

Antinuclei Production with ALICE at the LHC

Natasha Sharma,

Panjab University, Chandigarh, India.

for the ALICE Collaboration

Light Anti-Nuclei as a Probe for New Physics

14 - 18 October 2019, Leiden, the Netherlands

Outline

- > Introduction & Motivation
- ➤ LHC facility and ALICE experiment
- ➤ (Anti-)nuclei identification
- Recent results from pp, p-Pb and Pb-Pb collisions as a function of multiplicity
- > Anti-deuteron inelastic cross-section measurement
- Summary
- Outlook: ALICE Upgrade

Introduction & Motivation

Introduction: Light (anti-)nuclei chart

Anti-hypertriton is the lightest anti-hypernucleus, first observed by STAR experiment in 2010 [Science 328 (2010) 58].

Anti-alpha is the heaviest anti-nucleus observed so far. First observed by STAR experiment in 2011 [Nature 473 (2011) 353].

Introduction: (Anti-)nuclei @ LHC

- > LHC high energy collisions:
 - Equal number of quarks and anti-quarks: u, d and s
 - Produce significant abundance of light matter and anti-matter
- Ideal facility to study nuclei and anti-nuclei production
- > Provides collisions at various systems and energies
 - Systematic study of (anti-)nuclei production

Introduction: Thermal production

- ➤ At chemical freeze-out: Particle yields get fixed
- At LHC energies ($\mu_B \approx 0$) the abundance is determined by thermodynamic equilibrium $\frac{dN}{dt} \propto \exp\left(\frac{-m}{2}\right)$
- ➤ Nuclei (having large mass) are more sensitive to T_{chem}

Introduction: Coalescence Production

Coalescence model: (Anti-) (hyper) nuclei formation requires (anti-) nucleons and/or (anti-) hyperons to be close in phase space.

Produced (anti-)nuclei

- o can break apart (small binding energy) and
- o can be regenerated by final-state coalescence

Introduction: Exotic searches

- ➤ Explore QCD and QCD inspired model predictions for (unusual) multi-baryon states.
- ➤ Search for rarely produced antiand hyper-matter.
- ➤ Test model predictions, e.g. thermal and coalescence

A. Andronic et al., PLB 697, 203 (2011) and references therein

LHC & ALICE Experiment

Large Hadron Collider (LHC)

A Large Ion Collider Experiment (ALICE)

Main Detectors:

ITS (|η|<0.9)

- -- 6 layers silicon detectors
- -- Trigger, vertex, tracking, PID (d*E*/d*x*)

TPC (|n|<0.9)

- -- Gas-filled cylindrical barrel, MWPC readout
- -- Tracking, PID (dE/dx)

TOF ($|\eta| < 0.9$)

- -- Multigap RPC
- -- PID (time-of-flight)

T0 (4.6< η <4.9 and -3.3< η <-3.0)

- -- 2 arrays of Cherenkov's (T0A, T0C)
- -- Luminosity, vertex, event collision time

V0 (2.8 $<\eta<5.1$ and -3.7 $<\eta<-1.7$)

- -- Forward arrays of scintillators (V0A and V0C)
- -- Trigger, beam gas rejection, multiplicity, centrality

11

11

ALICE Data Collection: 2009-2018

System	Year(s)	√s _{NN} (TeV)	L _{int}
pp	2009-2013	0.9, 2.76, 7, 8	~200 µb ⁻¹ , ~100 nb ⁻¹ , ~1.5 pb ⁻¹ , ~2.5 pb ⁻¹
	2015,2017	5.02	~1.3 pb ⁻¹
	2015-2017	13	~25 pb ⁻¹
p-Pb	2013	5.02	~15 nb ⁻¹
	2016	5.02, 8.16	~3 nb ⁻¹ , ~25 nb ⁻¹
Xe-Xe	2017	5.44	~0.3 µb ⁻¹
Pb-Pb	2010-2011	2.76	~75 µb⁻¹
	2015	5.02	~250 µb ⁻¹
	2018	5.02	~0.9 nb ⁻¹

Vast data set in different systems (pp, p-Pb, Xe-Xe, and Pb-Pb) and energies

12

Multiplicity/centrality selection

Multiplicity is defined as the average number of charged particles per unit rapidity per event ($< dN_{ch}/d\eta >$).

- Slicing in event activity classes is based on the charge deposited in the V0 detector at forward rapidity.
- For each class, the event multiplicity is measured at mid-rapidity (|η|< 0.5) in the SPD, in order to avoid selection biases.

Nuclei identification: Time Projection Chamber

⁴He is the heaviest anti-particle observed so far: 16 candidates in Pb-Pb at 5.02 TeV Light nuclei and anti-nuclei are identified using dE/dx measurement in the TPC.

Deuterons $0.5 \le p_T \le 1.4 \text{ GeV}/c$, and ³He between 1.5 < p_T < 7 GeV/c.

Nuclei identification: Time-Of-Flight

- Coverage: |η| < 0.9
- Multi-gap resistive plate chamber
- Particle Identification via velocity determination

Deuterons above 1.4 GeV/c are identified using velocity measurement with the TOF detector and extracting the yield from the Δm^2 distribution.

$$m_{TOF}^2 = \frac{p^2}{c^2} \left(\frac{c^2 t_{TOF}^2}{l_{track}^2} - 1 \right)$$

Hypertriton identification

 $^{3}_{\Lambda}H(^{3}_{\Lambda}\overline{H})$ – Lightest strange nucleus

Hypertriton (M = $2.991 \text{ GeV}/c^2$) signal extracted using invariant mass of decay products.

$${}^3_\Lambda \overline{H} \ \to \overline{d} + \overline{p} + \pi^{\ +}$$

Invariant Yield and Ratios

Deuteron production at LHC (in Pb-Pb collisions)

ALICE, PRC 93 (2015) 024917

- ✓ The Blast-Wave function (*) fits the data well in Pb-Pb.
- ✓ Fit used for extrapolation of yield to unmeasured low and high p_T region.
- ✓ Spectra become harder with increasing multiplicity/centrality → consistent with radial flow.

(*) E. Schnedermann et al., PRC 48, 2462 (1993).

Deuteron production at LHC (in p-Pb collisions)

ALICE Coll.: <u>arXiv:1906.03136</u> [nucl-ex]

- ✓ The transverse momentum distributions are fitted with m_T-exponential function.
- ✓ Fit used for extrapolation of yield to unmeasured low and high p_T region.
- ✓ Spectra become harder with increasing multiplicity as observed in Pb-Pb.

Deuteron production at LHC (in pp collisions)

- ✓ The Levy-Tsallis function (*) fits the data well for all multiplicity classes in pp collisions.
- \checkmark Fit used for extrapolation of yield to unmeasured low and high p_T region.
- ✓ Hardening of spectra with increasing multiplicity is observed, less pronounced than in p-Pb and Pb-Pb.

(*) C. Tsallis, J. Stat. Phys. 52, 479 (1988).

³He production in Pb-Pb and p-Pb

ALICE, PRC 93 (2015) 024917

ALICE Coll.: arXiv:1906.03136 [nucl-ex]

Dashed curve represents individual Blast-Wave fits in Pb-Pb and m_T exponential in p-Pb collisions.

Mass dependence of yield

ALICE Coll.: <u>arXiv:1906.03136</u> [nucl-ex]

Thermal model predicts

$$\frac{dN}{dy} \propto \exp\left(\frac{-m}{T_{chem}}\right)$$

- ✓ Nuclei yields follow an exponential decrease with mass A for all collision systems.
- ✓ Each added nucleon reduces yield by a factor called 'Penalty factor'
 - ➤ Central Pb-Pb ~ 360
 - ➤ NSD p-Pb ~ 640
 - ➤ INEL pp ~ 950

Anti-matter to matter ratio

ALICE, PLB 794 (2019) 50-63

- Anti-nuclei / nuclei ratios are consistent with unity (similar to other light particle species) → matter and anti-matter are produced in same abundance at LHC energies
- Ratios exhibit constant behavior as a function of p_T and centrality.
- Are in agreement with the coalescence and thermal model expectations.

Model Comparison: Thermal production, Kinetic freeze-out, and Coalescence

Thermal models fit to yields (Pb-Pb @ 2.76 TeV)

ALICE, NPA 971 (2018) 1-20

THERMUS: Wheaton et al., Comp. Phys. Commun, 180 (2009) 84 GSI-Heidelberg: Andronic et al., Phys. Lett. B 673 (2009) 142 SHARE 3: Petran et al., Comp. Phys. Commun, 185 (2014) 2056

- Different models describe particle yields including light (hyper-)nuclei well with *T*_{chem} of about 156 MeV in Pb-Pb collisions at 2.76 TeV.
- Including nuclei in the fit causes no significant change in T_{chem}
- → hint for nuclei
 production at hadronization
 (binding energy of light nuclei ~ few MeV)
- This is in contrast to p-Pb and pp collisions.

Thermal models fit to yields (Pb-Pb @ 5.02 TeV)

- Different models describe particle yields including light (hyper-)nuclei well with $T_{\text{chem}} \sim 153 \text{ MeV}$ in Pb-Pb collisions at 5.02 TeV.
- *T*_{chem} is slightly lower at 5.02 TeV than at 2.76 TeV.
- χ^2 is worse than at 2.76 TeV (mainly due to pions and protons).

THERMUS: Wheaton et al., Comp. Phys. Commun, 180 (2009) 84 GSI-Heidelberg: Andronic et al., Phys. Lett. B 673 (2009) 142 SHARE 3: Petran et al., Comp. Phys. Commun, 185 (2014) 2056

Combined Blast-Wave fit

ALICE, PRC 93 (2015) 024917

- \checkmark π, K, p, d, and ³He are fitted simultaneously for central Pb-Pb collisions with the Blast-Wave model in the limited p_T range.
- ✓ All particle spectra are described well with the BW fit.
- \checkmark Common fit parameters are: $<β> = 0.63 \pm 0.01$, $T_{kin} = 113 \pm 12$ MeV, and $n = 0.72 \pm 0.03$.
- Fit parameters are comparable to those from the combined BW fit to only π, K, and p.

$< p_T > vs$ multiplicity

ALICE Coll.: <u>arXiv:1906.03136</u> [nucl-ex]

ALICE, PLB 794 (2019) 50-63

- ✓ $< p_T >$ is consistent with the coalescence model expectations in both p-Pb and pp collisions for all multiplicity classes.
- ✓ Blast wave model fails to describe <*p*_T> for deuterons using common kinetic freeze-out parameters used for pi, K, and p in both pp and p-Pb collisions -- In contrast with the observation in Pb-Pb collisions.

Deuteron to proton ratio

Exact conservation of **baryon number**, charge, strangeness – qualitative description

V. Vovchenko et al. Phys. Lett. **B785**, 171 (2018)

- Flat d/p ratio as a function of multiplicity implies thermal production
 - -- observed in Pb-Pb
- Increasing d/p ratio suggests coalescence production
 - -- observed in small systems
- How to consistently describe ratio using single approach?

Coalescence parameter (B_2)

Coalescence parameter B_A
relates the formation of
composite nuclei to the one of
primary protons and neutrons
through a simple power law

$$E_A \frac{d^3 N_A}{dp_A^3} = B_A \left(E_p \frac{d^3 N_p}{dp_p^3} \right)^A$$
 where $\rho_p = \rho_A/A$

- For A=2:
 deuteron ∝ B₂ x (proton)²
- B₂ does not show p_T
 dependence, in agreement with
 simple coalescence model.

Multiplicity dependence of B_2

- Coalescence probability decreases from pp to central Pb-Pb
- Smooth evolution with multiplicity
- Qualitative behavior explained by parameterization of coalescence parameter using the HBT radii:

$$\frac{B_2}{{
m GeV}^2} \approx 0.068 \left[\left(\frac{R(p_{
m T})}{1 {
m fm}} \right)^2 + 2.6 \left(\frac{b_2}{3.2 {
m fm}} \right)^2 \right]^{-3/2}$$

K. Blum et al., Phys. Rev. D 96 (2017) 103021

Hypertriton Lifetime

Hypertriton Lifetime

Hypertriton $\binom{3}{\Lambda}H$: Bound state of p, n, and Λ -- lightest hypernucleus

Property	Value	
Mass	2.99116 ± 0.00005 (GeV/c²)	
Λ binding energy	0.13±0.05 MeV	
Lifetime (world average)	216 ⁺¹⁶ ₋₁₉ ps	
Decay modes studied	³ He π ⁻ (37.3%) d p π ⁻ (60.1%)	

Small Λ separation energy led to hypothesis that ${}^3_{\Lambda}H$ lifetime is smaller than free Λ i.e. 263 ± 2 ps

Full statistics data of Pb-Pb collisions at 5.02 TeV analyzed

Comparison with World Data

ALI-DER-161043

- Improved precision lifetime measurement
- Compatible with world average and free A lifetime

Flow Measurements

Anisotropic Flow

Strongly interacting system:

Spatial anisotropy → momentum anisotropy Quantified in terms of Fourier coefficients v_n

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left(1 + 2\sum_{n=1}^{\infty} v_n \cos[(\varphi - \Psi_n)] \right)$$
$$v_n(p_T, y) = \langle \cos[n(\varphi - \Psi_n)] \rangle$$

ALICE, JHEP 09 (2018) 006

Observed flow for light flavor particles is consistent with quark coalescence.

-- Does nucleon coalescence hold for (anti-)nuclei?

Deuterons v₂ and v₃ in Pb-Pb collisions

(Anti-)deuteron v_2 and v_3 comparable to protons.

Deuterons v₂ and v₃ in Pb-Pb collisions

(Anti-)deuteron v_2 and v_3 is in agreement with the coalescence model using protons and neutrons phase-space distribution from iEBE-VISHNU.

(Anti-) Deuteron Crosssection Measurement

Anti-Deuteron Searches in Dark Matter

- Most used probes for the indirect search for dark matter annihilation or decay are e⁺, p̄, γrays etc.
 - -- But they suffer from high and uncertain background from cosmic ray spallation etc.
- Cosmic ray anti-deuterons have been proposed as good probe for dark matter searches.
- The pp collision results of anti-deuteron production are important in estimating the secondary anti-deuteron flux in cosmic rays.
- ➤ For better results: Need to understand the production and absorption cross-section from experiments.

Role of ALICE Experiment

Anti-deuterons are measured in ALICE in pp collisions at various $\sqrt{s} = 0.9 - 13$ TeV.

Attempts have been made to constrain the inelastic cross-section of anti-deuterons with ALICE data

-- By studying anti-deuteron absorption in detector material.

Anti-deuterons

Low momentum absorption cross-section of (anti-)deuteron is not available in any experiment (No experimental data below $p_{lab} = 13.3 \text{ GeV/c}$)

ALICE can be used to study absorption in detector material at low momentum

ALICE Apporach

Material Budget:

ALICE detector material budget at mid-rapidity:

- Beam pipe (~0.3% X₀): beryllium
- ITS (~8% X₀): silicon detectors, carbon supporting structures
- TPC (~4% X₀): Ar/CO₂ gas (88/12)
- TRD (~25% X₀): carbon/polypropylene fibre radiator,
 Xe/CO₂ gas, carbon supporting structures
- Space frame (~20% X₀ between TPC and TOF detectors): stainless steel

Approach:

- At LHC energies particles and anti-particles are produced in equal abundance.
- Measure raw anti-particle/particle ratios
- Correct for (anti-)particles produced in weak decays and knock-out from detectors material
- Ratio not equal to unity → loss of anti-particles in detector material due to annihilation
- Constrain σ_{inel}(d) via comparison with Monte Carlo simulations based on Geant

Raw anti-particle/particle ratio in ALICE

Geant4 based Monte Carlo simulations are in better agreement with the experimental data.

Note: Step at p=0.7 GeV/c in \overline{p}/p and at p=1.4 GeV/c in d/d ratios are due to additional detector material between TPC and TOF (TRD and space frame).

Preliminary Constraint on Anti-Deuteron σ_{INEL}

Standalone Geant4 simulation to understand ratios in more details

- (Anti-)deuteron source + a target made of ALICE detector materials
- Loss of (anti-)particles due to inelastic processes in detector material
 - low p: beam pipe, ITS, TPC (<Z> = 7.4, <math><A> = 14.8)
 - high p: beam pipe, ITS, TPC, TRD, SF (<Z> = 11.9, <math><A> = 25.5)

- σ_{inel} has been estimated for an 'average element' of detector material from primary collisions to TOF detector <Z> = 11.9, <A> = 25.5.
- Improving statistical and systematic uncertainties on data for tighter constraints.
- Extending anti-deuterons analysis toward low momentum.

Summary and conclusions

- ✓ Nuclei production (up to A=4) has been measured by the ALICE experiment.
- ✓ Obtained deuteron and ³He spectra in pp, p-Pb and Pb-Pb collisions. Hardening of deuteron spectra with multiplicity is observed for all the systems.
- √ π, K, p, d, and ³He spectra in central Pb-Pb collisions are well described by a single set of common freeze-out parameters in the Blast-wave model.
- ✓ The nuclei yields follow an exponential decrease with mass for all three systems. The penalty factor is ~360 in Pb-Pb collisions, ~640 in p-Pb collisions and ~950 in pp collisions. The decrease in Pb-Pb reflects thermal behavior described by T_{chem} .
- ✓ Both coalescence and thermal models describe different aspects of the data.
 - ➤ Thermal model describes particles and light nuclei yields (including hypertritons) well at $T_{\text{chem}} \approx 156 \text{ MeV}$ in Pb-Pb collisions.
 - d/p ratio rises with multiplicity in pp and p-Pb but remains constant for Pb-Pb.
 - <p_T> is consistent with the coalescence model expectations in pp and p-Pb collisions

Summary and conclusions

- ✓ Coalescence parameter (B₂): Coalescence probability decreases from pp to central Pb-Pb collisions. Smooth evolution with event multiplicity is observed.
- ✓ Hypertriton lifetime: Lifetime is compatible with the world's average and free Λ
 lifetime.
- ✓ Flow: Anti-deuteron v₂ and v₃ are in agreement with the coalescence iEBE-VISHNU model for all centrality classes.
- ✓ Annihilation cross-section: Anti-deuterons σ_{inel} has been estimated for an 'average element' of detector material (<Z> = 11.9, <A> = 25.5) at momentum 1.4 GeV/c to 4 GeV/c.

Outlook: ALICE Upgrade

ALICE Upgrade

ALICE has started a huge upgrade in preparation for LHC Run3 and Run4 \rightarrow expected Pb-Pb $\int \mathcal{L} = 10 \text{ nb}^{-1}$ at 50 kHz collision rate

Quantity	design	achieved				upgrade
Year	(2004)	2010	2011	2015	2018	≥2021
Weeks in physics	-	4	3.5	2.5	3.5	-
Fill no. (best)		1541	2351	4720	7473	-
Beam energy $E[Z\mathrm{TeV}]$	7	3.5		6.37	6.37	7
Pb beam energy $E[A\mathrm{TeV}]$	2.76	1.38		2.51	2.51	2.76
Collision energy $\sqrt{s_{_{\mathrm{NN}}}}[\mathrm{TeV}]$	5.52	2.51		5.02	5.02	5.52
Bunch intensity N_b [10 ⁸]	0.7	1.22	1.07	2.0	2.2	1.8
No. of bunches k_b	592	137	338	518	733	1232
Pb norm. emittance $\epsilon_N [\mu \mathrm{m}]$	1.5	2.	2.0	2.1	2.0	1.65
Pb bunch length σ_z m	0.08	0.07-0.1			0.08	
β^* [m]	0.5	3.5	1.0	0.8	0.5	0.5
Pb stored energy MJ/beam	3.8	0.65	1.9	8.6	13.3	21
Luminosity $L_{\rm AA} [10^{27} {\rm cm}^{-2} {\rm s}^{-1}]$	1	0.03	0.5	3.6	6.1	7
NN luminosity $L_{\mathrm{NN}}[10^{30}\mathrm{cm}^{-2}\mathrm{s}^{-1}]$	43	1.3	22.	156	264	303
Integrated luminosity/experiment [μb^{-1}]	1000	9	160	433,585	900,1800	10^4
Int. NN lumi./expt. [pb^{-1}]	43	0.38	6.7	19,25.3	39,80	4.3×10^5

ALICE Upgrade

ALICE has started a huge upgrade in preparation for LHC Run3 and Run4 \rightarrow expected Pb-Pb $\int \mathcal{L} = 10 \text{ nb}^{-1}$ at 50 kHz collision rate

Possibility to investigate A=4 (anti-)hypernuclei and A=5 (anti)nuclei and improve accuracy for A=3 (hyper)nuclei

ALI-SIMUL-312336

ALI-SIMUL-312332

Thank you

Back up

Mass difference nuclei/anti-nuclei

ALICE Coll: Nature Phys. doi:10.1038/nphys3432

The precise measurement of (anti-)nuclei mass difference allows probing any difference in the interaction between nucleons and anti-nucleons.

Performed test of the CPT invariance of residual QCD "nuclear force" by looking at the mass difference between nuclei and anti-nuclei.

- ✓ Mass and binding energies of nuclei and anti-nuclei are compatible within uncertainties.
- Measurement confirms the CPT invariance for light nuclei.

Anti-matter to matter ratio

ALICE, PRC 93 (2015) 024917

- Anti-nuclei / nuclei ratios are consistent with unity (similar to other light particle species).
- Ratios exhibit constant behavior as a function of p_T and centrality.
- Are in agreement with the coalescence and thermal model expectations.

$< p_T > vs mass (in Pb-Pb)$

ALICE, PRC 93 (2015) 024917

√ <p_T> increases with increasing particle mass.

Searches for exotica

Thermal models predict the abundances of nuclei correctly and therefore can be used as prediction for weakly decaying exotic bound states like $\Lambda\Lambda$ and Λ n-bar.

ΛΛ (H-dibaryon)

- Predicted by Jaffe in bag model calculations
 R. L. Jaffe, PRL 38, 195 (1977).
- Decay channel: $\Lambda\Lambda \rightarrow \Lambda + p + \pi^{-}$
- Thermal model prediction at $T_{\text{chem}} = 156 \text{ MeV}$ is $dN/dy = 6.03 \times 10^{-3}$.

∧n-bar

- Decay channel: $\overline{\Lambda n} \rightarrow \overline{d} + \pi^+$
- Thermal model prediction at $T_{\text{chem}} = 156 \text{ MeV}$ is dN/dy = 4.06 x 10⁻².

ALICE, PLB 752 (2016) 267-277

- ✓ Both ΛΛ and Λn-bar are expected to be seen with the statistics available in ALICE.
- ✓ No signal visible in the invariant mass spectra.
- \checkmark From the non observation, upper limit set on d*N*/d*y* for ΛΛ and Λn-bar bound states.

Exotic searches: Upper limit

ALICE, PLB 752 (2016) 267-277

Experimentally determined upper limit for $\Lambda\Lambda$ and Λ n-bar bound states compared with the models calculation as a function of BR.

- Equilibrium thermal model
- Non-equilibrium thermal model
- Hybrid UrQMD calculation
- Coalescence model
- Experimental upper limit

(Anti-) Nuclei Production: Model Comparison

Canonical Statistical Model (CSM): Thermal-FIST package

 Exact conservation of baryon number, electric charge, strangeness

Explains the trend observed in experimental data of nuclei over proton ratio

