Primordial Black Holes as Silver Bullets for WIMPS

arXiv:1905.01238

Adam Coogan

With Gianfranco Bertone, Daniele Gaggero, Bradley Kavanagh, Christoph Weniger

Hubble flow

High redshift

Hubble flow

Gravitational attraction

High redshift

Hubble flow

Gravitational attraction

High redshift

Hubble flow

Gravitational attraction

Low redshift

Thermal WIMP ⇒ PBH constraint

1. Detection scenario: Мрвн, Nрвн

1. Detection scenario: Мрвн, Nрвн

2. Infer PBH abundance fpbH

1. Detection scenario: Мрвн, Nрвн

2. Infer PBH abundance fpBH

3. For WIMP model (m_{χ} & final state), constrain $\langle \sigma v \rangle$ with γ -ray observations

• LIGO O3 detects M_{PBH} = 0.5 M_☉ merger

- LIGO O3 detects M_{PBH} = 0.5 M_☉ merger
 - Why PBHs? M_{PBH} < 1.4 M_☉ (Chandrasekhar limit)

- LIGO O3 detects M_{PBH} = 0.5 M_☉ merger
 - Why PBHs? M_{PBH} < 1.4 M_☉ (Chandrasekhar limit)
- Einstein Telescope detects z≥40, M_{PBH} = 10 M_☉ merger

- LIGO O3 detects M_{PBH} = 0.5 M_☉ merger
 - Why PBHs? M_{PBH} < 1.4 M_☉ (Chandrasekhar limit)
- Einstein Telescope detects z≥40, M_{PBH} = 10 M_☉ merger
 - Why PBHs? Astrophysical BHs form and merge at lower redshifts

- LIGO O3 detects M_{PBH} = 0.5 M_☉ merger
 - Why PBHs? M_{PBH} < 1.4 M_☉ (Chandrasekhar limit)
- Einstein Telescope detects z≥40, M_{PBH} = 10 M_☉ merger
 - Why PBHs? Astrophysical BHs form and merge at lower redshifts

```
p(fpbh|Npbh): depends on \int dz (merger rate) × (sensitivity)
```

PBH merger rate

Binaries form before z_{eq}

- Binaries form before z_{eq}
- Need to account for torques from all other PBHs, density perturbations

- Binaries form before z_{eq}
- Need to account for torques from all other PBHs, density perturbations
- Close, eccentric binaries merge today

- Binaries form before z_{eq}
- Need to account for torques from all other PBHs, density perturbations
- Close, eccentric binaries merge today
- Full calculation accounts for the WIMP halo

 Square Kilometer Array detects radio emission from gas accretion by 100 M_☉ galactic PBHs

- Square Kilometer Array detects radio emission from gas accretion by 100 M_☉ galactic PBHs
 - Requires complex, multiwavelength population analysis

- Square Kilometer Array detects radio emission from gas accretion by 100 M_☉ galactic PBHs
 - Requires complex, multiwavelength population analysis

Compute p(fpbh Npbh) with Monte Carlo simulation

2. Detection → abundance

DM halo around 30 M_☉ PBH

Disruptions from close stellar encounters?

Negligible

3. Ann. rate around PBH

DM halo around 30 M_☉ PBH

Disruptions from close stellar encounters?

Negligible

Tidal disruption by galactic potential?

Negligible

3. Ann. rate around PBH

DM halo around 30 M_☉ PBH

Disruptions from close stellar encounters?

Negligible

Tidal disruption by galactic potential?

Negligible

Can now compute gamma-ray flux from PBH's halo!

Constraint: PBH halos as γ-ray *galactic point sources*

Constraint: PBH halos as γ-ray *galactic point sources*

Monte Carlo procedure

Constraint: PBH halos as γ-ray *galactic point sources*

Monte Carlo procedure

1. Place PBHs

Constraint: PBH halos as γ-ray *galactic point sources*

Monte Carlo procedure

1. Place PBHs

Constraint: PBH halos as γ-ray *galactic point sources*

Monte Carlo procedure

- 1. Place PBHs
- 2. Assess detectability: must be outside galactic plane and bright

Constraint: PBH halos as γ-ray *galactic point sources*

Monte Carlo procedure

- 1. Place PBHs
- 2. Assess detectability: must be outside galactic plane and bright

Constraint: PBH halos as γ-ray *galactic point sources*

Monte Carlo procedure

- 1. Place PBHs
- 2. Assess detectability: must be outside galactic plane and bright

Constraint: PBH halos as γ-ray *galactic point sources*

Monte Carlo procedure

- 1. Place PBHs
- 2. Assess detectability: must be outside galactic plane and bright
- 3. Limit: require $N_{p.s.} < 19$

Constraint: PBH halos as γ-ray *galactic point sources*

Monte Carlo procedure

- 1. Place PBHs
- 2. Assess detectability: must be outside galactic plane and bright
- 3. Limit: require $N_{p.s.} < 19$

Fermi/NASA

Number of 3FGL unassociated sources compatible with DM annihilation

Constraint: diffuse γ rays from *extragalactic* PBH halos

Constraint: diffuse γ rays from *extragalactic* PBH halos

Ingredients:

Ann. spectrum from PBH halo

Constraint: diffuse γ rays from *extragalactic* PBH halos

Ingredients:

Ann. spectrum Cosmological from PBH halo PBH density (f_{PBH})

Constraint: diffuse y rays from *extragalactic* PBH halos

Ingredients:

from PBH halo

PBH density (f_{PBH})

Attenuation

Constraint: diffuse y rays from extragalactic PBH halos

Ingredients:

from PBH halo

PBH density (f_{PBH})

Constraint: diffuse y rays from extragalactic PBH halos

Limit: for each bin, require $\phi^{\rm ex} \lesssim \phi^{\rm ex}_{\rm Fermi} + 3 \, \Delta \phi^{\rm ex}_{\rm Fermi}$

Constraint: diffuse γ rays from *extragalactic* PBH halos

Limit: for each bin, require $\phi^{\rm ex} \lesssim \phi^{\rm ex}_{\rm Fermi} + 3 \, \Delta \phi^{\rm ex}_{\rm Fermi}$

Robust constraint with few assumptions

PBH detection

WIMP constraint

10 M_☉ z≥40 merger, Einstein Telescope 10^{-23} **Preferred parameter** Thermal relic 10^{-26} space for scalar singlet model $\begin{array}{ccc} \widehat{\text{s}} & 10^{-29} \\ \widehat{\text{sm}} & 10^{-32} \\ \widehat{\text{o}} & 10^{-32} \\ \widehat{\text{o}} & 10^{-35} \\ \uparrow^{\times} & 10^{-38} \end{array}$

 $m_{\chi} \; ({\rm GeV})$

 10^{3}

 10^{4}

 10^{2}

100 M_☉, radio detections at SKA

100 M_☉, radio detections at SKA 10^{-23} Thermal relic **Envelope of** 10^{-26} various **BSM** models $\frac{\text{(s)}}{\text{Em}} 10^{-29}$ $\frac{\text{(s)}}{\text{(s)}} 10^{-32}$ $\frac{\text{(s)}}{\text{(s)}} 10^{-35}$ $\frac{\text{(s)}}{\text{(s)}} 10^{-38}$ $f_{\gamma} < 0.1$ $N_{\rm SKA} = 10$ 10^{-35} $N_{SKA} = 80$ 10^{-41} 10^{-44} $10^{\overline{3}}$ 10^{2} 10^{1} 10^{4} $m_{\chi} \; ({\rm GeV})$

 Even one PBH detection would rule out standard thermal WIMPs

- Even one PBH detection would rule out standard thermal WIMPs
- Constrains any BSM theory with a WIMP,
 even if it is underabundant

- Even one PBH detection would rule out standard thermal WIMPs
- Constrains any BSM theory with a WIMP,
 even if it is underabundant

