi \mathrm{PT}$						
Hagelstein et al. '16 (14)			37(95)	29(90)	9(29)	
$+\Delta(1232)$ excit.						
Hagelstein et al. '18 (15)			-13	84	-97	

see talk by

C. Carlson

^aAdjusted values: Δ_{pol} and Δ_1 corrected by -46 ppm as described in Ref. 16.

^bDifferent convention was used to calculate the Pauli form factor contribution to Δ_1 , which is equivalent to the approximate formula in the limit of m = 0 used for H in Ref. 11.

^cElastic form factors from Ref. 17 and updated error analysis from Ref. 16. Note that this result already includes radiative corrections for the Zemach-radius contribution, $(1+\delta_{\rm Z}^{\rm rad})\Delta_{\rm Z}$ with $\delta_{\rm Z}^{\rm rad}\sim 0.0153$ (18, 19), as well as higher-order recoil corrections with the proton anomalous magnetic moment, cf. (11, Eq. 22) and (18).

^dUses r_p from μ H (20) as input.

POLARIZABILITY EFFECT FROM BCHPT

- LO BChPT result is compatible with zero
 - Contributions from σ_{LT} and σ_{TT} are sizeable and largely cancel each other

- Are the data-driven evaluations/uncertainties affected by cancelations?
- Scaling with lepton mass of the lepton-proton bound state

low-Q 2023 Franziska Hagelstein

17th May 2023

Empirical information on spin structure functions from JLab Spin Physics Programme

■ Low-Q region is very important \rightarrow cancelation between $I_1(Q^2)$ and $F_2(Q^2)$

$$\delta_1(H) \sim \left(\underbrace{-\frac{3}{4}\kappa^2 r_{\text{Pauli}}^2 + 18M^2 c_{1B}}_{\rightarrow 3.54}\right) Q_{\text{max}}^2 = 1.35(90),$$

$$\delta_{1}(\mu H) \sim \left[\underbrace{-\frac{1}{3} \kappa^{2} r_{\text{Pauli}}^{2} + \underbrace{8M^{2} c_{1}}_{\rightarrow 2.13} \underbrace{-\frac{M^{2}}{3\alpha} \gamma_{0}}_{\rightarrow 0.18} \right] \int_{0}^{Q_{\text{max}}^{2}} dQ^{2} \beta_{1}(\tau_{\mu}) = 0.86(69)$$

PROTON ZEMACH RADIUS

BChPT polarizability contribution implies smaller Zemach radius (smaller, just like r_p)

TABLE I. Determinations of the proton Zemach radius $R_{\rm Z}$, in units of fm.

ep sc	attering	$\mu \mathrm{H}~2S~\mathrm{hfs}$		H 1S hfs		
Lin et al. '21	Borah et al. '20	Antognini et al.	'13	LO B χ PT	Volotka et al. '04	LO B χ PT
$1.054_{-0.002}^{+0.003}$	1.0227(107)	1.082(37)		1.040(33)	1.045(16)	1.010(9)

THEORY OF HYPERFINE SPLITTING

A. Antognini, FH, V. Pascalutsa, Ann. Rev. Nucl. Part. 72 (2022) 389-418

The hyperfine splitting of μH (theory update):

$$E_{1S-\rm hfs} = \left[\underbrace{182.443}_{E_{\rm F}} \underbrace{+1.350(7)}_{\rm QED+weak} \underbrace{+0.004}_{\rm hVP} \underbrace{-1.30653(17) \left(\frac{r_{\rm Z}p}{\rm fm}\right) + E_{\rm F} \left(1.01656(4) \, \Delta_{\rm recoil} + 1.00402 \, \Delta_{\rm pol}\right)}_{2\gamma \; \rm incl. \; radiative \; corr.}\right] \; \text{meV}$$

■ 2γ + radiative corrections \implies differ for H vs. μ H and 1S vs. 2S

The hyperfine splitting of H (theory update):

$$E_{1S-\rm hfs}({\rm H}) = \underbrace{\left[\underbrace{1418\,840.082(9)}_{E_{\rm F}} \underbrace{+1\,612.673(3)}_{\rm QED+weak} \underbrace{+0.274}_{\mu\rm VP} \underbrace{+0.077}_{\rm hVP} \right]}_{\rm pol}$$

$$-54.430(7) \left(\frac{r_{\rm Z}p}{\rm fm}\right) + E_{\rm F}\left(0.99807(13)\,\Delta_{\rm recoil} + 1.00002\,\Delta_{\rm pol}\right) \left] \rm kHz$$

$$2\gamma \ \rm incl. \ radiative \ corr.$$

High-precision measurement of the "21cm line" in H:

$$\delta\left(E_{1S-hfs}^{\text{exp.}}(H)\right) = 10 \times 10^{-13}$$
Hellwig et al., 1970

IMPACT OF H IS HFS

- Leverage radiative corrections $E_{1S-\mathrm{hfs}}^{\mathrm{Z+pol}}(\mathrm{H}) = E_{\mathrm{F}}(\mathrm{H}) \Big[b_{1S}(\mathrm{H}) \, \Delta_{\mathrm{Z}}(\mathrm{H}) + c_{1S}(\mathrm{H}) \, \Delta_{\mathrm{pol}}(\mathrm{H}) \Big] = -54.900(71) \, \mathrm{kHz}$ and assume the non-recoil $\mathcal{O}(\alpha^5)$ effects have simple scaling $\frac{\Delta_i(\mathrm{H})}{m_r(\mathrm{H})} = \frac{\Delta_i(\mu \mathrm{H})}{m_r(\mu \mathrm{H})}, \quad i = \mathrm{Z,pol}$
 - I. Prediction for μH HFS from empirical IS HFS in H

$$E_{nS-hfs}^{Z+pol}(\mu H) = \frac{E_{F}(\mu H) m_{r}(\mu H) b_{nS}(\mu H)}{n^{3} E_{F}(H) m_{r}(H) b_{1S}(H)} E_{1S-hfs}^{Z+pol}(H) - \frac{E_{F}(\mu H)}{n^{3}} \Delta_{pol}(\mu H)$$

$$= -6 \times 10^{-5} \text{ for } n = 1 = -5 \times 10^{-5} \text{ for } n = 2$$

- 2. Disentangle Zemach radius and polarizability contribution
- 3. Testing the theory

HYPERFINE SPLITTING

Theory: QED, ChPT, data-driven dispersion relations, ab-initio few-nucleon theories

Experiment: HFS in μ H, μ He⁺, ...

Guiding the exp.

find narrow 1S HFS transitions with the help of full theory predictions: QED, weak, finite size, polarizability Interpreting the exp.

extract E^{TPE} , $E^{\text{pol.}}$ or R_Z

Input for datadriven evaluations

form factors, structure functions, polarizabilities

Electron and Compton Scattering

Testing the theory

- discriminate between theory predictions for polarizability effect
 - disentangle R_Z & polarizability effect by combining HFS in H & μ H
- test HFS theory
 - combining HFS in H & μ H with theory prediction for polarizability effect
- ► test nuclear theories

Spectroscopy of ordinary atoms (H, He⁺)

Determine fundamental constants

Zemach radius R_Z

IMPACT MUONIC ATOMS

A. Antognini, FH, V. Pascalutsa, 2205.10076, accepted for publication in Ann. Rev. Nucl. Part. 72 (2022)

low-Q 2023 Franziska Hagelstein 17th May 2023

24

DEUTERON CHARGE RADIUS

- Precise deuteron radius from H-D IS-2S isotope shift and μH Lamb shift
- Higher-order contributions to µD Lamb shift are important:

$$E_{2P-2S}(\mu D) = \left[228.77408(38) - 6.10801(28) \left(\frac{r_d}{fm} \right)^2 - E_{2S}^{2\gamma} + 0.00219(92) \right] \text{ meV}$$

- Coulomb (non-forward) distortion (starting $\alpha^6 \log \alpha$): $E_{2S}^{\text{Coulomb}} = 0.2625(15) \, \text{meV}$
- $oldsymbol{2}\gamma$ incl. eVP and $oldsymbol{3}\gamma$ contributions starting $lpha^6$ [Kalinowski, Phys. Rev. A $oldsymbol{99}$ (2019) 030501]

D FORM FACTOR IN PIONLESS EFT

V. Lensky, A. Hiller Blin, V. Pascalutsa, Phys. Rev. C 104 (2021) 054003

- Only one unknown low-energy constant l_1 of a longitudinal photon coupling to two
 nucleons
- Agreement of chiral EFT and pionless EFT

- Use r_d and $r_{\mathrm{F}d}$ correlation to test low-Q properties of form factor parametrisations
- Abbott parametrisation gives different radii

2γ EFFECT IN μ D LAMB SHIFT

	$E_{2S}^{2\gamma} [\text{meV}]$			
Theory prediction				
Krauth et al. '16 [5]	-1.7096(200)			
Krauth et al. '16 [5] Kalinowski '19 [6, Eq. (6) + (19)] #EFT (this work)	-1.740(21)			
#EFT (this work)	-1.752(20)			
Empirical ($\mu H + iso$)				
Pohl et al. '16 [3]	-1.7638(68)			
This work	$ \begin{vmatrix} -1.7638(68) \\ -1.7585(56) \end{vmatrix} $			

V. Lensky, A. Hiller Blin, FH, V. Pascalutsa, 2203.13030 V. Lensky, FH, V. Pascalutsa, in preparation

N3LO pionless EFT + higher-order single-nucleon effects:

$$E_{2S}^{\text{elastic}} = -0.446(8) \,\text{meV}$$
 $E_{2S}^{\text{inel},L} = -1.509(16) \,\text{meV}$
 $E_{2S}^{\text{inel},T} = -0.005 \,\text{meV}$
 $E_{2S}^{\text{hadr}} = -0.032(6) \,\text{meV}$
 $E_{2S}^{\text{eVP}} = -0.027 \,\text{meV}$

- Elastic 2γ several standard deviations
 larger
- Inelastic 2γ consistent with other results
- Agreement with precise empirical value for the 2γ effect extracted with $r_d(\mu \text{H} + \text{iso})$

Thank you for your attention!