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 Introduction: proton dipole polarizabilities and forward doubly-virtual
Compton scattering

« Bernabéu-Tarrach (BT) sum rule: the data-driven way to access the
nucleon electric dipole polarizability ag,

« Perturbative validation of BT sum rule in baryon ChPT

« Evaluation of ay, for the proton via BT sum rule with existing data

« The data-driven approach for the subtraction function in the proton
polarizability effect in muonic hydrogen

» The Schwinger sum rule validation in ultraviolet-complete theories

e Conclusions and outlook




Proton dipole polarizabilities: theory vs. experiment

XEFT fit
[McGovern et al., EPJA (2013)]

[Griesshammer et al., EPJA (2016)]
[A2 at MAMI, PRL (2022)]
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Forward doubly-virtual Compton scattering: spin-independent part
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Sum rules for spin-independent polarizabilities
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- a powerful tool for data-driven
evaluation of the sum of the
electric and magnetic nucleon
polarizabilities.

Don't we have the sum rule for each separate polarizability?
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Bernabéu-Tarrach sum rule

The Compton helicity amplitude with two longitudinally polarized photons:
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2¢ is the anomalous magnetic moment of the nucleon.




Bernabéu-Tarrach sum rule: validation

« [Llanta and Tarrach, PLB (1978)]: the sum rule, albeit convergent, does not hold in QED.
The r.h.s differs from l.h.s. by a constant.

« [L'vov, NPA (1998)]: the sum rule is in general invalid and should not converge without the
subtraction; it is violated for the (negative) pion electric polarizability in pure a-model.

We have found the case when this sum rule holds exactly!
The sum rule is validated in the manifestly

b, 5 i Hj‘ Af 1'11 f‘fj covariant baryon xPT for the 0(p?3)
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Bernabéu-Tarrach sum rule: (in)validation?

Neutral pion contribution to the The Compton scattering off the
Compton scattering off the proton neutron

D5t e
= o ot At

'J'i'u-f P
\LLL’ ’1 1‘|v|‘|-l: ANy — 2
F . !.r P "'i.- // I //
# 1 e
-~ ! 4
N

Tgop—loopS(ooj Q2) _ Gfem ger Q2 _|_ O(Q4)

12 M3 7w n-loops aem T
77 00, Q) = ~ 29N 2 L ()
In these cases the dispersion relation oV, Q?
L', Q%)
for T, must be modified as follows: TL(v, Q%) — Tr(00,Q / dv' v'* a3
¥

[Sugawara and Kanazawa, PhysRev (1961)]



How to deal with asymptotic constants?

Our point: the sum rule is valid if convergent.

« The low-energy physics should not depend on the behavior at very high energies (i.e.
physics at the Plank scale)

« The asymptotic constants are the artifacts of the low-energy theory, which is not valid at
high energies.

« With proper ultraviolet completion, the theory does not produce the asymptotic constants
in the sum rules.

In conclusion, we ought to treat the Bernabéu-Tarrach sum rule as
the valid sum rule



Saturation of the sum rule integral
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Proton polarizability contribution to the Lamb shift

é The two-photon exchange contribution to the Lamb shiftin a
hydrogen-like atom:
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Unknown subtraction function!

« (Can be extracted from the dilepton electroproduction on the nucleon
[Pauk, Carlson, Vanderhaeghen, PRC (2020)]

« (Can be calculated on a lattice at the subtraction point v = iQ
[Hagelstein and Pascalutsa, NPA (2021)]

« Can be obtained via another sum rule
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Sum rule for the subtraction function

Dispersion relation for T;:
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baryon xPT for the 0(p3) contribution to the proton electric

e This sum rule is also validated in the manifestly covariant
polarizability that comes from the charged pion loops.

Note that at this order we only verify the polarizability

contribution (no contributions from the possible non-pole Born
terms)
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Non-Born part of the subtraction functions
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Schwinger sum rule
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Schwinger sum rule for hadronic contributions to (g — 2),

[Hagelstein and Pascalutsa, PRL, (2018)]
“Dissecting the Hadronic Contributions to (g — 2),, by Schwinger's Sum Rule”

- With the timelike LT-polarized cross section, the Schwinger sum rule can reproduce the famous
formula for HVP contribution to (g — 2),
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The various contributions to (g — 2),,
at one loop:

The Schwinger sum rule with the asymptotic constant:

Schwinger sum rule: new physics and asymptotic values
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Schwinger sum rule for the proton in baryon yPT and linear a-model

0(p3) BxPT

« The Schwinger sum rule holds

for the charged pion
contribution to (g — 2),,

« However the sum rule has the

asymptotic constants for
neutral pion contribution to
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Linear sigma-model

Due to the cancellation of

the asymptotic constants,
the Schwinger sum rule
for the proton holds
exactly in the linear
sigma-model



Schwinger sum rule in SM: Z+H contribution
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The sum rule holds only for the total contribution of H and Z.
Otherwise, it has the nonzero asymptotic constants from H
and axial part of Z.
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Conclusions and outlook

« The BT sum rule seems to be as valid as the Baldin sum rule . Then the dipole
polarizabilities can be determined separately within the fully data-driven approach.

« Consequently, the data-driven determination of the subtraction-function part of the
proton polarizability contribution to the Lamb shift of hydrogen-like atoms is also possible.

« The BT sum rule, as well as the sum rule for the subtraction function, works properly for
0(p3) ByPT contribution to the proton electric polarizability that comes from the charged
pion loops.

« The Schwinger sum rule is verified perturbatively in some examples of the ultraviolet-
complete theories.

> The high-quality parametrization of the current data on g, with the correct limit Q2 - 0 is
highly needed!
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BACKUP: resonance contribution to BT sum rule for the proton

Existing fits:

« [Christy and Bosted, PRC
2010]

« [Hiller Blin et al., PRC 2019]

Both have the issues at
low-Q limit.

The resonance
contribution to the sum
rule integral, which was
obtained from Christy and
Bosted fit, was ~1

Estimation done by Marc Vanderhaeghen:
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FIG. 2: Left panel: inclusive cross section or/Q? in the limit for Q? — 0. Right panel: the
black solid curve gives the resonance contribution to the sum rule Eq. (12) for a1, as function of
the upper integration limit W4, in the dispersion integral. The blue dashed curve indicates the
contribution of the term proportional to n?, in Eq. (12).
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BACKUP: Sugawara-Kanazawa theorem

If one has the function f(z) that is

1. analytic everywhere in the complex z-plane except for two cuts and poles

The essence of the theorem: on the real axis,

2. has the divergence at |z| = oo, not stronger than a large but finite power
If the amplitude tends to a constant of |21,
value at the infinite real energy, then it 3. has finite limits (oo & i€) as z — oo L ic,
tends to the same value at every pOint of then the limits of f(z) when z approaches infinity in any other direction are
the upper (lower) infinite semicircle part ) foo+i) inth Ll

im = f(co+i€) in the upper half-plane,
of the contour. el oe pper b
Therefore, the contribution of the latter = f(00 —ic) in the lower half-plane,
to the dlsperswe Integral can be provided that f(z) approaches definite (not necessarily finite) limits at —oo
obtained via the fO”OWing formula Thus the dispersion relation for f(z) becomes
\. B N\ Af(@)dr -
1@ =Y ([T [ )R o),
where

Af(r) = oo +ie) — f(a —ic)],
fle) = 3l (@ +ie) + f (@~ ie),

are respectively, the absorptive and dispersive parts of f(z) when z approaches

real = in the upper half plane and R; is the residue at the pole at ;.
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