Detector Description in GAUDI

- Architecture
- Detector Logical Structure
- Extending Detector Element
- Summary

Workshop on Geometry Toolkit for the Linear Collider 24th February 2010 P. Mato / CERN

Detector Description Architecture

- Sub-Architecture of Gaudi
 - Same principles
 - Transient/Persistent representations
- Focus on the "Physics Algorithm"
 - Access to Detector Transient Store
- Coherent access to "all" detector data
 - Geometry, Calibration, Slow Control, etc.

Gaudi Architecture

CHEP 03 Paper: http://www.slac.stanford.edu/econf/C0303241/proc/papers/THJT007.PDF

Algorithm Accessing Detector Data

Detector Description

- Logical Structure
 - Breakdown of detectors
 - Identification
- Geometry Structure
 - Hierarchy of geometrical volumes
 - LogicalVolumes (unplaced)
 - PhysicalVolumes (placed)
- Other detector data
 - Calibration, Alignment, Readout maps, Slow control, etc.

Two Hierarchies

Logical Structure

- The basic object is a Detector Element
 - Identification
 - Navigation (tree-like)
- DetectorElement as information center
 - Be able to answer any detector related question
 - » E.g. global position of strip#, temperature of detector, absolute channel gain, etc.
 - Placeholder for specific code
 - » The specific answers can be coded by "Physicists"
- DetectorElement objects are shared by all Algorithms

Simplified Diagram (simplified)

Detector Element Class

- Three basic functionalities:
 - IDetectorElement: Access to other Detector information
 - IValidity: Time validity interval management
 - ParamList: User parameters (key-value pairs)

Transient Store Organization

- Standard Gaudi Transient
 Store
 - "Catalogs" of Logical
 Volumes and Materials
 - "Structure" as a tree
 - All elements identified with names of the form: /xxx/yyy/zzzz

Persistency Based on XML Files

- XML is used as persistent representation of the Structure, Geometry and Materials
- Why XML?
 - Instead of inventing our own format use a standard one (extendible)
 - Many available Parsers and Tools
 - Strategic technology

```
<DDDB>
 <catalog name="...">
  <detelem name="...">
   <geometryinfo
        lvname="..."
       npath="..."
        support="..."/>
   <userParameter</pre>
        comment="..."
       name="..."
       type="string">
   </userParameter>
   <specific>
   </specific>
  </detelem>
 </catalog>
</DDDB>
```


Specializing Detector Elements

- 1. Adding userParameter(vector)s to default DetectorElements
- 2. Extending and specializing the DetectorElement class in C⁺⁺, using userParameters in XML
- 3. Extending XML DTD and writing a dedicated converter

Summary

- Detector Element is the central point for offering Detector information to *Algorithms*
 - Can be customized to answer specific questions
 - » Global sub-detector questions should be asked to the Detector Element that represents a sub-detector
 - » Module specific questions should be asked to Detector element that represents a module
- Access similar to any GAUDI Data Transient Store
- Persistency representation based on XML
- Three possibilities for specializing Detector Elements
 - Adding userParameter to default DetectorElements
 - Extending and specializing the DetectorElement class in C++, using userParameters in XML
 - Extending XML DTD and writing a dedicated converter

