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Anumatter in the Universe

[s there any antimatter in the present

universe? Yes. But little.
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Sources of Antimatter

Cosmic rays Natural radioactivity Pulsars and black holes

ptdecay
Before After

Parent




E2dN/JE  (GeV cm™sr's™)

Can Cosmic Rays make an Anti-Nucleus?

Energies and rates of the cosmic-ray particles
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Can Cosmic Rays make an Anti-Nucleus?
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Energies and rates of the cosmic-ray particles
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Extended bound states are

extremely unlikely to form
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3) ISR 5 underlying event  7) particle decays

2) resonance decays 4 FSR
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Can Cosmic Rays make an Anti-Nucleus?

Energies and rates of the cosmic-ray particles
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Anumatter in the Solar System

Several celestial bodies

have been visited by
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made of antimatter.

Solar winds would lead
to strong annihilation
signals when hitting

antimatter.




Extragalactic Antimatter

Are there antimatter galaxies?
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%, matter domain

antimatter domain
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Are there antimatter galaxies?

matter domain

antimatter domain



Extragalactic Antimatter

Are there antimatter galaxies?

Direct astronomical observation excludes

“anti - objects” in our local environment

antimatter domain
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HISTORY OF THE UNIVERSE A
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Extragalactic Antimatter

Are there antimatter galaxies?

The early universe was very
homogeneous and isotropic...

...so matter and

antimatter regions

must have been in

touch Cohen/Di Rujula/Gashow 98

With observed CMB anisotropies: Observable universe
contains no significant amounts of antimatter.




Extragalactic Antimatter

Are there antimatter galaxies?

CMB and diffuse y background
observations rule out the existence of
sizeable antimatter regions in the

observable universe

(cf also talk by Vivian Poulin

for updated numbers)

contains no S1gnircant amounts Or antimatter.
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Baryon Asymmetry of the Universe

Antimatter was abundant in the early universe, when
the temperature was high enough for pair creation
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T >2mc? T <2mc?
CMB constraint on BBN constraint on baryon-to-
baryon-to-photon ratio n: photon ratio n:
6.03x10"% n <6.15x 10 58x107"<n<6.6x10"

(Planck Collaboration) (PDQG)



Baryon-to-Photon Ratio

When the temperature was very high, pair creation

processes were in equilibrium.

When the temperature dropped below the positron mass,
no new antiparticles could be produced, and all

antiparticles were annihilated.

Obviously, some matter survived - so there was more

matter than antimatter in the early universe!

This “baryon asymmetry of the universe” was very small,

it corresponds to today’s “baryon-to-photon ratio”
#nucleons/ #photons: ~ 1 / 10.000.000.000
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Big Bang Nucleosynthesis
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Light elements are
produced in a chain
of nuclear reactions.

The only unknown
parameter is the
baryon-to-photon
ratio

Primordial light
element abundances
measure the baryon
asymmetry!



Big Bang Nucleosynthesis

light element abundances

Background -
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Temperature fluctuations [ g K* ]

Cosmic Microwave Background

Constraint on
baryon-to-photon ratio n:

e 6.03 x 10"%< 1 <6.15x 10"

PDG 2016
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Cosmic Microwave Background
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Cosmic Microwave Background
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Where does the asymmetry come from?

[TOYTA CCCP
Sakharov Conditions (1967)
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Where does the asymmetry come from?

s — . - = a— - - —_ P - —ta

Exists in Standard Model
(sphaleron)

Sakharov Conditions (1967)

“Baryon number violation

“(C and CP violation

+Deviation from thermal
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Where does the asymmetry come from?

-
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Exists in Standard Model
(sphaleron)

Sakharov Conditions (1967)

“Baryon number violation
Exists in Standard Model

(weak interaction, CKM phase)
...but CKM phase too small!

“(C and CP violation

+Deviation from thermal

equilibr um P Jlaypeam Hodeneackon npesuu
A.Jl.Caxapos 1921-1989



Exists in Standard Model
(sphaleron)

Sakharov Conditions (1967)

“Baryon number violation

Exists in Standard Model
(weak interaction, CKM phase)

...but CKM phase too small!

“(C and CP violation

Exists in Standard Model
(Hubble expansion of the universe)

+Deviation from thermal

...but deviation too small!

equilibrium



Accelerators
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Baryon asymmetry generated
(“Baryogenesis”)




Where does the asymmetry come from?

Baryogenesis requires New Physics!

Cosmic phase transition? Decay of a heavy particle?
% Matter Antimatter
O

Electroweak baryogengesis, GUT baryogengesis,
leptogenesis,



Where does the asymmetry come from?

Baryogenesis requires New Physics!

Decav of a heavy particle?

Standard baryogenesis scenarios predict

that there are no “anti-objects” in the

present universe

Electroweak baryogengesis, GUT baryogengesis,
leptogenesis,
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How robust is the CMB argument?

Can there be antimatter objects at some scale?

The early universe was very
homogeneous and isotropic...

...so matter and

antimatter regions

must have been in

touch Cohen/Di Rujula/Gashow 98

Argument assumes that density perturbations are tiny at all

scales... but the CMB only probes a small range of scales!




Can there be large fluctuations at small scales?

Spectrum of density fluctuations after inflation
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Affleck Dine Baryogenesis

* SUSY models contain scalar superpartner x that carries baryon number

ns(x) = ilx*(@ix — (Bx*)x] e
Affleck /Dine 85
\

* baryon number corresponds to
“angular momentum” in field smaller 72
space, i.e., a time dependent phase

Re x

* Scalar potential can have “flat directions”
U(x) = A (2% + X" +xx%) + (mix" + h.c.) +m3|x

* Misalignment of flat directions in quartic and quadratic term can give field
large “angular momentum” during inflation, i.e., large baryon number

2

* Subsequent decay into baryons preserves that baryon number



Modified Affleck Dine Baryogenesis

» Add to the scalar potential a np(x) = i[x*(0:x — (Oex™)X]
coupling to the inflaton that gives

larger n
a time dependent mass term fm \g‘ B
Dolgov /Silk 93

SU(x, @) = glx*(® — 31)? N

smaller 735

* “flat directions” are removed, they only
appear for a short moment as the inflaton
crosses the critical value

* It is very unlikely (=rare) that a quantum fluctuation creates a large | x |,
i.e., a large baryon number...

* ...and therefore happens only in a few isolated places in space



Modified Affleck Dine Baryogenesis

smaller 715



Formaton of Anti-Stars

ns ~ 10 " almost everywhere

 Leads to small “pockets” of large baryon or anti-baryon number
- Initially those have same density as average...

* ...but during QCD transition heavy baryons form that redshift like matter

Formation of compact matter and antimatter objects at T ~ 100 MeV!

dN
dM

= Cag exp [~y In’ (M /My)]

log-normal mass distribution



Formaton of Anti-Stars

Non-standard baryogenesis scenarios

can accommodate the possibility

of “anti-objects”

* ...but during QCD transition heavy baryons form that redshift like matter

Formation of compact matter and antimatter objects at T ~ 100 MeV!

dN
dM

= Carexp [—yIn?(M/My)]

log-normal mass distribution



Conclusions

Direct observation rules out sources of anti-nuclei in our
local environment

The cosmological standard model and popular particle
physics theories predict no sources of anti-nuclei

Non-standard scenarios can accommodate sources of
anti-nuclei

Observation of anti-nuclei would provide a hint how to
embed the Standard Model of particle physics in a more
fundamental theory of nature



