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Περίληψη

΄Εχει παρατηρηθεί πως υπάρχει μια αξιοσημείωτη ασυμφωνία στην εγκάρσια εκπεμψιμότητα

μεταξύ των δεσμών που εξάγονται από τον PS Booster και εγχέονται στον PS σε συνθήκες
λειτουγίας για τις δέσμες του LHC στο CERN. Ο PS Booster θα υποβληθεί σε μια σειρά
από αναβαθμίσεις στα πλαίσια του LHC Injectors Upgrade (LIU) project με σκοπό την
αύξηση της έντασης και της φωτεινότητας των παραδιδόμενων δεσμών. Οι απαιτήσεις του
LIU όσων αφορά τις παραμέτρους των δεσμών θέτουν αυστηρά κριτήρια για τον υποβιβασμό
τους κατά την διέλευσή από τους προεπιταχυντές και επιτρέπουν μια αύξηση στην εγκάρσια

εκπεμψιμότητα μεταξύ του PSB και του PS μικρότερη του 5 %. Για αυτόν τον λόγο αυτή
η ασυμφωνία πρέπει να γίνει κατανοητή. Συστηματικές μετρήσεις έχουν πραγματοποιηθεί
ταυτόχρονα στους δύο επιταχυντές για αρκετά χαρακτηριστικά δεσμών (ένταση, εκγάρ-
σια και διαμήκη εκπεμψιμότητα) χρησιμοποιώντας διάφορα ανεξάρτητα μετρητικά όργανα.
Η μελέτη αυτή επικεντρώνεται στις επιπτώσεις που έχουν τα συστηματικά σφάλματα που

προέρχονται από τις οπτικές παραμέτρους και το σχήμα της κατανομής της δέσμης στην λαμ-

πρότητα στην έξοδο του PS Booster. Επιπλέον γίνεται μια αξιολογηση των μέθοδων που
χρησιμοποιούνται για τον υπολογισμό της εκπεμψιμότητας με σκοπό την βελτιστοποίησή

τους. Εξετάζονται επίσης τα αποτελέσματα και οι επιπτώσεις αυτών στο LIU project.
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Abstract

A significant transverse emittance discrepancy is observed between the extraction of the
PS Booster and the injection of the PS in operational conditions of the LHC beams at
CERN. PS Booster will undergo a series of upgrades as part of the LHC Injectors Up-
grade (LIU) project in order to increase the intensity and the brightness of the delivered
beams. The LIU beam parameters require a tight budget for beam degradation along the
injector chain and allow a PSB to PS transverse emittance growth of less than 5 %. For
this reason this inconsistency needs to be understood. Systematic measurements were
performed simultaneously in both machines with various beam characteristics (beam
intensity, transverse and longitudinal emittance) and using various independent instru-
ments. This study focuses on the impact of systematic errors that are induced by the
optical parameters and the shape of the bunch distribution on the brightness at the ex-
traction of the PS Booster. Furthermore, an evaluation and optimization of the methods
that are used to calculate the emittance is made. The results and their impact on the
LIU project are discussed.
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Chapter 1

Introduction

Particle accelerators are machines that accelerate charged particles using electromag-
netic fields. The history of modern particle accelerators dates back to the first half of
the 20th-century. Since then many accelerator types were designed and constructed from
Cyclotrons to Linear accelerators (Linacs), Synchrocyclotrons, Synchrotrons and Particle
Colliders. Today their size and performance varies enormously with numerous applica-
tions in research and industrial fields such as experimental particle and nuclear physics,
condensed matter physics, biology, material processing, production of radioisotopes and
radiotherapy, which makes them one of the most useful modern human inventions.

1.1 The CERN Accelerator Complex

Currently the world’s largest and most powerful accelerator is the Large Hadron Col-
lider (LHC) [1]. The LHC is a circular particle accelerator collider built at CERN [2]
between the Franco-Swiss border. It has a circumference of 27 km and it is designed
to accelerate proton and/or ion beams from 450 GeV to 7 TeV. The beams travel in
opposite directions through separate beam pipes and collide at four interaction points
(IPs). Around the IPs large particle detectors have been placed: ATLAS, CMS, ALICE
and LHCb, which measure the outcome of these collisions in the form of new particles.

Before injection into the LHC, the beams are produced and gradually accelerated up
to 450 GeV by a series of smaller accelerators, known as the LHC injector complex [3]
(Fig. 1.1). Protons are produced by stripping the electrons of hydrogen atoms inside a
bottle of hydrogen gas using an electric field. The first part of the accelerator chain is the
Linac2 which accelerates the protons to a kinetic energy of 50 MeV. These particles are
then injected into the Proton Synchrotron Booster (PSB) and their energy is increased
up to 1.4 GeV. Afterwards, the beam travels through the Proton Synchrotron (PS),
where it reaches an energy of 25 GeV, followed by the Super Proton Synchrotron (SPS)
which accelerates them up to 450 GeV. Finally the protons are injected into the LHC.
The lead-ion beams start from Linac3, which injects them into the Low Energy Ion Ring
(LEIR) and later on they successively travel into the PS, the SPS and the LHC.

CERN operates also other accelerators, such as the Anti-proton Decelerator (AD)

1



2 Introduction

Figure 1.1: A schematic of the accelerator complex at CERN

that produces low-energy antiprotons for studies of antimatter, and many physics facil-
ities that receive beams for fixed target experiments such as the on-line isotope mass
separator (ISOLDE) facility, the neutron Time Of Flight facility (nTOF) and more. This
study will focus on the Proton Synchrotron Booster.

1.2 The Proton Synchrotron Booster

The Proton Synchrotron Booster (PSB) [4] is a proton circular accelerator located at
CERN. It was built between 1968-1972 with the center of the machine placed exactly
on the Franco-Swiss border. Its construction posed many technological challenges at
that time due to its unique 4-ring design. Today it is used as an injector to the Proton
Synchrotron but also delivers high intensity beams to the ISOLDE facility. The PS
Booster provides a wide range of intensity, energy and time structure beams making it
an extremely flexible machine. It lays between the Linac2 and the PS in the CERN’s
accelerator complex (Figure 1.1).

PSB consists of four superposed rings, with a radius of 25 meters each, that have a
common injection and extraction beam line. Particles are injected from Linac2 to each
ring through a vertical distribution system consisting of a series of kicker [5] and septum
magnets [6]. Each ring is divided into 16 periods of 9.8 m each, meaning that the same
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magnetic elements are repeated in every period (“super periodicity” of 16). Figure 1.2
shows the layout of the PSB.

Figure 1.2: PSB Layout

Figure 1.3 shows a schematic layout of one PSB period (here period 2). Each period
consists of two bending units, one focusing unit and a straight section that is used for
other insertions like beam instrumentation and diagnostics. The straight section of this
particular period contains a Wire Scanner [7] (FWS.2L2). A Wire Scanner (WS) is an
instrument that measures the transverse beam profiles of a beam. This device is used
extensively in this study for the emittance measurements.

The PSB is a fast-cycle accelerator with a basic period of 1.2 seconds. The injection
starts at 275 ms and the extraction at 805 ms. The different cycles are completely
independent from each other and follow a predefined super-cycle which is repeated many
times (pulse-by-pulse modulation). Figure 1.4 [8] shows the relativistic factors along the
PSB cycle. The two dashed lines represent the injection and the extraction time. The
revolution frequency is 0.6 MHz at injection energy and 1.7 MHz at extraction energy.

Before extraction the bunches in the four rings are synchronized, recombined and
then extracted, allowing the delivery to the PS of 4 times the intensity for each pulse
of the Linac2. The bunches are extracted by a system of slow bumpers [9] and then
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Figure 1.3: PSB Period 2

Figure 1.4: PSB cycle relativistic factors

are recombined by a system of vertical kickers and septa (BT transfer line). After
the recombination the bunches can go either towards the PS through the Booster-to-
PS (BTP) transfer line or towards the measurement line (BTM). In the BTM line the
bunches can either follow the Booster-to-Isolde (BTY) transfer line or they can end up
to a beam dump after passing through a series of beam instrumentation devices. Figure
1.5 shows a schematic layout of the BTM transfer line. The three horizontal and vertical
Secondary Emission Monitors (BTM.SGHi and BTM.SGVi) [10] are located before the
beam dump and are used to measure beam density profiles from which the beam size
and eventually the emittance can be derived. The Secondary Emission Monitors (SEM
Grids) are also used extensively in this study.

All rings of the PSB are equipped with three RF cavities. The first two (C02 and
C04) are used for acceleration on harmonic numbers h = 1 and h = 2 respectively,
while the third one (C16), which has a higher frequency than the other two, is used
for controlling the longitudinal emittance blow-up [9]. Applying both h = 1 and h = 2
systems the spacing and the flattening of the bunches can be adjusted [9]. This way the
bunching factor [11] can be maximized and the peak line density minimized.
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Figure 1.5: BTM transfer line

Throughout the years of operation PSB went through a series of upgrades in order to
increase the intensity, the brightness and the energy of the machine. Although its design
top energy was 800 MeV two upgrades increased it to 1.0 GeV and after to 1.4 GeV
(today’s operation). In terms of intensities the PSB can operate in a wide spectrum,
from 5 · 109 to 4 · 1013 particles per bunch (ppb), to produce high and intermediate
intensity beams to the PS and the SPS for the fixed-target physics, high intensity beam
to the ISOLDE facility or high-brightness beams for the LHC.

1.3 The LHC Injectors Upgrade Project

The requirements of the High Luminosity LHC (HL-LHC) Project [12] exceed the so-far
performances of the accelerator’s complex. The current injected beam intensity of the
LHC needs to be doubled while the brightness to be multiplied by a factor of 2.5. The
LHC Injectors Upgrade (LIU) Project [13] aims to upgrade all the LHC injectors in
order to fulfill the HL-LHC requests. The LIU started at the beginning of 2019 and
it will continue during the two-year Long Shutdown 2 (LS2) phase of the accelerator
complex. During this period the PSB will undergo a series of substantial upgrades in
the framework of LIU which can be classified mainly in two parts:

• Upgrade of the injection line to accommodate the new 160 MeV H− injection scheme
[14] from Linac4 [15]

• Upgrade of the ring and the extraction line to permit the increased extraction energy
from 1.4 GeV to 2.0 GeV.

Linac2 was the injector of the PS Booster since 1978 but in 2020 will be replaced by
the Linac4. The Linac4 will inject H− beams at the energy of 160 MeV (instead of the
previous 50 MeV) allowing the increase of the beam brightness of the PSB. In the rings
and in the extraction line many hardware upgrades are currently in progress. Most of the
magnets will be modified or replaced in order for the 2 GeV beams to be accommodated.
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New instrumentation for the high brightness beams will be installed (for example a new
generation of Wire Scanners). Electrical and vacuum systems and power converters will
also be modified.

1.4 Aim and Outline of the Thesis

Accelerators pose a set of challenges that require a considerable amount of effort, time
and careful attention of the people that design, construct and operate them. For example
manufacturing errors of the magnets or the non-perfect vacuum inside the beam pipes
can lead to undesired effects on the beam or to reduction of the beam quality and
lifetime. But not only mechanical imperfections can complicate the operation of the
machine. Particles inside beams create electromagnetic fields that act upon themselves
or interact with the surrounding environment (beam pipe walls). These can cause many
beam instabilities and limit the performance of the machine. Many studies are dedicated
in dealing with these matters in order to expand the capabilities of the machines and
also to reveal new aspects of the physics behind accelerators.

This thesis is the subject of a similar study that took place at the PS Booster. A
significant emittance discrepancy is observed between the PSB extraction and the PS
injection in operational conditions. The LIU requires an emittance growth of less than 5
% between the two machines [16] and therefore this inconsistency needs to be understood.
Through this study the emittance at the extraction of the PSB and its behaviour under
different beam conditions is inspected. Systematic emittance measurements have been
performed in the PSB rings and the BTM transfer line by using different instruments,
beam intensities and computation algorithms. The measurements are presented and
then the impact of possible sources of systematic errors is investigated.

The thesis can be divided in two parts: the first part consists of Chapters 2 and 3.
Chapter 2 aims to introduce the necessary theoretical concepts that this study relies on.
A brief introduction to the linear beam dynamics is made through which the emittance
is defined. Chapter 3 describes the techniques that were used to measure the emittance.
Particular attention has been given in explaining step-by-step the whole calculation
process, starting from the measured data to the final emittance values.

The second part consists of Chapters 4 to 6. Chapter 4 reports the observations
from previous years about the PSB-PS emittance discrepancy and constitutes the initial
motivation of carrying out this study. Then it continues on presenting the measurement
of the optical parameters: the dispersion and the beta function. These measurements
reveal the impact of the systematic errors on the emittance at extraction of the PSB.
In Chapter 5 the systematic errors that the emittance computation algorithms induce
are developed by modeling the relation between the bunch distributions. Afterwards the
measurements are benchmarked with this model and the importance of the deconvolution
algorithms in the view of the LIU project is discussed. Finally Chapter 6 summarizes
and reviews all the measurements and the results of this study.



Chapter 2

Concepts of Beam Dynamics

The area of physics that studies the accelerators is called Accelerator Physics. Accel-
erator physics is a developing field which involves many other topics such as electro-
magnetism, quantum mechanics, nonlinear dynamics and condensed matter physics. In
this chapter will be given an overview of some basic concepts of beam dynamics in syn-
chrotrons. The physical principles behind the transverse and longitudinal motion are
introduced together with the definitions of the Twiss parameters, the emittance, the
dispersion, the brightness and their properties. These definitions will be accompanied
by examples from the PS Booster.

2.1 Synchrotrons

Synchrotrons have a circular shape and the accelerated particles follow a closed-loop
path, allowing the use of the same accelerating structures many times and therefore
reaching to very high energies. The interaction between the charged particles and the
electromagnetic fields is governed by the Lorentz force:

~FL = q( ~E + ~v × ~B), (2.1)

where q is the charge of the particle, ~v is the velocity vector of the particle and ~E, ~B
are the electric and magnetic field vectors respectively. The electric fields are used to
increase the energy of the particles (accelerate) while the magnetic fields, since they act
orthogonal to the direction of motion, to manipulate their trajectories.

The equations of motion inside any general electromagnetic field can be found by
substituting the Lorentz force into the relativistic third law of Newton. For example,
a particle inside a uniform magnetic field perpendicular to its velocity will move on a
circular arc, with a bending radius ρ equal to [17]:

ρ =
p

qB
, (2.2)

where p is the momentum, q is the charge and B is the strength of the magnetic field.
Since the radius of a Synchrotron is constant, in order to keep the particles in the desired

7
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trajectory, the ratio p/B must also remain constant. In other words the magnetic field
B must increase synchronously with the momentum p of the accelerated particle (hence
the name “synchrotron”).The quantity (Bρ) is very often used and it is known as the
“beam magnetic rigidity”. In practical units it is expressed as:

(Bρ)[T ·m] ≈ p[GeV/c]

0.2998 · q[e]
. (2.3)

The particle trajectory that closes to itself after a complete revolution is known as the
“closed orbit”.

Synchrotrons are composed of elements such as RF-cavities which provide the nec-
essary energy to the particles, dipole magnets that produce the uniform magnetic fields,
quadrupole magnets in order to keep the particles tightly confined within a finite space
(focused), sextupole, octupole (or higher order) magnets to correct undesired effects,
beam diagnostics and many more. The beam pipe that surrounds the particles is usu-
ally in high vacuum conditions.

2.2 Frenet-Serret Reference System

Figure 2.1: Frenet-Serret Reference
Frame

Since the particle trajectory inside a synchrotron
is curved one must use an appropriate coordinate
system than will simplify the equations of motion.
Instead of the Cartesian coordinates, a more con-
venient system to use is the Frenet-Serret reference
frame [18]. The origin of the frame moves along the
ideal path (orbit) of the reference particle (Figure
2.1). This path is fixed by the construction of the
synchrotron.

For any time t the particle has a unique posi-
tion along the longitudinal spatial coordinate s. In
accelerators all derivatives are expressed with re-

spect to s instead of t. At each s-position the state of any particle is represented by a
6-dimensional vector:

(x, x′, y, y′, s, δ). (2.4)

The (x, y, s) are the three spatial coordinates of the particle and the (x′, y′) the deriva-
tives of these coordinates with respect to s. The variable δ is the relative momentum
offset from the momentum of the reference particle:

x′ :=
dx

ds
=
dx

dt

dt

ds
=
vx
vs

=
px
ps
≈ px
p0
,

y′ :=
dy

ds
=
dy

dt

dt

ds
=
vy
vs

=
py
ps
≈ py
p0
,

δ :=
∆p

p0
=
p− p0
p0

,

(2.5)
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where p0 is the reference (design) momentum of the reference particle. The approxi-
mation that the transverse momentum is very small in comparison to the longitudinal
momentum is made (paraxial approximation ps ≈ p0 >> px, py). This assumption is
valid for the majority of cases in synchrotrons since the particles are travelling with ultra
relativistic speeds around the machine. When discussing the dynamics of the transverse
plane, if not otherwise stated, the two transverse planes (the x-x’ and y-y’ variables) will
be both represented using the characters u-u’.

2.3 Magnetic Elements

In order to control the trajectory of the particles inside a synchrotron several magnetic
components are used. Dipole (or bending) magnets are installed in order to keep the
particles in a circular motion. A dipole magnet creates a uniform magnetic field in the
vertical plane (By) perpendicular to the particle’s velocity (vs). The resulting force will
be perpendicular to both the velocity and the magnetic field (cross product in eq. 2.1),
thus pointing towards the center of the machine and forcing the particle to perform a
stable circular motion:

~FL = (vsŝ)× (Byŷ) = −vsByx̂ ≡ −Fxx̂. (2.6)

The ideal orbit of the reference particle is defined by the arrange of the dipoles in the
machine. For a ring with N identical dipoles the bending angle of each magnet can be
found using the relation:

θ =
2π

N
, (2.7)

since the total bending angle must be 2π rad. The bending radius of each dipole therefore
is:

ρ =

∫
ds

θ
≈ ld
θ
, (2.8)

where the integration is made along the particle path and ld is the physical length of
the dipole. Consequently, from equations (2.7), (2.8) and (2.3), the higher the strength
of the magnetic field of the dipoles the smaller the ring circumference is (or smaller is
the number of dipoles that have to be used), for a constant energy (momentum) of the
particles. Figure 2.2 (left) shows the top-view of the curved path that a particle follows
inside a dipole.

In reality, particles always have a small angular divergence from the ideal orbit
which can result, after some turns, in hitting the walls of the beam pipe and eventually
being lost. For this reason quadrupole magnets are also installed in order to repeatedly
steer (focuse) the particles back to the reference orbit. A quadrupole magnet produces
a magnetic field that is growing with the distance from the longitudinal axis, which
is set to be the reference orbit. Figure 2.2 (right) shows the magnetic field inside a
quadrupole magnet. Solving the Maxwell’s equations inside the magnet results to a
magnetic potential of the form:

ψ = gxy, (2.9)
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Figure 2.2: Dipole (left) and Quadrupole (right) magnets

where g the gradient of the quadrupole magnet [17] with units of T/m. By the definition
of the potential, the magnetic field vector will be:

~B = (Bx, By) = ∇ψ = g(y, x) (2.10)

and therefore the Lorentz force for a particle moving along the longitudinal axis with a
velocity v (eq. 2.1):

~FL = q · v · g(x,−y), (2.11)

will linearly increase with the distance from this axis. The particles that are further away
from the reference orbit feel stronger forces than those that are closer. The direction
of the force will face towards the center of the magnet (focusing) in the vertical plane,
while in the horizontal plane will face towards the poles of the magnet (defocusing).

For a quadrupole that is rotated 90 degrees with respect to its longitudinal axis, the
focusing and defocusing planes are inverted. In order to achieve a total focusing in the
two transverse planes, both quadrupole types are placed with carefully chosen distances
in-between them (alternating gradient focusing). The gradient g over the magnetic
rigidity is defined as the normalized focusing strength:

k =
g

Bρ
(2.12)

with units of m−2.

The resulting forces of the dipoles and the quadrupoles are either constant or depend
linearly with the transverse displacement from the ideal trajectory. In this study only
the dynamics behind the beam steering and focusing due to these elements will be
considered (linear transverse beam dynamics). The fields of these elements are assumed
to end abruptly at the edges of the magnets (hard-edge model [17]). In general other
non-linear magnetic components are also used (sextupoles, octupoles etc.), usually for
field corrections, but they will not be considered here. In the case of the PSB, each ring
consists of a total of 32 dipole and 48 quadrupole magnets.
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2.4 Transverse Beam Dynamics

2.4.1 Hill’s Equations

Having established a convenient reference frame one has to express the Newton’s third
law with the Lorentz force using the coordinates of this frame. It is assumed that the
velocity of the particles changes slowly while they pass through the magnetic elements
and the momentum deviation of the particles is relatively small (less than 1 %) [17].
This allows a linear Taylor approximation of the particle momentum in terms of the
momentum offset. Using the properties of the rotated coordinate system one can obtain
the equations of motion for any particle travelling through an arbitrary periodic magnetic
structure of dipoles and quadrupoles. These equations are second order linear differential
equations and are known as the Hill’s Equations [17, 19, 20]:

d2u

ds2
+Ku(s)u(s) = δD(u− x)

1

ρ(s)

δp

p
, u = x or y, (2.13)

where:

Ku(s) =

{
1
ρ(s)+k(s), if u = x

−k(s), if u = y
(2.14)

is the periodic non-constant restoring force due to the magnetic elements (dipoles and
quadrupoles) of the accelerator, ρ(s) is the local bending radius of the reference orbit,
δp/p is the momentum offset of the particle with respect to the nominal momentum of
the reference particle and δD(u− x) the Dirac delta function. The longitudinal position
s of the particle is used as the independent variable instead of the time t. Initially only
the on-momentum particles will be considered, thus particles with δp

p = 0. The effects
of a non-zero momentum offset will be discussed in Chapter 2.4.4.

Figure 2.3: Weak focusing

The term k(s) in eq. (2.14) is due to the focusing of
the quadrupoles and has a different sign in the two planes
since a focusing quadrupole in one plane is a defocusing in
the other. The other term (ρ(s)−1) comes from the dipoles.
Despite the fact the dipoles have no focusing field gradient
the particles are actually focused due to the circular move-
ment inside the uniform magnetic field. Particles that enter
the dipole with small horizontal offsets with respect to each
other will follow circular orbits that will approach or even
cross each other (Fig. 2.3). In large machines this effect is very weak and it is known as
the “weak focusing” while the focusing of the quadrupoles is called the “strong focusing”.

Using Floquet’s theorem [20] the analytical solution of the (homogeneous) equation
of motion can be expressed using the Courant-Snyder parametrization [20]:

u(s) =
√

2Juβu(s) cos (

∫ s

0

1

βu(s)
ds+ φu,0) ≡ wu(s)cos(φu(s) + φu,0), (2.15)

where:
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• Ju, φu,0 are fixed integration constants which depend on the initial conditions of
the particle. The initial amplitude Ju has units of length and it is known as the
“action”. In some textbooks the term “single particle emittance” εu ≡ 2Ju is also
used.

• βu(s) has units of length and it is called the amplitude or beta function. The beta
function is a periodic function in the synchrotron’s perimeter and it depends only
on the magnetic structure (“lattice”) of the accelerator.

• φu(s) :=
∫ s
0

1
βu(s)

ds is called betatron phase advance between points 0 and s.

• wu(s) ≡
√

2Juβu(s) is known as the envelope of the beam.

This solution describes a transverse oscillation, known as the “betatron oscillation”,
around the closed orbit, whose amplitude wu(s) and phase φu(s) depend on the s-
position. These quantities are also defined:

• αu(s) := −1
2
dβu
ds known as the alpha Twiss function and has no physical units.

• γu := 1+α2
u

βu
known as the gamma Twiss function with units of inverse length.

• Qu := 1
2π

∮
ds

βu(s)
≡ µu,turn

2π called the betatron tune. It describes the number
of betatron oscillations that a particle performs during one complete revolution
around the machine. The horizontal and vertical tune in the tune-space is known as
the working point. In the PSB the current working point at injection is (QH , QV ) =
(4.28, 4.47) and at extraction (QH , QV ) = (4.17, 4.23) (Q4Q4 optics).

Figure 2.4: PSB model optics functions

The three functions βu(s),
αu(s) and γu(s) are called Twiss
parameters (functions). Figure
2.4 shows horizontal and verti-
cal alpha and beta Twiss func-
tions of the Booster as a func-
tion of the s-position. A more
detailed derivation of the Twiss
functions can be found in [21].
Later, this solution is used to
represent not only the dynam-
ics of a single particle but also
the whole beam.

The dynamics of the parti-
cles inside an accelerator can be studied through their phase space plot. The derivative
of the solution u(s) with respect to s is:

u′(s) = −
√

2Ju√
βu(s)

[αu(s) cos(φu(s) + φu,0) + sin (φu(s) + φu,0)], (2.16)



2.4. Transverse Beam Dynamics 13

Eliminating the φu(s) from the u(s) and u′(s) functions one obtains the u(s) − u′(s)
relation:

γu(s)u(s)2 + 2αu(s)u(s)u′(s) + βu(s)u′(s)2 = 2Ju. (2.17)

Figure 2.5: Phase space of a single particle

This is a parametric repre-
sentation of a family of ellipses
with a parameter s. Therefore
the phase space of a single par-
ticle inside an accelerator in any
s-position is represented by an el-
lipse. This relation reveals that
the “action” is more than an ini-
tial condition: it is related to
the (constant) area of this phase
space ellipse with a factor of π:

(Area) = 2Ju · π (2.18)

The “action” is an invariant of the motion and it is also known as the Courant-Snyder
invariant. The importance of the Twiss parameters is also clear: they represent the
geometric parameters that define the shape and the orientation of the ellipse. Figure
2.5 shows the phase space ellipse of a single particle. The symbol ε refers to the single
particle emittance (action). The values that are noted in this figure can be found with
simple algebraic calculations. Equation (2.17) can be re-written using matrix formalism
as follows: [

u u′
] [ βu −αu
−αu γu

] [
u
u′

]
≡ UBu(s)UT = Ju. (2.19)

The matrix Bu(s) is called Beta or Twiss matrix.
Summarizing, the transverse dynamics of a particle inside a set of quadrupoles and

dipoles are described by the Hill’s equation. The solution of this equation is an s-
dependent oscillation around the reference orbit which can be parameterized using the
Twiss parameters. The phase space of the particle is an ellipse whose shape is determined
by the Twiss parameters. Also each particle is associated with an invariant of the motion,
the action, which corresponds to the area of this phase space ellipse.

2.4.2 Matrix Notation

The formalism that has been developed so far is expressed in terms of the Twiss pa-
rameters. For a particle that travels from s1 = 0 to s2 with known initial conditions at
s = s1 : u = u1, u

′ = u′1 and φu(s = s1) = 0, using equations (2.15) and (2.16), one finds:

cosφu,0 =
u1√
Juβ1

,

sinφu,0 = − 1√
Ju

(u′1
√
β1 +

α1u1√
β1

).
(2.20)



14 Concepts of Beam Dynamics

Substituting these expressions again to equations (2.15) and (2.16) and using a few
trigonometric identities, the u and u′ at the position s = s2 can be written in the form
of:[
u2
u′2

]
=

 √
β2
β1

(cos ∆µ+ α1 sin ∆µ)
√
β2β1 sin ∆µ

−
√
β2β1[(1 + α1α2) sin ∆µ+ (α2 − α1) cos ∆µ]

√
β1
β2

(cos ∆µ− α2 sin ∆µ)

[u1
u′1

]
.

(2.21)
where ∆µ ≡ φu(s2). This matrix is called the Twiss Transfer Matrix. The Twiss
functions depend on the configuration of the magnets throughout the accelerator. In this
chapter the connection between the lattice of the accelerator and the Twiss functions
will be demonstrated using matrix formalism.

Assuming an accelerator that consists of only a single focusing quadrupole of a con-
stant strength k > 0 and considering only the horizontal plane (weak focusing effects are
neglected) the Hill’s equation is simplified to the one of a simple harmonic oscillation:

d2x(s)

ds2
+ kx(s) = 0, (2.22)

with a solution:

x(s) = A cos
√
ks+B sin

√
ks,

x′(s) = −A
√
k cos

√
ks+B

√
k sin

√
ks.

(2.23)

If the initial conditions of the particle where x(0) = x0 and x′(0) = x′0 the solutions can
also be written in matrix notation:[

x(s)
x′(s)

]
=

[
cos
√
ks 1√

k
sin
√
ks

−
√
k sin

√
ks cos

√
ks

] [
x0
x′0

]
≡MQF

[
x0
x′0

]
. (2.24)

The matrix MQF is defined as the matrix of a quadrupole of strength k. If the particle
was initially (before the quadrupole) at x0 with a momentum of x′0, after the quadrupole
the particle is at x(s) with a momentum of x′(s). Similar analysis can be applied in the
vertical plane but this time the sing of the quadrupole strength is negative. This leads to
a defocusing beam and so the cosine and sine functions are replaced with the hyperbolic
cosine and sine functions (cos↔ cosh and sin↔ sinh).

Using an analogous procedure one can obtain the matrix for a single dipole of length
ld and a bending angle of θ:

Mdipole =

[
cos θ ρ sin θ
−1
ρ sin θ cos θ

]
, (2.25)

where ld = ρθ (eq. 2.8), and also the matrix of a single drift space of length d:

Mdrift =

[
1 d
0 1

]
. (2.26)



2.4. Transverse Beam Dynamics 15

The transfer matrix of any interval throughout the accelerator is simply the product
of the transfer matrices of all the elements that this interval contains (a drift space is
considered also as an element). If for example between the positions s = s1 and s = s2
there are N elements then:[

u2
u′2

]
= MN ·MN−1 · ... ·M1

[
u1
u′1

]
≡
[
m11 m12

m21 m22

] [
u1
u′1

]
≡Ms1→s2

[
u1
u′1

]
. (2.27)

Comparing the elements of this transfer matrix with the Twiss transfer matrix of eq.
(2.21) one can numerically find the Twiss parameters at the positions s1 and s2 and
in general at any position of the accelerator. By changing the magnets strength and
their relative distances the optical parameters can be optimized in order to control the
transverse motion of the particles. The elements of the second row of the transfer matrix
are the derivatives of the first row with respect to the parameter s [22]. So usually the
notation m11 ↔ C, m12 ↔ S, m21 ↔ C ′, m22 ↔ S′ is used.

2.4.3 Emittance

A beam from a synchrotron consists of many particles. In the PSB for example an LHC
beam typically consists of 1010 particles. As a first approximation only particles that
are independent of each other will be considered, meaning that they do not interact. In
reality the particles, being charged, they interact with each other in many ways with
the Coulomb forces. These interactions go beyond the scope of this study so they will
be neglected. The distribution of the particles is assumed to be Gaussian in order to
simplify the analytical calculations.

The methodology that was presented in the previous chapters for a single particle
applies for any particle of a bunch. Each one of them makes a betatron oscillation around
the reference orbit and has its own ellipse with a constant invariant. These ellipses have
different areas due to different actions, which depend on the initial conditions of each
particle. But the orientation of these ellipses are all the same at a specific position of
the accelerator, because they depend only on the Twiss parameters. The phase space of
a Gaussian bunch looks similar to Figure 2.6.

For the distribution of particles the Sigma matrix is defined as:

Σu,RMS =

[
< u2 > < uu′ >
< uu′ > < u′2 >

]
≡
[
σu σuu′

σuu′ σu′

]
, (2.28)

where its elements are the second order moments of the u and u’ distributions:

< uu′ >=
1

Np

Np∑
i=1

(ui − u)(u′i − u′). (2.29)

Np is the number of particles inside the bunch called intensity or beam population. The
top left element of the Sigma matrix, σu, is defined as the Root Mean Square (RMS)
bunch (beam) size. Figure 2.6 shows the RMS beam size in the horizontal histogram
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Figure 2.6: Transverse phase space of a bunch

and the RMS momentum spread in the vertical histogram with the two blue lines. The
quantity:

εu,RMS :=
√
det(Σu,RMS) ≡

√
< u2 >< u′2 > − < uu′ >2 (2.30)

is defined as the RMS emittance or the geometric emittance of the bunch. The geometric
emittance is related to the area of an ellipse: using the Twiss parameters and the Figure
2.5 one can draw an ellipse that occupies an area equal to π · εu,RMS (blue ellipse on
Figure 2.6). According to Liouville’s [17] theorem the density in the phase space is
constant if the particles are under the influence of conservative forces (i.e. no interaction
between the particles).This makes the geometric emittance an invariant of the motion
of the bunch, just like the action is the invariant of a single particle. By definition the
Sigma matrix is related to the Beta matrix via the emittance:

Σu,RMS(s) = εu,RMSBu(s). (2.31)

The definition of the emittance requires a choice for the limiting in the phase space
of the bunch. This choice is related to some number of standard deviations of the beam
distribution and it is just a convention: the 1-sigma or rms emittance (previous case),
the 90 % emittance (green ellipse on Fig. 2.6), the 3-sigma emittance (yellow ellipse on
Fig. 2.6), and so on. In this study only the RMS emittance will be used.
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The geometric emittance is an invariant of the motion only if the energy of the beam
is not changing: no electric field is present and no energy is being lost from the particles.
In the case of acceleration the geometric emittance does not stay constant. For this
reason, the normalized emittance is defined which is preserved during acceleration:

εu,n := βrelγrelεu. (2.32)

The units of the emittance are m ·rad but most commonly are used the units mm ·mrad
or µm. The normalized transverse emittances in the PSB are in the range of εx = 1 to
15 mm ·mrad and εy = 1 to 9 mm ·mrad [9].

The emittance is an extremely important parameter for any accelerator. It defines
the beam envelope and therefore plays a very important role in the definition of the
physical aperture of the accelerator (acceptance). The acceptance will determine the
size of the vacuum chamber.

The emittance is also a key parameter to many other quantities that describe the
overall performance of an accelerator such as the Brightness or the Luminosity. For
example the luminosity of the LHC is given by the formula:

L =
N2
b nbfrevγr
4πεnβ∗

F, (2.33)

where Nb is the number of particles per bunch, nb the number of bunches per beam, frev
the revolution frequency, γr the relativistic gamma factor, εn the normalized transverse
beam emittance, β∗ the beta function at the collision point and F a geometric luminosity
reduction factor due to the crossing angle at the interaction point. Also the brightness
is defined as the intensity over the half-sum of the horizontal and transverse normalized
emittances:

B =
I

1
2(εx + εy)

. (2.34)

In the PSB for example the beams intended for the LHC physics runs are produced at
a constant brightness [23].

2.4.4 Off-Momentum Particles - Dispersion

Everything that was discussed so far is for particles that have zero momentum offset
or δp/p = 0. A realistic beam, however, is made of particles with a longitudinal mo-
mentum distributed around the synchronous momentum p0. In the case of the PSB
this is of the order of 0.1 %. Starting again from the Hill’s equation and considering
non-zero momentum spread, the differential equation of motion for the horizontal plane
becomes inhomogeneous. This is because dipoles bend differently particles with different
momenta. In this case the general solution can be represented as:

x(s) = xb(s) + xD(s) ≡ xb(s) +D(s)
δp

p
, (2.35)
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Figure 2.7: Closed orbit for non-
zero dispersion

where xb(s) is the homogeneous solution, eq.
(2.15), which describes the previous betatron os-
cillation and xD(s) is a partial solution of the in-
homogeneous equation. The total motion of the
particle is a betatron oscillation around the new
closed orbit xD(s) that results from the momen-
tum deviation of the particle (dispersion motion,
Fig. 2.7). It is rewritten as the product of the
dispersion function D(s) and the momentum offset
δp/p. The dispersion function expresses the linear correlation between the transverse
position and momentum spread of the beam. By definition it satisfies the equation:

D(s)′′ +K(s)D(s) =
1

ρ(s)
. (2.36)

The dispersion represents the closed orbit of a particle with momentum offset of δp/p = 1.
The analytical solution for the dispersion can be expressed as [22]:

D(s) = S(s)

∫ s

0

1

ρ(s′)
C(s′)(s′)ds′ − C(s)

∫ s

0

1

ρ(s′)
S(s′)ds′, (2.37)

where C(s) and S(s) are the elements of the general transfer matrix in eq. (2.27).

The dispersion contributes to the beam size of the bunch. The combined betatronic
and dispersive motion has a result the growth of the horizontal phase space area that the
beam occupies and therefore the increase of the beam size. If the beam distributions,
the transverse and the longitudinal, are all Gaussian the beam size can be expressed by
[20]:

σx =

√
εxβx(s) + (D(s)

δp

p
)2. (2.38)

In general a beam distribution can be non-Gaussian. In the PSB for example the longi-
tudinal (dispersive) distribution follows a parabolic shape rather than a Gaussian one.
In this case, the resulting beam size can be expressed as the convolution between the
betatronic and the dispersive distributions:

σx = σbetatronic ⊗ (D(s)
δp

p
) ≡ σbetatronic ⊗ σdispersive. (2.39)

2.5 Longitudinal Beam Dynamics

In the previous chapter an introduction to the transverse beam dynamics inside the
magnetic field of a periodic structure of dipoles and quadrupoles was presented. This
chapter briefly discusses the motion of the particles in the longitudinal plane inside
synchrotrons, focusing mainly in the definitions of the momentum compaction factor and
the phase slippage factor that are later used in the dispersion measurement methods. A
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more detailed and mathematically solid description of the longitudinal beam dynamics
can be found in [24, 25].

The longitudinal motion is mostly determined by the distribution of the electric fields
inside the accelerator, since they act parallel to the velocity of the particles (eq. 2.1).
In synchrotrons the energy and the momentum of the beams is modified using Radio-
Frequency (RF) cavities. An RF cavity is a metallic chamber placed at a distinct place
in the ring with two openings to allow the beams to pass through. In this chamber an
alternating electric field is created along the particle path at a specific frequency fRF .
The energy gain ∆E of a particle inside a time-varying electric field is given by the
expression:

∆E = e

∫ g/2

−g/2
~E(s, r, t) · ~ds, (2.40)

where g is the distance in which the electric field is applied (cavity gap). The time-
variant part of this field has a sinusoidal form with an angular frequency ωRF = 2πfRF
while the spatial part is constant and equal to the applied voltage VRF over the cavity
gap:

~E(s, r, t) =
VRF
g

sin (

∫ t

0
ωRFdt+ φ0), (2.41)

where φ0 it initial phase. This is a simplified model of the electric field produced inside
the RF cavity which is valid for most cases of synchrotrons.

If a particle passes through the RF cavity when this alternating field is zero then it
will remain unaffected. Otherwise it will gain (accelerate) or lose (decelerate) energy.
In order to constantly accelerate the particles inside the synchrotron the particle must
always arrive at the same amplitude of the electric field. This is achieved when the
RF frequency is a multiple of the revolution frequency of the particle. The revolution
frequency of a particle is defined as the ratio between its velocity over the total length
of its trajectory:

frev =
v

C
=

v

2πR
. (2.42)

Therefore the RF frequency is set to be:

fRF = hfrev. (2.43)

This relation can be also expressed in terms of RF and revolution periods:

Trev = hTRF . (2.44)

This condition is known as the synchronism condition. The parameter h is an integer
called the harmonic number. The harmonic number specifies the number of bunches that
a synchrotron can accelerate at the same time. For example, PSB can operate either
in h = 1 or h = 2 [9]. From equation (2.43) it is obvious that the RF frequency must
increase at the same rate as the revolution frequency.

As it was shown in the previous chapter, a particle with a small momentum offset
δp/p with respect to the nominal momentum of the reference particle will have a closed
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orbit C that has a different length from the nominal one. This change is expressed by
the momentum compaction factor:

αp =
dC/C

dp/p
. (2.45)

In most circular accelerators the momentum compaction factor is positive which means
that higher momentum means longer circumference. But in some machines a negative
momentum compaction factor can also be achieved [26]. In the PS Booster the momen-
tum compaction factor is equal to 0.060934. It can be shown [25] that ap depends on
the lattice of the machine according to the relation:

αp =
1

C

∮
C

Dx(s)

ρ(s)
ds, (2.46)

where Dx(s) is the dispersion function, ρ(s) the bending radius and C the synchrotron
circumference.

If a particle increases its energy (momentum) then its closed orbit will increase, for a
positive momentum compaction factor. At the same time its velocity will also increase.
The rate in which these two quantities change is not necessarily the same and therefore
the behaviour of the revolution frequency is ambiguous. The evolution of the frev as the
energy of the beam increases is described by the phase slippage factor. This factor is
defined as the revolution frequency spread per unit of momentum spread:

η =
df/f

dp/p
. (2.47)

If η > 0, then the revolution frequency increases while the energy (momentum) increases.
On the other hand if η < 0 then the frequency decreases for a larger momentum of
the particle. Combining equations (2.42) and (2.45) and using the definition of the
relativistic momentum it is easy to show [25] that the slippage factor can be written as:

η =
1

γ2
− αp, (2.48)

where γ is the relativistic gamma factor of the particle. The energy that corresponds
to η = 0 is defined as the transition energy. In this energy the increase of the velocity
is exactly the same with the increase of the closed orbit trajectory. In this case the
γ−factor is:

γtr =

√
1

αp
, (2.49)

and thus:

η =
1

γ2
− 1

γ2tr
(2.50)

From this equation is clear that at low energies η > 0 while at high energies η < 0. The
PS Booster operates always below transition energy. Others accelerators, like Proton
Synchrotron for example, cross the transition energy during their acceleration cycle.
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The ideal (reference) particle that runs on the design orbit defined by the dipole
magnets will arrive at the RF cavity with a phase of φs = ωRF ts (Fig. 2.8 [25]). A
particle that arrives later than the nominal (particle 1 of Fig. 2.8) will see a higher
electric field which will increase its revolution frequency (if below transition) and move
it towards the nominal one. Similarly a particle that arrives earlier than the nominal
(particle 2 of Fig. 2.8) will see a smaller electric field which will decrease its revolution
frequency. This results to an oscillation of the particles of a bunch around a central
point (the reference particle) known as synchrotron oscillations. The frequency of these
oscillations (synchrotron frequency) is usually small (scale of Hz or kHz). The maximum
distance that particles can oscillate around the center without being lost from the bunch
it defines the bucket size.

Figure 2.8: The principle of phase stability and synchrotron oscillations

Figure 2.9: Longitudinal phase space below transition

Figure 2.9 shows the longitudinal phase space below transition for different values of
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the φs. The red line corresponds to φs = 0 (no acceleration) where the size of the bucket
becomes maximum. Particles inside the bucket will oscillate (rotate) around its central
point (synchrotron oscillations) while those outside will get lost. The rotation of the
particles that are positioned further away from the center (large amplitude oscillations)
is non-linear. If φs > 0 (acceleration) the bucket size becomes smaller and therefore less
particles can be captured by the RF cavity.

The curve that separates the stable from the unstable region is called the separatrix.
The area of the bucket defines the longitudinal acceptance of the RF system while the
area that a bunch occupies in the longitudinal phase space is the longitudinal emittance
with units of [eV · s]. The longitudinal emittance in the PSB range from 0.3 to 2.3 eV · s
[9].

In this Figure the longitudinal position of the particles is represented with its phase.
The phase is related with the s-parameter from eq. (2.5) via the harmonic number [25]:

φ = −hθ = − h
R
s, (2.51)

where θ is the azimuthal angle around the synchrotron. In the vertical axis the parameter
φ̇/Ωs is plotted which is proportional to the energy (momentum gain) according to the
relation [25]:

φ̇ = − ηhc

βsEsRs
∆E, (2.52)

where βs, Es and Rs the relativistic beta, energy and bending radius of the synchronous
particle respectively, η the phase slip factor, h the harmonic number, c the speed of light
and ∆E the energy offset of a particle.



Chapter 3

Emittance Reconstruction

3.1 Beam Instrumentation in the PSB

3.1.1 Transverse Beam Profiles

In the previous chapter the importance of the emittance in the description of the motion
in an accelerator and its overall performance was discussed. The emittance is a quantity
that cannot be measured directly but it has to be calculated from other measurable
quantities. In this study, the emittance calculation is based on the measurement of the
transverse beam profile.

Figure 3.1: Transverse beam profile measured with
the WS

In the rings of the PSB the
transverse beam profile can be
measured with the Wire Scanner
(WS) [27, 28]. A WS consists of a
thin carbon wire that crosses the
beam during several turns. The
wire speed is typically of the or-
der of 10−15 ms−1. The wire in-
teracts with the charged particles
through Coulomb scattering, cre-
ating a shower of secondary parti-
cles that are detected by two scin-
tillators coupled to a photomul-
tiplier. The photomultiplier cre-
ates an amplified current signal
from which the transverse beam

profile can be reconstructed. The WS is the baseline instrument to assess the PSB emit-
tance. The scattering induced by the wire causes to the beam a measurable emittance
“blow-up”. A detailed analysis of this effect in the PSB at different energies can be
found in [8]. Figure 3.1 shows a typical measurement of the transverse profile using the
WS.

23
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In order to derive the beam size from the bunch shape, a function is used to model
the measured distribution. This function is employed to fit the data points of the profile
using a non-linear least squares method [29]. The induced from the fit beam size error
is taken into account in all cases. Typically the transverse bunch shape follows a normal
(Gaussian) distribution:

fG(x;A,µ, σ) =
A√
2πσ

e−
(x−µ)2

2σ2 . (3.1)

This function can be combined with a linear function in order to be able to include a
non-zero baseline of the data points (5-parameters Gaussian function):

f5G(x; c,m,A, µ, σ) = c+mx+ fG(x;A,µ, σ). (3.2)

In many cases, however, the transverse profiles appear to have tails that differ from
the ones of a normal distribution, especially for higher or lower than the operational
intensities of the PSB. In order to model these tails a generalized Gaussian function was
used (Q-Gaussian function [30, 31]):

fQG(x; q, β, µ) =

√
β

Cq
eq(−β(x− µ)2). (3.3)

Figure 3.2: Q-Gaussian function examples

The parameter q describes
the weight of the tails. For q = 1
the Q-Gaussian is identical to a
Gaussian distribution. If 1 < q <
3 the tails are heavier (overpopu-
lated) than the ones of a normal
distribution while for q < 1 are
lighter (underpopulated). For ex-
ample, if q = 0 the Q-Gaussian
distribution is comparable to a
parabolic function. Detailed ex-
pressions for the Cq and eq func-
tions can be found in [30, 32].
Figure 3.2 shows typical Q-Gaussian functions for different values of the q parameter.
The RMS beam size in the Q-Gaussian function is calculated using the formula [32]:

σ =
1√

β(5− 3q)
, (3.4)

as long as the q-value is smaller than 5/3 which in the regime that we are interested this
is the case [33].

A different instrument is used to measure the beam profile in the extraction line of
the PSB. In the BTM transfer line three Secondary Emission Monitor [7] (SEM) grids
have been placed. A SEM grid consists of a grid of stationary wires in which the beam
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passes through. Interactions between the charged particles of the beam and the wires
induce an emission of secondary electrons. These electrons create a current to the wire
that is connected to an individual channel. The signal that is produced from all the
wires allows the reconstruction of the transverse beam profile. The resolution depends
on the number of wires covering the crossing beam and the distance between them. The
minimum wire spacing available is around 300 µm [10]. Figure 3.3 shows a typical set
of measurement with the three SEM grids of the BTM line.

Figure 3.3: Transverse beam profiles measured with the three SEM grids of the BTM
extraction line

3.1.2 Longitudinal Beam Profiles

The momentum spread of the beam can be determined from its longitudinal phase space
distribution. The longitudinal phase space cannot be directly measured but it can be
reconstructed using bunch profile data over many turns. In the PSB this is achieved
through the Tomoscope application [34].

The measurement of the two dimensional longitudinal phase space is based on the
principle of tomography which states that any two dimensional object can be recon-
structed using all of its one dimensional projections [35]. At each turn, the particles
inside the bunch rotate in the phase space due to the synchrotron motion, as it was de-
scribed in Chapter 2.5. Snapshots of the longitudinal bunch profiles over a range of turns
correspond to different projections of the phase space at slightly different angles. These
profiles can be combined to recreate a first approximation of the initial two dimensional
distribution. A set of bunch profile shapes can be also obtained from back projecting
this first approximation, which are then compared to the initial ones. This yields to an
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iterative process which converges to the unknown longitudinal phase space distribution.
Considerable improvements of this algorithm have been made over the years by employ-
ing particle tracking and considering the non-linearity of large-amplitude synchrotron
motion [36].

Figure 3.4 (left) shows 80 bunch profiles measured every 40 turns over a time span
of 1.8 ms for a modified BCMS-type beam of PSB ring 3. In the same figure (right) is
shown the output of the Tomoscope application at extraction energy of the PSB. The
colorbar expresses the density of the particles in the longitudinal phase space and the two
horizontal and vertical profiles are the projection in time and energy of the distribution.
In the longitudinal plane the PSB beams follow a parabolic distribution rather than a
Gaussian one (Fig. 3.4). For this reason the RMS momentum spread is calculated using
the second order moment formula (eq. 2.29).

Figure 3.4: Bunch profiles (left) and reconstructed longitudinal phase space (right) from
the Tomoscope application

3.1.3 Beam Intensity

Relevant to the brightness of the beam is the intensity (eq. 2.34) which is the amount
of particles delivered at a certain energy. In the PSB the intensity is determined using
the Beam Current Transformers (BCTs) [37]. PSB is equipped with different BCTs in
the four rings but also in the BT and BTM transfer lines. A BCT measures the beam
intensity by measuring the beam current through its magnetic field. The beam current
is defined as:

Ib =
qeNp

l
βc, (3.5)

where Np is the number of particles, e is the elementary charge and q is the charge state
per unit of length l and velocity v = βc. BCTs operate in a limited frequency range
that does not exceed the few hundreds of MHz which, for the PSB, is sufficient since the
revolution frequency of its beams is less than 2 MHz. A detailed explanation for their
working principle and the signal processing can be found in [38].
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The Wall Current Monitor is a similar device that measures the instantaneous value
of the beam current by measuring the voltage over a resistor that is put along a gap in
the beam pipe [39]. Figure 3.5 shows a typical example of a WCM signal. The WCM
together with a digital oscilloscope are the hardware that provide the input signals (the
longitudinal bunch profile of the beam) to the Tomoscope application.

Figure 3.5: Output signal of a WCM measuring four bunches spaced at 25 ns intervals

3.2 Emittance Deconvolution

In the PSB, for the operational beams, the momentum spread is of the order of 0.1 %
while the dispersion in the rings has an absolute value of around 1.5 m (Fig. 2.4). As it
was discussed in Chapter 2.4.4 when the dispersion is non-zero and for a beam with non-
zero momentum spread, the beam size becomes larger by a factor of D δp

p . Therefore in
order to calculate the emittance, the dispersive part must be removed from the measured
beam size. This removal is not trivial and there can be used different approaches to this
problem. In this study two methods will be discussed:

• Standard Gaussian Subtraction (SG)

• Full Deconvolution (FD)

The first method holds the assumption that all the profiles (the measured, the be-
tatronic and the dispersive) are Gaussian. In this case the relation between the three
beam sizes is simplified to (eq. 2.38) (trivial deconvolution):

σ2measured = σ2betatronic + σ2dispersive = σ2betatronic + (D
dp

p
)2. (3.6)

Solving for the betatronic beam size, one has:

σbetatronic =

√
σ2measured − (D

dp

p
)2, (3.7)

and therefore the normalized emittance is:

εn = βrelγrelεrms =
βrelγrel
βTwiss

(σ2measured − (D
dp

p
)2), (3.8)



28 Emittance Reconstruction

where εrms is the RMS geometric emittance, βtwiss is the Twiss beta function at the
position of the measurement and βrel and γrel are the relativistic factors of the beam.
The error of the emittance can also be worked-out through this relation analytically.
This method is quite fast and valid for many occasions but only as an approximation.

A non-Gaussian dispersive distribution, as in the PSB, will lead to a non-Gaussian
measured distribution. In this case the problem of calculating the betatronic distribu-
tion is equivalent to the problem of the deconvolution between the measured and the
dispersive distribution [40], as in general:

σmeas = σbetatronic ⊗ σdispersive. (3.9)

There are some methods (algorithms) to do this [41, 42]. In the one that was adapted
in this study it is assumed that only the betatronic profile is Gaussian. In order to de-
convolute, both the dispersive and measured distributions are centered and normalized.
Then a least square problem is solved between the measured data points and the discrete
convolution of the dispersive distribution with a single-parameter Gaussian function:

fConv(xi) =

Np∑
j=1

disp(kj)e
−

(xi−kj)
2

2σ2
b . (3.10)

where Np is the number of the measured data points. This single-parameter σb is the
uknown RMS betatronic beam size. The emittance is simply then:

εn =
σ2b

βTwiss
βrelγrel. (3.11)

3.3 3-SEM Method

An alternative method is used in the PSB for calculating the emittance, which has the
advantage of not using the optics beta function. This method is called the 3-profiles or
3-grids method [7, 43]. Assuming that one has three beam monitors at three positions

Figure 3.6: 3-SEM method
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in a transfer line, that are separated with only drift spaces in between them (Fig. 3.6),
it can be proven [43] that the betatronic beam sizes can be written as:σ21σ22

σ23

 =

1 −2La L2
a

1 −2Lb L2
b

1 −2Lc L2
c

βεrmsαεrms
γεrms

 , (3.12)

where La, Lb and Lc the distances from the monitors of a reference point and α, β and
γ optics functions at this point. Solving this linear system one can find the quantities
βεrms, αεrms, γεrms and then the geometrical emittance (by definition) from the formula:

εrms =
√

(βεrms)(γεrms)− (αεrms)2. (3.13)

Furthermore, the calculation of the Twiss parameters at the reference point is trivial:

β =
βεrms
εrms

, α =
αεrms
εrms

γ =
γεrms
εrms

. (3.14)

This method is adapted to calculate the emittance in the BTM transfer line using
the three SEM grids which are separated with only drift spaces. The reference point was
assumed to be the first SEM grid, therefore La = 0. In this case also a deconvolution
algorithm (SG or FD) has to be used in order to obtain the three betatronic beam sizes
σ1, σ2 and σ3.

The distances between the SEM grids is 2.5 m according to the layout of the BTM
line. These distances have been corrected according to the survey measurements (with
respect to the first grid):

Lb = 248.5 cm,

Lc = Lb + 248.7 cm = 497.2 cm,
(3.15)

Figure 3.7 shows the error on the emittance, calculated with the 3-SEM method, as
a function of the position error of the three SEM Grids, for a range of ±10 cm. The
emittance is more sensitive on the position of the third grid in which, in the extreme
case of +10 cm or −10 cm the error stays below 4 %. For the second grid the emittance

Figure 3.7: Emittance sensitivity on the positions of the SEM grids

error is asymmetrical for positive and negative displacements and the slope of the curve
is opposite to the one of the third grid. The emittance error varies between +2 % and
−4 %. The impact of the position of the first grid is minimal (errors of less than 1 %).
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The 3-SEM method is more unstable for small errors on the initial betatronic beam
sizes. Figure 3.8 shows similar plots as the previous, but now the varied parameters are
the beams sizes that are used as inputs in eq. (3.12). These parameters are varied by
a ±10 % for a set of measurements close to the operational intensities (75 · 1010 ppb).
The emittance error can be workout analytically using error propagation in eq. (3.13).
Similarly as before the emittance is more sensitive to errors on the beam size of the third
grid and less sensitive to errors of the first. The emittance errors can increase up to +10
% or −10 % which is can not be considered as negligible.

Figure 3.8: Emittance sensitivity on the betatronic beam sizes



Chapter 4

Impact of Systematic Errors

4.1 PSB-PS Emittance Discrepancy

The current injector capabilities do not allow the delivery of beams to the LHC that are
within the HL-LHC project requirements. For this reason the injector chain, including
PS Booster, will go through major upgrades as a part of the LIU project in order to
increase the intensity and the brightness of the delivered beams. Two different beam
types are mainly used in the LHC for the physics runs [44]: the nominal 25 ns beam
(“standard” LHC25 beam) and a high brightness version of this, the Batch Compression
bunch Merging and Splitting (BCMS) 25 ns beam. The achieved and the LIU target
parameters of these beams at the extraction of the PS Booster are reported in the Table
4.1 [16].

PSB LIU requirements

Status Beam Type I (1011p) εx,y (µm) E (GeV) δp/p (10−3)

Achived
Standard 16.48 2.25 1.4 0.9
BCMS 8.05 1.20 1.4 0.8

LIU target
Standard 32.50 1.80 2.0 1.5
BCMS 16.25 1.43 2.0 1.1

Table 4.1: Beam parameters at the extraction of the PS Booster

The brightness of the beam is defined as the ratio between the intensity and the
emittance of the bunch. In order to deliver the required high brightness beams to the
LHC a tight budged in terms of emittance degradation was set. Previous studies [44, 45]
showed that there is a considerable increase on the emittance between the PSB extraction
and the PS injection. In particular, this emittance discrepancy is of the order of 40-50
% in the horizontal plane and about 15 % in the vertical plane for the nominal 25 ns
beams. Similar is the case for the BCMS25 beams. Fig. 4.1 [46] shows the horizontal
(left) and vertical (right) emittance along the accelerator chain for the years 2017 and
2018 (emittance taken from OP data without any special treatment).

31
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Figure 4.1: Emittance preservation along the accelerator complex

Part of this emittance discrepancy can be explained by the dispersion mismatch
between the PSB extraction line and the PS injection that is present in the operationally
used optics in the transfer line. Early studies in 2017 [47] showed that the emittance
measured by the SEM Grids at the PSB BTM extraction line was also systematically
larger than the emittance measured by the WS in the PSB rings for the BCMS beams,
where there is no significant dispersion mismatch. This was observed for both planes
and in all rings, with differences ranging from 5-20 %.

Figure 4.2: Emittance sensitivity on the optical parameters

As it was shown in Chapter 3, there is no direct way to measure the emittance in
the PSB but it is derived through different reconstruction algorithms, using as input the
transverse beam profile measurements and the machine optical parameters. In Figure
4.2, the emittance error has been analytically parameterized (eq. 3.8) and color-coded
with respect to the error on beta function (horizontal axis) and the error on the dispersion
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(vertical axis), up to ±10 % [48]. The left plot corresponds to the PSB while the right
one to the PS. It can be noticed that the emittance is very sensitive to the dispersion
and the beta function. Systematic errors of these parameters can play a very important
role on the final values of the emittance. This is especially important for the methods
that are used in the horizontal plane, given the large dispersive contribution on the beam
size, which, as it can be seen in the previous table, is expected to increase after the LIU
upgrade. Limitations on the instruments that are used to measure the emittance (WS,
SEM grids) can also be a source of errors [49] but these go beyond the scope of this
study.

In this context and in the view of the LIU upgrade the precise and accurate measure-
ment of the emittance is essential. For this reason systematic emittance measurements
have been performed simultaneously in the PSB and in the PS using the operational
BCMS25 beam and a modified BCMS beam with larger longitudinal distribution, for
a range of intensities and with all the available instrumentation. The next chapters of
this study will focus on the measurements that were carried out at the extraction of the
PSB in order to:

• Explore and compare the brightness curves between the PSB WS and the SEM Grids
of the BTM line for different beam characteristics.

• Understand the impact of systematic errors that are induced by the PSB optical
parameters and the shape of the beam transverse distributions on the emittance
calculation.

• Compare and optimize the emittance deconvolution algorithms (Standard Gaussian
Subtraction and Full Deconvolution) and investigate their limitations and their
behaviour under different conditions (intensities or beam types).

4.2 Measuring the Optical Parameters

The dispersion and the beta function are very important parameters for the emittance
calculation, so their exact value has to be determined. Assuming Gaussian profiles (SG
method), from equation (3.8), one can observe that the emittance depends quadratically
on the dispersion:

ε =
βrelγrel
βtwiss

(σ2measured − (D
dp

p
)2). (4.1)

Therefore a small error on the dispersion for example will induce an error twice as
large on the emittance, for linear error propagation. In the Full Deconvolution method
the resulting betatronic beam size, and therefore the resulting emittance, are also very
sensitive to small errors on the dispersion. Under these conditions, a campaign to get
as precise as possible values for the optical parameters was launched. In the next, the
results of these measurements for the PS Booster will be presented and their impact on
the brightness curves will be discussed. Similar measurements were also curried out for
for the PS and are summarized in [50].
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4.2.1 Dispersion Measurement in the PSB

The dispersion is defined as the dependence of the orbit change on the relative momentum
offset:

D =
dxco

d(δp/p)
, (4.2)

where the xco is the center (position) of the beam closed orbit and the δp/p is the
momentum offset of the beam. The constant term of this dependence is referred as the
linear dispersion. The higher order terms define the higher order dispersions, such as the
second order dispersion which depends linearly on δp/p [51]. The dispersion is generated
by dipoles and only propagated by quadrupoles. In an ideal machine the vertical linear
dispersion is zero since the dipoles bend the beam only horizontally.

In order to experimentally determine the dispersion function, the closed orbit was
measured for different values of δp/p. It is important to vary the beam momentum
offset without changing the magnets configuration because this would destroy the optics
and therefore the dispersion. This can be performed by introducing an energy offset to
the beam. In the PSB this is realized by adjusting the frequency (BA.EXTREFFREQ)
of the main RF system (C02), from its initial value 1, 746, 270 Hz, to different values
between an upper and a lower limit (changing the radial steering). In order to cover a
large range of closed orbit values, a large range of frequencies was scanned.

Changing the RF frequency results to the change of the momentum spread according
to equation (2.47):

δp

p
= −1

η

(f − finitial)
finitial

, (4.3)

where f is the adjusted frequency value and η is the phase slip factor of the PSB. This
factor is calculated using the relativistic parameters at extraction energy of the PSB:

η = αc,PSB − 1
γ2extr

' −0.100081,

where αc,PSB = 1
γ2tr
' 0.060934 is the momentum compaction factor of the PSB and

γextr = (1400+938.27)
938.27 ' 2.492108 is the gamma relativistic factor at 1.4 GeV energy. By

sampling the response of the beam position as a function of the momentum offset the
dispersion can be deduced. The beam position is measured with the Beam Position
Monitor (BPM) [52]. BPMs are non-destructive beam diagnostics that provide informa-
tion on the position of the beam in the vacuum chamber at the location of the monitor.
In synchrotrons the BPMs are usually distributed around the ring in order to track and
correct the beam trajectories.

In this study the dispersion was measured in all four rings of the PSB and in the
BT-BTM transfer line in both planes at the positions of the BPMs (BRi.BPM, BT.BPM,
BTM.BPM), the WS (BRi.BWS) and the three SEM Grids. The PSB has a BPM for
each of the 16 periods of the 4 rings. In the second period there is also a Wire Scanner
(WS). Therefore, for each ring, there are 16+1 positions where the dispersion can be
measured and compared to the model. In order to calculate the mean beam position a
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6σ 5-parameters Gaussian fit was applied to the bunch profiles of the WS and the SEM
grids.

Figure 4.3 shows a typical set of xco vs. δp/p measurements using the WS of ring 3
in the horizontal plane. The slope of the applied linear fit is equal to the dispersion in
meters. The dispersion in the vertical plane is close to zero as expected. The plot can

Figure 4.3: WSR3 horizontal measured dispersion

be found in the appendix.

WS Dispersion (absolute values)

Plane Ring Measured [m] Model [m] 2017 values [m]

H

1 1.383± 0.014

1.4658

1.3619
2 1.377± 0.023 1.3884
3 1.3732± 0.0024 1.3634
4 1.372± 0.014 1.3827

V

1 0.0874± 0.0027

0.0

0.0919
2 0.0960± 0.0050 0.0114
3 0.084± 0.011 0.0299
4 0.0425± 0.0044 0.1101

Table 4.2: Measured dispersion at the WS of the PSB

The results are similar for the other PSB rings (1, 2 and 4). The plots can be found
in the appendix. Table 4.2 summarizes the measured dispersion at the WS for all the
rings and the comparison with the model. These values are very close, in most cases,
with these measured in the previous year (2017 values) [49]. The uncertainty of the
measured values corresponds to the error of the fit.

Following the same approach as with the WS, systematic dispersion measurements
along the PSB rings were performed using all the BPMs around the machine. In the
horizontal plane for all rings and for all BPMs the data points were very linear.Figure
4.4 shows the measured dispersion around the rings and it is compared with the model
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dispersion, as calculated by MAD-X [53], at extraction energy. In the upper plot of Fig.
4.4 the line represents the model, the dots the measured dispersion at the BPMs and
the stars the measured dispersion at the WS. In the bottom plot of the same figure the
relative differences between the model and the measured dispersion are shown.

Figure 4.4: PSB Rings BPMs measured dispersion

The percentage differences between the measurement and the model ranges between
5 − 10 % for the BR2, BR3 and BR4 BPMs but it goes up to 20 − 30 % for the
BR1 BPMs. Independent measurements were repeated for the BPMs of ring 1 but the
results were the same: the dispersion that was measured is between 1.0 − 1.2 m and
not between 1.3 − 1.4 m as of the other rings. Moreover, the data measured with the
BR1.BPM14L3 were problematic and this data-point was thus removed from the plot.
These measurements suggest that the calibration of the BPMs of ring 1 need to be
revised by the Beam Instrumentation experts. For the WS the difference is around 5 %.

4.2.2 PSB BT-BTM Dispersion

Figure 4.5: SEM Grids horizontal dispersion
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The dispersion in the extraction line of the PSB was measured at the locations of the
three SEM Grids (Fig. 1.5) and at the six BPMs (BT-BPM00, BT-BPM10, BT-BPM20,
BTM-BPM30, BT-BPM40, BTM-BPM00, BTM-BPM10) of the BT-BTM transfer line,
following the same procedure as described earlier. Typical plots can be seen in Figure
4.5. In the second grid the behavior is not linear anymore as at this location the linear
dispersion is close to zero. A quadratic fit is more suitable in this case, as we start to
be very sensitive to the second order dispersion term.

The vertical dispersion is non-zero in all cases. When the beam comes from different
rings the optics, and therefore the dispersion, at the SEM Grids are not identical but
have some small differences. Figure 4.6 shows the measured horizontal (top) and vertical
(bottom) dispersion of the BT-BTM line. The lines represent the model dispersion, while
the dots the measured dispersion at the BPMs and the stars the measured dispersion at
the SEM grids.

Figure 4.6: BT-BTM transfer line dispersion

The agreement between the model and the measured dispersion is satisfactory in most
cases (especially for ring 1 and ring 4). The MAD-X files that were used to compute
the model dispersion can be found in https://gitlab.cern.ch/injector-optics/

TransferLines/PSB-PS. These optics functions are for protons at 2.12 GeV/c and the
small horizontal dispersion optics (* hor emit smallDx.str).

Table 4.3 summarizes all the measured values for the three grids in all rings and

https://gitlab.cern.ch/injector-optics/TransferLines/PSB-PS
https://gitlab.cern.ch/injector-optics/TransferLines/PSB-PS
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planes. The dispersion errors correspond to the errors of the linear (or quadratic) fits.

SEM Grids Measured Dispersion (absolute values)

Plane Ring SEM01 [m] SEM02 [m] SEM03 [m]

H

1 1.4875± 0.047 0.037± 0.0010 1.289± 0.011
2 1.1892± 0.029 0.0646± 0.0055 1.2298± 0.0097
3 1.1208± 0.0032 0.0899± 0.0065 1.201± 0.010
4 1.4434± 0.060 0.0215± 0.0071 1.268± 0.013

V

1 0.4252± 0.0052 0.0039± 0.0042 0.4757± 0.0076
2 0.2936± 0.0017 0.0687± 0.0012 0.1305± 0.0049
3 0.0276± 0.0017 0.0176± 0.0026 0.0019± 0.0049
4 0.1998± 0.0009 0.0281± 0.0010 0.3019± 0.0022

Table 4.3: Measured dispersion at the SEM grids of the BTM transfer line

4.2.3 Beta-Function Measurement

In 2018 an extensive optics measurements campaign was performed for all rings of the
PSB. This work was done by A. Garcia-Tabares, P.K. Skowroński and R. Tomás and is
discussed in more details in [54]. As the knowledge of the beta-functions at the location
of the WS is an important ingredient for the emittance computation, a summary of those
measurements will be discussed in this section.

The accurate beta measurement in the PSB is a challenging task. It relies on the
excitation of betatron oscillations in both the horizontal and the vertical plane using a
kicker magnet. The excitation is applied either over a single turn or it is a continuous
modulation close to the betatron frequency (AC Dipole). In these measurements the
ACD excitation was mainly used. The dipole tune is defined as:

QDx,y =
fexc
frev

, (4.4)

where frev is the revolution frequency of the beam.

Two methods were used for the reconstruction of the beta function. In the first
method (N-BPM method [55]) the relative betatron phase between BPM pairs is derived
from the harmonic analysis of the turn-by-turn (TbT) data. The phase advance is then
used to calculate the beta functions according to the formula:

βφ(si) =
cotφij − cotφik
cotφmij − cotφmik

βm(si), (4.5)

where φij = φ(sj) − φ(si) are the measured phase advances between the BPMs j and i
and the superscript m denotes the model values. The phase measurement is independent
of BPM calibration and transverse misalignments. However, in the nominal optics of the
PSB (Qx = 4.28 and Qy = 4.30 at injection) the phase advance between two consecutive
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BPMs is very close to 90◦ causing large uncertainties to the measured values. This is
due to the sensitivity of the βφ to φi,j fluctuations near ∆φij = π/2 [54].

The second method measures the amplitude of the betatron oscillations (eq. 2.15)
[56]. The observed amplitude at the ith BPM is modified according to its calibration
factor Ci:

Ai = Ci
√
βu,i2Ju. (4.6)

The beta from amplitude can be calculated by using the formula [56]:

βAi =
A2
u,i

2Ju,i

1 + r2 + 2r cos 2πµ

1− r2
, (4.7)

with µ the betatron phase and r equal to:

r =
sinπ(Qd −Q)

sinπ(Qd +Q)
, (4.8)

where Qd is the ACD tune and Q is the natural beam tune. Smaller values of the tune
difference:

∆Qu = Qu −Qd (4.9)

introduce larger excitation. The accuracy of the βA is restricted by the precision of the
BPM calibrations [54]. In order to overcome this limitation the beta function was mea-
sured in an alternative working point where the integer part of the tune was modified
by on unit in both planes, going to an integer tune of 3 in the horizontal and 5 in the
vertical plane. In this case the phase advance between the consecutive BPMs is not 90◦

anymore and the uncertainty of the βφ is smaller. This uncertainty was minimized by
optimizing the measurement parameters (beam intensity, distance between the driven
and the beam tune ∆Qu etc.). Then the βφ values are used as a reference for the cali-
bration. The nominal optics beta measurement is performed right after the calibration
with similar beam conditions.

Figure 4.7 shows the beta from phase (βφ), the beta from amplitude (βA) and the
beta from amplitude after the callibration (βA,cal) for the nominal Q4Q4 optics as a
function of the longitudinal position of the PSB. The WS of the PSB is positioned
between the first and the second BPM. In order to propagate the beta function at the
position of the WS the Twiss alpha function needs to be known. The alpha function is
computed only by using the relative phases between the BPMs, which cause large error
bars [54]. The relative beta error at the location of the PSB WS was estimated to be
−10 ± 20 % with respect to the model value. Similar studies in the PS measured the
beta function very close to the model with an error of less than 5 % [50, 57].

In the transfer line there is no need to measure the beta function for the emittance
calculation since it is not used in the 3-SEM method. Table 4.4 summarizes the optical
parameters at the position of the WS in the PSB and the PS alongside with the model
values:
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Figure 4.7: Horizontal (left) and vertical (right) measured βφ, βA and βA,cal functions
for the Q4Q4 along the ring 1 of the PSB

WS Optical Parameters

Parameter PSB (BRi.BWS.2L1.H) PS (PR.BWS.65.H)

βx model 5.7 m 22.3 m

βx measured 5.1± 1.0 m 22.9± 1.1 m

Dx model 1.47 m 3.17 m

Dx measured 1.373± 0.002 m 3.17 m

Table 4.4: Model and measured optical parameters at the WS of the PSB and the PS

4.3 Brightness Curves at Extraction of the PSB

In this section the brightness curves at the extraction of the PSB using different instru-
mentation will be presented and compared with each other. The impact of the measured
values of the optical parameters on the emittance calculation will be discussed. Mea-
surements were performed in all 4 rings of the PSB.

The procedure for the emittance computation starting from a measured beam profile
was described in detail in Chapter 3. In order to produce the brightness curves, system-
atic transverse beam profile measurements were acquired for different beam intensities,
varying from 60-100E10 protons, using the BCMS25 beam setup.

Figure 4.8 shows the computed emittance versus intensity in the horizontal (left) and
vertical (right) plane as measured with the SEM grids. The Simple Gaussian Subtraction
was used for the dispersion subtraction and the emittance was computed based on the
3-SEM method. For the range of intensities from 60 · 1010 ppb to 100 · 1010 ppb the
emittance varies from 0.8 to 1.6 µm, with a smaller spread in the vertical plane. This
is due to the fact that in the vertical plane the dispersive contribution is negligible and
therefore any error or fluctuation coming from the dispersion or the momentum spread
of the beam has a small effect in the resulting emittance. Still in both planes this spread
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Figure 4.8: Brightness curves for SEM Grids

Figure 4.9: PSB R3 WS vs. SEM grids brightness curves with model optics

is non-negligible and it has been taken into account through the error of the applied
linear fit (green line). These plots confirm the expected constant brightness of the PSB,
which is by definition (eq. 2.34) proportional to the inverse value of the linear term
coefficient. The results for the other three PSB rings are presented in the appendix.
Small variations in the slope and in the offset of the linear fit are observed from ring to
ring which are within the error of the fits.

Figure 4.9 shows a comparison of the measurements from the PSB ring 3 WS at
extraction energy and the BTM SEM grids. One can notice that there is a significant
inconsistency between the two brightness curves. The emittance at the extraction line
is approximately 0.3 mm·mrad larger than the one inside the rings. The difference
between the two instruments is comparable with these reported by previous studies [47].
No significant emittance difference is observed in the vertical plane (see appendix).

The emittance values of Figure 4.9 have been calculated using the model beta function
and dispersion for both the ring of the PSB and the BTM line. Possible errors of these
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parameters can greatly affect the emittance values as it was demonstrated in Figure
4.2. In the previous chapter it was shown that especially in the position of the WS
the difference between the measured and the model values are quite significant. At
the position of the WS the dispersion was measured almost 7 % smaller and the beta
function around 10 % smaller with a large uncertainty of 20 %.

Figure 4.10: Left: brightness curves for the model dispersion and beta function. Center:
applying the measured dispersion. Right: applying the measured beta function.

Figure 4.10 illustrates the impact of the measured parameters on the brightness of
the WS. The left plot shows the emittance discrepancy when using the model optical
parameters (Fig. 4.9). Applying the 7 % smaller measured dispersion the emittance
gap becomes smaller in the middle plot of Figure 4.10. The errorbars correspond to the
errors on the beam size and the dispersion. Finally in the right plot the measured beta
together with its uncertainty has been used. The brightness of the WS matches the
brightness of the SEM grids within the errorbars.

Figure 4.11: Impact of systematic errors on the brightness curves at the extraction of
the PSB

Figure 4.11 summarizes the impact of the systematic errors on the brightness curves,
plotting only the linear fits. A spread on the brightness of the SEM grids has also been
added that includes the errors of the dispersion and the 3-SEM method. It is clear
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that the dependence of the brightness in the horizontal plane is strongly affected on the
dispersion and beta errors. This gives a strong indication that the emittance discrepancy
in operation is dominated by the systematic errors of the optical parameters. However,
the large uncertainties in the measurement of the beta functions do not allow for solid
conclusions.

It is worth mentioning that the momentum spread of the beam was reconstructed by
tomography as it was described in Chapter 3.1.2. The δp/p values that were used were
taken directly from the Tomoscope application. The accuracy and precision evaluation
of these values go beyond the scopes of this study.

4.4 Comparison with the Brightness Curves at the PS In-
jection

In parallel to the emittance measurements campaign at the extraction energy of the
PSB, a systematic emittance measurement campaign was also performed at the injection
energy of the PS. Figure 4.12 (left) shows the measured brightness curves at the injection
energy of the PS (blue) and at the extraction energy of the PSB using the SEM grids
(black) and the WS (green). In all cases the optical parameters of the model were used.
The horizontal emittance discrepancy between the PSB and the PS as measured with
the wire scanners in the two machines is of the order of 40-50%, in agreement with the
observations during operation (see Fig. 4.1). The brightness measured by the SEM
Grids lies between the other two curves.

Figure 4.12: PSB-SEM-PS Brightness Curves for operational BCMS and the model
optical parameters

In the operationally used optics of the BTP transfer line between the PSB and the
PS, there is a known dispersion mismatch. The expected horizontal emittance blow-up
due to this mismatch is around 0.15 mm·mrad [58, 59, 60] which is not sufficient to
explain the large difference between the two machines.

Following the same procedure as for the PSB brightness curves, the PS brightness
curves based on the measured optical functions were recomputed. In the case of the
PS, however, the beta function measurement is much more precise than in the case
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of the PSB. The brightness curves of the PSB and the PS, using both the model and
measured optical functions are summarized in Fig. 4.12 (right). It is interesting to notice
that the difference between the PS bright curves using the measured optical functions
and the PSB brightness curve as measured with the SEM Grids, is of the order of
0.15 mm·mrad, which agrees very well with the expected emittance blow up due to the
dispersion mismatch in the transfer line.



Chapter 5

Errors Introduced by the
Emittance Computation
Algorithms

Having measured the transverse beam profiles one can determine the beam size by apply-
ing a fit to the data points using a mathematical function. The so far analysis is based
on the assumption that these profiles follow a Gaussian distribution. In this chapter
this assumption will be evaluated in order to quantify the impact of the distribution’s
shape on the calculation of the emittance and eventually on the brightness. Moreover,
the errors that are induced by the emittance computation methods that rely upon this
assumption will be estimated through a series of simulations.

5.1 Impact of Bunch Distribution on the Brightness Curve

Figure 5.1: Measured transverse beam pro-
file: Gaussian and Q-Gaussian fit

From the analysis of the transverse emit-
tance versus intensity data that were pre-
sented in the previous chapter, it was ob-
served that in many cases the bunch pro-
files follow non-Gaussian shapes. An ex-
ample of a measured transverse beam dis-
tribution with the second SEM grid in
the horizontal plane is shown in Figure
5.1. This distribution appears to have
tails that differ from the ones of a Gaus-
sian distribution. These tails can be mod-
elled with a generalized version of a Gaus-
sian function, the Q-Gaussian function, as it was demonstrated in Chapter 3. In this
example two different fits have been applied: a Gaussian, which is represented by the
green line, and a Q-Gaussian, which is represented by the orange line. The range of

45
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the data points used for the fit was limited to a few standard deviations (black points)
because in some cases the baseline of the measured distribution would take negative
values. Q-Gaussian fits were applied to all the data collected with both the SEM Grids
and the WS, and the rms beam size was re-evaluated for each case.

To quantify the quality of the fit, the Relative Mean Square Error (RMSE) [61] was
also computed both for the standard Gaussian and Q-Gaussian fits. The RMSE allows
to qualitatively compute how concentrated are the data points around the fitted line. If
yi are the data points of the signal (the profile of the WS or the SEM Grids) and yi,fit
are the values of the fit (at the positions of the data points), then the RMSE is given by
the square root of the average squared residuals:

RMSE =

√√√√ 1

Ns

Ns∑
i=1

(yi − yi,fit)2, (5.1)

where Ns is the number of samples of the signal. By dividing the RMSE with the mean
value of the yi values one gets the relative RMSE (rRMSE), which estimates the spread
of the points around the fit:

rRMSE =
RMSE

y
· 100%. (5.2)

Figure 5.2: Gaussian and Q-Gaussian rRMSE

Figure 5.2 shows the difference between the rRMSE of the Gaussian and the Q-
Gaussian fits of the profiles measured with the three SEM Grids, as a function of the
intensity. The first observation that can be made is that in all cases the difference is
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positive. This means that the Q-Gaussian rRMSE is always less or equal to the one of
the Gaussian, which indicates that it better models the bunch distribution. The second
observation is that around the operational intensities (75− 85 · 1010 ppb) the differences
become minimum. This is less clear for the third grid where the minimum seems to
be in higher intensities. For high (above 90 · 1010 ppb) and low (less than 70 · 1010

ppb) intensities the Q-Gaussian function seems to be a better choice for modelling the
distribution.

Figure 5.3 shows the q-value as a function of the intensity for the three SEM Grids.
For low intensities the q-value is less than one which corresponds to a distribution with
underpopulated tails. For a q-value greater than one, which is the case for the high
intensities, the tails are overpopulated. Close to operational intensities the q-value is
approximately equal to 1 and the beam tails are identical to the tails of a Gaussian
function. This is in agreement with the plot of Figure 5.2 in which the Gaussian func-
tion takes similar rRMSE values with the Q-Gaussian in the regime of the operational
intensities.

Figure 5.3: Q-Values for the three SEM Grids

In order to quantify the impact of the bunch tails in the brightness curves, the emit-
tance must be recomputed using the new beam sizes of the Q-Gaussian fit as obtained
from eq. (3.4). The q-values are always below 5/3 (Fig. 5.3). Figure 5.4 shows the
brightness curves when assuming Gaussian (blue) and when q-Gaussian (red) distribu-
tions. It is clear that for low intensities the emittance was overestimated while for high
intensities was underestimated. This is expected and it is consistent with the population
of the distribution’s tails (q-value). The overall effect is a change in the slope of around
+50 %. The situation in the other rings is similar and can be found in the appendix
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(and also in [33]).

Figure 5.4: Impact of the shape of the bunch distribution on the brightness curve

5.2 Modeling Beam Distributions

The beam size of a bunch at a position with non-zero dispersion is the convolution
between the betatronic and the dispersive beam distribution. As it was shown in the
previous section the bunch distribution can have non-Gaussian tails that can greatly
affect the brightness curve. Furthermore in the PS Booster the dispersive distribution of
the LHC-beams follow a parabolic shape rather than a Gaussian one [62]. The subject of
this section is to quantify the error introduced by the emittance computation algorithms
on the emittance computation.

Figure 5.5 (left) shows a simulated Gaussian betatronic distribution, at a specific
position inside an accelerator, with a defined emittance of 1.2 mm·mrad and a beta
function of 5 m. These are typical parameters for the operational BCMS beam at the
location of the BTM.SGH01, for intensities around 80 · 1010 ppb (left plot of Fig. 4.8).
The resulting betatronic beam size in this case is:

σbet =
√
εxβx =

√
1.2 · 5.0 ≈ 2.45mm. (5.3)

In a similar way a longitudinal (dispersive) distribution is simulated with defined
RMS momentum spread of 0.1 % and a dispersion of Dx = 1.5 m. The shape of this
distribution is parabolic as the right plot of Figure 5.5 shows. For this distribution the
“dispersive beam size” is equal to:

σdisp = (δp/p)RMS ·Dx = 1.5mm. (5.4)
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Figure 5.5: Simulated Gaussian betatronic distribution (left) and Parabolic dispersive
distribution (right)

The distribution that an instrument will measure at this position is the convolu-
tion between the betatronic and the dispersive distributions. Because the dispersive
distribution has a non-Gaussian shape the resulting measured is also expected to be
non-Gaussian. Figure 5.6 shows the convolution on the left and the resulting measured
profile on the right. As it can be seen from the applied fit a Gaussian function models
the distribution with a good accuracy. This is because the dispersion contribution is
relatively small: around 50 % smaller than the betatronic. Re-calculating the betatronic
beam size with using only the measured and the dispersive distributions and the SG
method, the resulting value is close to the initial defined one (eq. 5.3), with an error of
1.3 %.

Figure 5.6: Convolution between a Gaussian and a Parabolic distribution

As the dispersive contribution becomes more significant the measured distribution
becomes even more non-Gaussian and therefore the error of the SG becomes larger.
This contribution can be expressed with the dispersive/betatronic beam size ratio. The
ratio can be changed either by changing the intensity of the bunch or by changing the
momentum spread of the beam. Figure 5.7 shows the relative betatronic beam size error
of each method (SG and FD) as a function of the dispersive/betatronic ratio. It can
be seen the error of the SG increases exponentially while the FD method has negligible
errors.
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Figure 5.7: Betatronic beam size errors as a function of the dispersive contribution

From Table 4.1 and Table 4.4 one can determine the dispersive contribution at the
position of the WS. For example for the standard 25 ns beam achieved parameters the
ratio at the position of the WS is:

σwsbet =
√

2.25 · 5.1 ≈ 3.39mm,

σwsdisp = 0.9 · 1.37 ≈ 1.23mm,

σwsdisp
σwsbet

= 36%,

(5.5)

which will lead to a negligible error on the betatronic beam size (green vertical line
in Fig. 5.7). For the target LIU parameters, however, the dispersion distribution will
become more significant. The ratio at the WS is expected to be in this case:

σwsbet =
√

1.80 · 5.1 ≈ 3.03mm,

σwsdisp = 1.5 · 1.37 ≈ 2.06mm,

σwsdisp
σwsbet

= 68%,

(5.6)

in which the error on the betatronic beam size becomes around 2 % (red vertical line in
Fig. 5.7).

But not only the dispersive distribution can have a non-Gaussian shape. From 5.3 it
can be noticed that the q-parameter for high intensities can take values that are greater
than one (overpopulated tails). The fact that the parabolic dispersive distribution cor-
responds to q-values close to zero (underpopulated tails) suggests that, in order to have
q > 1, the betatronic distribution must also follow a non-Gaussian function. By changing
the shape of the betatronic distribution the deformation of the measured profile becomes
larger and starts to also have heavier or lighter tails, as Figure 5.8 shows.
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Figure 5.8: Convolution between a Q-Gaussian and a Parabolic distribution

In this case the errors of each deconvolution method behave differently. These errors
are shown in Figure 5.9 and have been parameterized not only with the dispersive contri-
bution but also with the q-value of a Q-Gaussian betatronic distribution. Scanning for
a range of q-values between −0.7 and 1.4 the errors of the SG (left) and the FD (right)
further increase. In these plots the vertical axis expresses the percentage error on the
betatronic beam size with the sign corresponding to the overestimation (+) or the un-
derestimation (-) of it. For example if q > 1 (heavy tails) and low dispersive/betatronic
ratios (the betatronic is dominant) both methods underestimate the betatronic beam
size. This is expected because the measured distribution has also heavy tails. The q = 1
lines correspond to the plot of Figure 5.7.

Figure 5.9: Betatronic beam size errors as a function of the dispersive contribution and
the q-value

So far it has been discussed the error on the betatronic beam size. The error on the
emittance, for the WS at least, can be found by using linear error propagation:

ε =
σ2b

βTwiss
,

δε

ε
= 2 · δσb

σb
.

(5.7)

Therefore the emittance error is double the betatronic beam size error. For the LIU
target parameters of the standard 25 ns beam this means an emittance error of 4 %. For



52 Errors Introduced by the Emittance Computation Algorithms

the SEM Grids the calculation of the emittance error is more complicated to calculate
since three beam sizes are used as inputs in the 3-SEM method and the emittance is the
result of two quite complicated formulas (equations 3.12, 3.13). Sensitivity checks on
the errors on the betatronic beam sizes of the 3-SEM method were presented in Figure
3.8.

5.3 Benchmarking Measurements

In order to test the predictions of the previous simulations using measured data an
experiment was set up [63, 64]. A set of BCMS beam profile measurements took place
at the ring 3 WS of the PSB for three different intensities, 55 · 1010, 75 · 1010 and
100 · 1010 ppb, which correspond to different betatronic contributions and with different
δp/p values, corresponding to different dispersive contributions. The momentum spread
of the beam was varied by changing the amplitude of the voltage of the C04 RF cavity,
keeping constant the voltage of the C02 RF cavity. This way a longitudinal shaving
of the beam is performed [9]. For each beam parameters the transverse profiles were
measured with the WS while the longitudinal profiles with the Tomoscope application.
Then the horizontal emittance was calculated using both the SG and FD methods.

Figure 5.10: Relative emittance differences between the SG
and FD methods

Figure 5.10 shows
the relative emittance
differences between the
two methods of calcu-
lation as a function of
the momentum spread
of the beam. The three
colors correspond to the
three different intensi-
ties. The two methods
diverge when the con-
tribution of the disper-
sive part of the profile
becomes larger, i.e. for
larger δp/p and smaller
intensities. Equivalent
simulation studies in the
PS arrive to similar conclusions [65]. Plotting the same data points not as a function of
the momentum spread but as a function of the dispersive/betatronic ratio and comparing
with the simulated differences of the two methods (Fig. 5.7) one can notice that there is
a satisfactory agreement between the measurements and the simulations. The simulated
curve has a small width because it includes a small range of q-values around q = 1. Sim-
ilar were the results when using a different BCMS beam with larger momentum spread
(δp/p ≈ 1.5 · 10−3) [62].

For lower ratios, and specifically close to the regime that the future LIU standard
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Figure 5.11: Benchmarking the measurements of the WS

LHC beams are expected to be (around 68 % as it was shown), the predicted relative
errors coincide with the measurements within the uncertainty of the points. In general,
this suggests that the FD method is more exact on the emittance computation. But the
differences with the SG method are small, at least for the current standard LHC beam
parameters (less than 36 %), and are expected to increase after the LIU.

For high ratios the data points start to diverge from the curve. A reason for this
could be that is hard to know the exact dispersive/betatronic ratio of the experimental
data points, since the betatronic beam size is unknown and it depends on the deconvo-
lution algorithm. Furthermore, although the measured dispersive distribution follows a
parabolic shape, in many cases it appears slightly deformed [62]. These small deforma-
tions can play an important role especially for the FD method which is very sensitive to
the exact shape of the distribution.
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Chapter 6

Summary

In the context of understanding the observed PSB-PS emittance discrepancy, systematic
emittance measurements were performed at the extraction of the PSB Booster with
all the available instrumentation and for different beam conditions. The goal was to
understand the impact of the systematic errors on the brightness curves measured by the
WS and the SEM grids. Possible sources of systematic errors are the optical parameters
of the machine and the non-Gaussian shapes of the transverse beam distributions. Errors
coming from the instrumentation were not part of this study.

The dispersion and the beta functions were measured for the four rings of the PSB
and the BTM extraction line. Compared to the model, the measured dispersion and
beta function at the location of the WS was found to be 7 % and 10 % smaller re-
spectively. At the positions of the SEM grids the differences are relatively small. The
emittance inconsistency between the two instruments is greatly reduced when applying
the measured dispersion and beta function. However, the large uncertainties in the beta
function measurement does not allow to come to solid conclusions.

A detailed study of the shape of the transverse bunch distributions at the extraction
of the PSB revealed that the bunch tails appear to differ from those of a Gaussian
function. This effect is more noticeable at low intensities (less than 70 · 1010 ppb) where
the tails are underpopulated and at high intensities (greater than 90 · 1010 ppb) where
the tails are overpopulated. These tails have been modelled with a Q-Gaussian function.
The recalculated brightness results to a curve with a slightly different slope than the
one that was previously calculated with the Gaussian function. The emittance at low
intensities was overestimated while at high intensities it was underestimated.

The impact of the emittance computation methods on the emittance error was also
estimated using simulated distributions. The non-Gaussian shape of the dispersive distri-
bution in the PSB generates an increasing error to the Standard Gaussian (SG) method,
as the dispersive contribution becomes larger. This is especially important for the future
LIU beams where the dispersive contribution is expected to be almost twice as large.
Possible non-Gaussian shapes of the betatronic distribution will further increase these
errors for both SG and FD methods. A set of measurements were performed at the PSB
in order to validate these predictions. A good agreement between the measurements and
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the simulations was shown.



Appendix A

PSB WS-SEM Dispersion

Figure A.1: R1H, R2H and R4H PSB WS measured dispersion

In the vertical plane the spread of the points is larger, in comparison to the horizontal
plane, and a quadratic fit seems more suitable. This is because the linear dispersion is
so small so that the second order dispersion emerges.
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58 PSB WS-SEM Dispersion

Figure A.2: R1V-R4V PSB WS measured dispersion

Figure A.3: R1H, R2H and R4H BTM SEM grids measured dispersion



59

Figure A.4: R1V-R4V BTM SEM grids measured dispersion
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Appendix B

PSB R1-R4 Brightness Curves

Figure B.1: PSB WS, SEM and PS horizontal brightness curves for all rings (SG method
and model optics)

61



62 PSB R1-R4 Brightness Curves

Figure B.2: PSB WS, SEM and PS vertical brightness curves for all rings (SG method
and model optics)



Appendix C

Bunch Tail Effects in R1, R2 and
R4 of the PSB

Figure C.1: Relative RMSE and q values of the transverse profiles measured by the SEM
Grids when the beam is extracted from R1, R2 and R4 of the PSB
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64 Bunch Tail Effects in R1, R2 and R4 of the PSB

Figure C.2: Impact of the bunch tails for the brightness at the SEM Grids when the
beam is extracted from R1, R2 and R4 of the PSB
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