Geometry Description Markup Language (GDML)

Witek Pokorski 24.02.2010

GDML - Motivation

- simulation toolkits come with their native geometry description formats
 - many (most?) of the users <u>do not</u> implement geometry in those formats
- users use their own geometry description formats providing more flexibility, but:
 - they are integral parts of experiment software frameworks
 - cannot be easily exported in application independent way
- GDML has been developed
 - to have an application independent and flexible geometry format
 - to be able to interchange geometry between different applications for the purpose of
 - physics validation/comparison, visualization, debugging

GDML components

- GDML is defined through XML Schema (XSD)
 - XSD = XML based alternative to Document
 Type Definition (DTD)
 - defines document structure and the list of legal elements
 - ☐ XSD are in XML -> they are extensible
- GDML can be written by hand or generated automatically
 - ☐ 'GDML writer' allows writing-out GDML file
- GDML needs 'reader'
 - ☐ 'GDML reader' creates 'in-memory' representation of the geometry description

GDML document

```
<?xml version="1.0" encoding="UTF-8"?>
                   <pdml xsi:noNamespaceSchemaLocation="GDMLSchema/qdml.xsd">
                       <define>
 positions,
                             <position name="TrackerinWorldpos" unit="mm" x="0" v="0" z="100"/>
 rotations
                       </define>
                       <materials>
                             <element name="Nitrogen" formula="N" Z="7.">
                             <atom value="14.01"/> </element>
 materials
                             <material formula=" " name="Air" >
                                        <D value="1.290" unit="mg/cm3"/>
                                        <fraction n="0.7" ref="Nitrogen" />
                                        <fraction n="0.3" ref="0xygen" />
                             </material>
                       </materials>
                       <solids>
   solids
                             <box lunit="mm" name="Tracker" x="50" y="50" z="50"/>
                       </solids>
                       <structure>
                             <volume name="World" >
                                        <materialref ref="Air" />
                                        <solidref ref="world" />
geometry
                                        <physvol>
                                                  <volumeref ref="Tracker" />
  tree
                                                  <positionref ref="TrackerinWorldpos"/>
                                                  <rotationref ref="TrackerinWorldrot"/>
                                        </physvol>
                             </volume>
                       </structure>
  'world'
                       <setup name="Default" version="1.0" >
                             <world ref="World" />
  volume
                       </setup>
   24/02/2010
                                           Witek Pokorski
                                                                                             4
                    </gdml>
```

What exists

- GDML reader and writer for Geant4 is part of the Geant4 release
- GDML reader and writer for ROOT is part of the ROOT release
- the implementations are complete, but... some further development effort would always be welcome...

CMS detector: G4->GDML->ROOT

GDML as primary geometry source

Linear Collider - Jeremy McCormick, SLAC

□ Linear Collider Detector Description (LCDD)
 extends GDML with Geant4-specific information
 (sensitive detectors, physics cuts, etc)

☐ GDML/LCDD is generic and flexible

 several different full detector design concepts, including SiD, GLD, and LDC, where simulated using the same application

Summary – what GDML can do

- GDML is an application independent geometry description language
 - basically any detector geometry can be described using it
- GDML does not provide application specific elements like for instance sensitive detectors
 - however, volumes can have 'auxiliary' field for storing any key-value pairs (ex: sensdet/tracker)
 - users' code can interpret those values
- GDML is XML so it can be extended and embedded in other schemas