Geometry in Mokka

Workshop on Geometry Toolkit for the Linear Collider 24 February 2010 - CERN Paulo Mora de Freitas - Ecole polytechnique

First releases

24th February 2010

Why a Entity Relationship database

- To keep geometry values outside the code
- An central reference for detector studies
 - To avoid comparing software instead detector performances...
- To have a generic user interface

 SQL implements a Data Manipulation Language (DML)
 Several GUI and API are available for MySQL
 "We cannot know what the users will need as geometrical information in the future"

Ecal Entity-relationship model

24th February 2010

Geometry in Mokka

Mokka's kernel framework

The detector models in DB

A model = a set of sub detectors (TPC, Ecal, Hcal, etc.)
 A sub detector = a driver <-> DB association

24th February 2010

Geometry in Mokka

The geometry database

A detector model sample: "D08"

Mokka detectors

Mokka Geometry drivers Geometry Database

24th February 2010

The ILD model today

And nobody never tried to retrieve geometrical information via
 SQL queries, except in the geometry drivers in MOKKA !!!

24th February 2010

Geometry in Mokka

Need of a standard geometry description ?

- Henri Videau talk at Saint-Malo
- "Specifications for a detector geometry description language", 2002, Videau and Mora de Freitas http://polype.in2p3.fr/geant4/tesla/www/index.html#dgdl

Geometry data sharing between processes

DGDL (2002)

- // Defines Box A with side =1
- BOX A DX= .5 DY = .5 DZ= .5
- // Defines Box B with side = 2, "DV" stands to "definition vector"
- BOX B DV=(1, 1, 1)
- //Defines C as A–B
- UNION C = A B

box first 0, 0, 3, 2.

box second box first placement box first C B-C

Instead GDML: the Common Geometry Access API (GGA)

Relies on Geant4 geometry layers
Implements some reconstruction utilities
Available for F77, C++,C and Java

About CGA

- Good features in CGA:
 - Automatic and cheap
 - Provides a full consistent geometry system for simulation, reconstruction and analyses.
 - Provides a scan mechanism to explore the detector geometry and material proprieties (geantino tracking)
- But...
 - Links against Geant4 libraries
 - Exports only low level geometry (G4 volumes level)
 - a few users only
- Available with Mokka since 2004, anyway

24th February 2010

Geometry in Mokka

GEAR today

Good features

- Implements an higher level interface for the Geometry access than CGA (Ecal radius, etc.)
- Abstract interface
- Exploit CGA for point proprieties (X0, etc.) as an user option (nobody knows...)
- <u>Adopted by the community</u>
- But :
 - Implemented as an ad-hoc code in Mokka drivers (hard to maintain and to insure coherence)
 - Incomplete abstract interface doesn't cover all the user needs
 - Inflation of user's parameters, making the reconstruction code to depend on the simulator tool

Mokka, other geometry features

- "Scaling", the user is able to modify the model's main parameters at launch time
 - To easily be able to study different detector options, like TPC size, number of layers in calorimeters, etc.
- "Cooking", the user is able to modify the model ingredients at launch time
 - To easily be able to study different detector technologies, like analogical versus digital Hcal, etc.
- To be useful:
 - Changes should be propagated for other devices
 - reconstruction should follow the changes introduced by the user in the Mokka steering files

Scaling

Example : /Mokka/init/globalModelParameter TPC_outer_radius 800

Cooking

Example : /Mokka/init/EditGeometry/rmSubDetector SHcal01

Scaling implementation

- Very hard to populate by hand the detector databases for complex devices like Ecal
- Historically done via MySQL scripts, in function of a few main parameters for the Ecal, like inner_radius, Ecal_nlayers, Si_thickness, etc.
- DB extension to keep all these main parameters, for all devices, and their dependencies when scaling

Implementation of "Super Drivers" in MOKKA

- First generation: able to create on the fly a temporary database for the old geometry drivers
- Currently : able to create directly the device

Ecal "towers" in modules (1 slab per alveoli, 2 wafers per slab in Z) :

Detail Alveoli & "H" slab structure:

Example of a MySQL script (Ecal)

initialisation des tables # delete from ecal; insert ecal set fiber thickness = 0.1, si thickness = 0.5, pcb thickness = (2.1 - si thickness)/2.;

. . .

Parameters in Mokka DB

□Parameter values are overwritten by the sub_detector default, then the model_parameter default, then steering file value if any, and finally by the environment value if modified at run time by a previous driver. □Scaling follow the model build_order in ingredients

Proposals

- LC people simulating the ILD model have to survive with MOKKA for a while
 short term improvements for sharing geometry for LC studies
 MOKKA history rises a set of user's requirements for the Geometry Toolkit
 - To be generic, flexible and friendly for the final user, etc.

Proposals - I (short term for ILD)

- Very low expensive, easy and short term improvement for sharing geometry for ILD
 - For each sub detector, automatically to export in the Gear file all the actual values used as parameters, as "user parameters"
- Parameters well described in DB and Mokka output: easy for the user
- Can be done right now

But the reconstruction code remains depending on the simulation tool

Proposal - II (short term for ILD)

- A more expensive short term solution:
 - To extend the Gear abstract interface
 - To implement it on the top of CGA (*)

(*) no more ad-hoc, but as part of the geometry driver responsibility

24th February 2010

Geometry in Mokka

Ideas for the LC geometry tool

- To adopt a CAD graphic interface:
 - No more script language neither XML edited by hand
 - See Open Cascade (http://www.opencascade.org)
- Abstraction levels for the detector geometry:
 - To cope with the different views for simulation, reconstruction, analysis, event displays...
 - To use metadata to describe the abstraction levels, to keep the tool as generic as possible
- To define an abstract API (C++, Java, etc.)
- To provide a Data Manipulation Language (DML)?
- To provide at least one implementation for this API
- To provide at least one simulation/reconstruction/ event display chain compliant with it.