

Update on the subtraction term in the Lamb shift in muonic hydrogen

Mike Birse
University of Manchester

Work done in collaboration with Judith McGovern

Eur. Phys. J. A 48 (2012) 120

Phys. Rev. D 98 (2018) 038503

Lamb shift in μ H 1

CREMA experiment at PSI: $2p_{\frac{3}{2}} \to 2s_{\frac{1}{2}}$ transitions to both hyperfine 2s states Pohl et al, Nature **466** (2010) 213; Antognini et al, Science **339** (2013) 417 Eliminate hyperfine splitting to get

$$\Delta E_L^{\rm expt} = E(2p_{\frac{1}{2}}) - E(2s_{\frac{1}{2}}) = 202.3706(23)~{\rm meV}$$

Much larger than in electronic hydrogen, dominated by vacuum polarisation and much more sensitive to proton structure, in particular, its charge radius Theory gives:

$$\Delta E_L^{\mathrm{th}} = 206.0668(25) - 5.2275(10) \langle r_E^2 \rangle \; \mathrm{meV}$$

Results of many years of effort by Borie, Pachucki, Indelicato, Jentschura and others; collated in Antognini et al, Ann. Phys. **331** (2013) 127

Current experimental and theoretical errors comparable: $\sim 2\mu {\rm eV}$ But PSI group hope to reduce experimental error by ~ 5

Lamb shift in μ H 2

Includes contribution from two-photon exchange

$$\Delta E^{2\gamma} = 33.2 \pm 2.0 \,\mu\text{eV}$$

Sensitive to polarisabilities of proton by virtual photons

Largest single theoretical uncertainty

- ullet important contribution to uncertainty in $\langle r_E^2
 angle$
- and hence to the uncertainty in the Rydberg

Two-photon exchange

Contribution to Lamb shift:

Integral over $T^{\mu\nu}(\mathbf{v},q^2)$ – doubly-virtual Compton amplitude for proton

Spin-averaged, forward scattering \rightarrow two independent tensor structures Common choice:

$$T^{\mu\nu} = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)T_1(\nu, Q^2) + \frac{1}{M^2}\left(p^{\mu} - \frac{p \cdot q}{q^2}q^{\mu}\right)\left(p^{\nu} - \frac{p \cdot q}{q^2}q^{\nu}\right)T_2(\nu, Q^2)$$

multiplied by scalar functions of $v = p \cdot q/M$ and $Q^2 = -q^2$

Doubly-virtual Compton scattering 1

Amplitude contains elastic (Born) and inelastic pieces

$$T^{\mu\nu} = T_B^{\mu\nu} + \overline{T}^{\mu\nu}$$

Elastic amplitude from Dirac nucleon with Dirac and Pauli form factors

K. Pachucki, Phys. Rev. A 60 (1999) 3593

$$T_1^B(\mathbf{v}, Q^2) = \frac{e^2}{M} \left[\frac{Q^4 \left(F_D(Q^2) + F_P(Q^2) \right)^2}{Q^4 - 4M^2 \mathbf{v}^2} - F_D(Q^2)^2 \right]$$

$$T_2^B(\mathbf{v}, Q^2) = \frac{4e^2 M Q^2}{Q^4 - 4M^2 \mathbf{v}^2} \left[F_D(Q^2)^2 + \frac{Q^2}{4M^2} F_P(Q^2)^2 \right]$$

- ullet need to remove terms already accounted for in Lamb shift (iterated Coulomb, leading dependence on $\langle r_F^2 \rangle$)
- → leaves "third Zemach moment" plus relativistic corrections

Doubly-virtual Compton scattering 2

On-shell intermediate nucleon states \rightarrow poles at $v = \pm Q^2/2M$

residues given unambiguously by elastic form factors

Final term in T_1 : no pole corresponding to on-shell intermediate nucleon But leading terms required by low-energy theorems

• Thomson limit at O(1), Dirac radius at $O(q^2)$

$$F_D(Q^2)^2 = 1 - \left[\frac{1}{3}\langle r_E^2 \rangle - \frac{\kappa}{2M^2}\right]Q^2 + \mathcal{O}(Q^4)$$

→ choose to keep all of it as part of Born amplitude

Others include it in inelastic part: Carlson and Vanderhaeghen, Phys. Rev. A 84 (2011) 020102

Low-energy theorems

VVCS not directly measurable, but inelastic part is constrained by LETs Expand in tensor basis without kinematic singularities $(1/q^2)$

Tarrach, Nuov Cim 28A (1975) 409

 \rightarrow two independent tensors of order q^2 : correspond to polarisabilities $\alpha+\beta$ and β from real Compton scattering

$$\overline{T}_1(\omega, Q^2) = 4\pi Q^2 \beta + 4\pi \omega^2 (\alpha + \beta) + O(q^4)$$

$$\overline{T}_2(\omega, Q^2) = 4\pi Q^2 (\alpha + \beta) + O(q^4)$$

- electric polarisability: α
- magnetic polarisability: β

HBChPT	3.15 ± 0.50	McGovern et al, Eur Phys J A 49 (2013) 12
BChPT	3.9 ± 0.7	Lensky <i>et al</i> , Eur Phys J C 75 (2015) 604
3 methods	3.14 ± 0.51	A2: Mornacchi et al, Phys Rev Lett 128 (2022) 132503
DR	2.4 ± 0.6	Mornacchi et al, Phys Rev Lett 129 (2022) 102501

Dispersion relations

Get information on forward VVCS away from q=0 from structure functions $F_{1,2}(\mathbf{v},Q^2)$ via dispersion relations

$$\overline{T}_2(v, Q^2) = \int_{v_{th}}^{\infty} dv'^2 \frac{F_2(v', Q^2)}{v'(v'^2 - v^2)}$$

– integral converges since $F_2 \sim 1/v^{0.9}$ at high energies

But $F_1 \sim v^{0.5}$ so need to use subtracted dispersion relation

$$\overline{T}_{1}(\nu, Q^{2}) = \overline{T}_{1}(0, Q^{2}) + \frac{\nu^{2}}{M} \int_{\nu_{th}^{2}}^{\infty} \frac{d\nu'^{2}}{\nu'^{2}} \frac{F_{1}(\nu', Q^{2})}{\nu'^{2} - \nu^{2}}$$

 $F_{1,2}(v,Q^2)$ well determined from electroproduction experiments at JLab

Subtraction function $\overline{T}_1(0,Q^2)$ not experimentally accessible Maybe via second subtraction at an unphysical point Biloshytskyi *et al*, arXiv:2305.0881 but only way to avoid a subtracted DR is to extract the Regge behaviour for large ν and handle it separately Gasser *et al*, Eur Phys J C 80 (2020) 1121

Subtraction term 1

Satisfies LET: $\overline{T}_1(0,Q^2)/Q^2 \to 4\pi\beta$ as $Q^2 \to 0$

But Lamb shift requires integral over all Q^2

Define form factor

$$\overline{T}_1(0, Q^2) = 4\pi\beta Q^2 F_{\beta}(Q^2)$$

Large Q^2 : operator-product expansion (OPE) gives $Q^2F_{\beta}(Q^2) \propto Q^{-2}$ Collins, Nucl Phys B 149 (1979) 90; Hill and Paz, Phys. Rev. D 95 (2017) 094017

Small \mathcal{Q}^2 : use chiral effective field theories to calculate $F_{\beta}(\mathcal{Q}^2)$

- HBChPT at 4th order, plus leading effect of $\gamma N\Delta$ form factor
- same diagrams as for real Compton scattering

McGovern et al, Eur. Phys. J. A 49 (2013) 12

subtract elastic contribution calculated to this order (pole + nonpole)

Form factor 1

EFT calculation

Dipole matched at
$$Q^2=0 o M_{eta}=462$$
 MeV; at $Q^2\sim m_{\pi}^2 o M_{eta}=510$ MeV

Form-factor mass

$$M_{
m eta} = 485 \pm 100 \pm 40 \pm 25 \ {
m MeV}$$

Uncertainties from:

- higher-order effects and uncertainties in input (shaded)
- $\beta = (3.1 \pm 0.5) \times 10^{-4} \text{ fm}^3$ Griesshammer *et al*, Prog Part Nucl Phys **67** (2012) 841
- matching uncertainty

Form factor 2

Extended and corrected OPE calculation gives coefficient of Q^{-2} for large Q^2 Hill and Paz, Phys. Rev. D 95 (2017) 094017

$$\frac{Q^2 T_1(0, Q^2)}{4\pi \alpha_{\rm EM} M} \sim 0.27 - 0.37$$

Our extrapolation: 0.2-23

Our central value too high by factor of 3 to 4 But wide uncertainty band covers OPE result And Lamb shift integral is heavily weighted to small \mathcal{Q}^2

ightarrow interpolation from EFT to OPE will not shift result outside our error band

Muonic H energy shift 1

$$\Delta E_{\text{sub}}^{2\gamma}(2p - 2s) = \frac{\alpha_{\text{EM}}\phi(0)^2}{4\pi m} \int_0^\infty dQ^2 \frac{\overline{T}_1(0, Q^2)}{Q^2} \left[1 + \left(1 - \frac{Q^2}{2m^2} \right) \left(\sqrt{\frac{4m^2}{Q^2} + 1} - 1 \right) \right]$$

- with dipole form, 90% comes from $Q^2 < 0.3 \text{ GeV}^2$
- ullet rather insensitive to extrapolation and value of M_{eta}

Result:

$$\Delta E_{\rm sub}^{2\gamma} = -4.2 \pm 1.0 \,\mu\text{eV}$$

Comparable to previous, model-based results Pachucki, Phys. Rev. A 60 (1999) 3593;

Carlson and Vanderhaeghen, Phys. Rev. A 84 (2011) 020102

But with errors under much better control

Muonic H energy shift 2

Combine our result

 $\bullet \ \Delta E_{\rm sub}^{2\gamma} = -4.2 \pm 1.0 \ \mu \text{eV}$

with those of Carlson and Vanderhaeghen

Carlson and Vanderhaeghen, Phys. Rev. A 84 (2011) 020102

- elastic (with nonpole term reinstated): $\Delta E_{\mathrm{el}}^{2\gamma} = 24.7 \pm 1.3~\mu\mathrm{eV}$
- inelastic (dispersive): $\Delta E_{\rm inel}^{2\gamma} = 12.7 \pm 0.5 \ \mu {\rm eV}$
- ightarrow total: $\Delta E^{2\gamma} = 33.2 \pm 2.0~\mu \text{eV}$ Antognini *et al*

Main sources of uncertainty:

- magnetic polarisability β in subtraction term
- form factors in elastic contribution

(better measurement of $\beta \rightarrow$ better determination of Rydberg)

Additional slides

Subtraction term 2

3rd order EFTs give $F_{\beta}(Q^2)$ that can be integrated to give Lamb shift But do not reproduce observed β (and hence have incorrect slope for subtraction term at $Q^2=0$) And single order gives no way to estimate convergence of chiral expansion Alarcón et al, Eur Phys J C 74 (2014) 2852; Peset and Pineda, Eur Phys J A 51 (2015) 32

4th order EFTs contain LEC needed to reproduce experimental β (and one to satisfy Dirac radius LET)

Difference between 3rd and 4th orders can be used to estimate errors But give a form factor $F_{\beta}(Q^2)$ that cannot be integrated for large Q^2 Could be renormalised by μ p contact interaction, fit to Lamb shift

Here: estimate of uncertainty from difference between 3rd and 4th orders with allowance for possible slower convergence of Δ contributions And extrapolate to higher Q^2 by matching EFT onto dipole form from OPE

$$F_{\beta}(Q^2) \sim \frac{1}{(1 + Q^2/2M_{\beta}^2)^2}$$

Born subtraction: pole?

Alternative dispersion relation for full amplitude including Born terms
Hill and Paz, Phys. Rev. D 95 (2017) 094017

Subtraction term for $T_1(v,Q^2)$ has slope for $Q^2 \rightarrow 0$

$$\frac{T_1(0,Q^2) - T_1(0,0)}{Q^2} = -\frac{4\pi \alpha_{\rm EM}}{3M} (1+\kappa)^2 \langle r_M^2 \rangle + \frac{4\pi \alpha_{\rm EM}}{3M} \langle r_E^2 \rangle - \frac{2\pi \alpha_{\rm EM}}{M^3} \kappa + 4\pi \beta$$

- first term: Born pole, -3.93 ± 0.39 GeV⁻³
- \bullet second and third terms: Born nonpole, 0.54 ± 0.01 GeV⁻³
- final term: polarisability, $0.41 \pm 0.06 \, \mathrm{GeV}^{-3}$

Born pole gives large slope with large uncertainty (from magnetic radius $r_{\underline{M}}$)

Subtraction term with this slope multiplying poorly-known form factor $F_{\beta}(Q^2)$

 \rightarrow unnecessarily inflated error

Pole: well-defined structure, Q^2 dependence of residue given by elastic form factors

• can be extracted unambiguously from amplitude, DR applied to remainder

Born subtraction: nonpole?

Nonpole Born term different

- analytic in v (in standard tensor basis)
- follows from Lorentz invariance (eg by "sticking form factors" into Dirac equation)
- but only terms up to order Q^2 fixed by LETs (at higher orders: new LECs in V^2 CS)

We choose to extract it from the subtraction term and evaluate it using empirical form factors

- \bullet terms beyond order Q^2 contain contributions beyond order of our EFT
- effects of this choice should fall within our error estimate