Heavy Neutral Leptons @ Solid

Searching For Long Lived Particles at the LHC.
6th workshop of the LHC LLP community.

Maja Verstraten, Yamiel Abreu, Simon Vercaemer, Nick Van Remortel, Albert De Roeck, Haifa Sfar.

29-11-2019

Universiteit Antwerpen
At 6 m from the reactor core.

Baselines: 6.5 → 9 m.

3D highly segmented composite detector.

Detector is taking data since 2 years.
Belgian reactor (BR2) : source of neutrinos

- **Source : Nuclear reactor**
 - Compact reactor core $\Phi < 50\text{ cm}$, $h = 90\text{ cm}$.
 - Power : 80 MW.
 - Composition : Highly enriched 235U.

- **Period of Data Taken :**
 - Reactor on : 150 days per year cycle.
 - Reactor off : data collection for background study.

- **Expected anti neutrino flux :**
 - 8.5×10^{19} neutrino per second.
Detector configuration

- 5 Modules.
- 10 planes per module.
- 1 plane = 16*16 cubes.
- 1 cube = 5cm*5cm*5cm PVT scintillator.
- 2 layers of $^6\text{LiF:ZnS(Ag)}$ per cube.
Main physics goal

- **Inverse Beta Decay (IBD):**
 \[\bar{\nu}_e + p \rightarrow e^+ + n\]

- **Neutron captured in 6Li:**
 \[n + ^6\text{Li} \rightarrow ^3\text{H} + \alpha\]

- **ZnS-PVT pulse shape discrimination:**
 - Positron-neutron identification

- **Time and space coincidence:**
 - Background rejection

Universiteit Antwerpen
Main physics goal

- Probe the so called reactor anomaly deficit.
- Search for oscillation to sterile neutrinos at very short baseline:
 \[L \approx 10 \text{ m} \leftrightarrow \Delta m^2 \approx 1 \text{ eV}^2 \]
- Good sensitivity.
- Covers part of the most important region.

Universiteit Antwerpen
Opportunity for HNLs:

- Sensitivity range:
 - 1.022 MeV up to ~ 9 MeV.

- Expected HNLs flux:

\[\frac{d\phi_{\nu_3}}{dE_{\nu}} = \theta(E_{\nu} - m_{\nu}) |U_{e3}|^2 \sqrt{1 - \left(\frac{m_{\nu}}{E_{\nu}} \right)^2} \frac{d\phi_{\nu_e}}{dE_{\nu}}. \]

- Decay Rate: leptonic channels

\[\Gamma_{\ell_1\ell_2\nu_{\ell_2}} \equiv \Gamma(N_4 \to \ell_1^- \ell_2^+ \nu_{\ell_2}) = \frac{G_F^2}{192\pi^3} |V_{\ell_14}|^2 m_4^5, \]

- The proper lifetime from the uncertainty principle:

\[\tau_0 = \frac{\hbar}{\Gamma} \propto \frac{1}{|V_{\ell_14}|^2 m_4^5} \]

LLP particles, some of them decay in SoLid.

~35% BR to e+e-\nu
Signal production

- **Generator in place:**
 - Generator tool: Pythia8: particle gun using the muon matrix element.
 - Anti neutrino energy spectrum from BR2 as input.
 - Decay position simulated following the:
 - The decay rate formula.
 - The kinematic of the initial neutrino.
Signal: Trigger efficiency

- Threshold trigger with 2 fibers in coincidence in place.
 - Triggers on electromagnetic signal with energy above 2MeV.
 - 1 vertical plane (x,y) read out with a time window of 6.4us.
Signal vs background rate

◆ Signal Rate:
 ❏ Expected signal Rate is: 1Hz-1mHz

◆ Most important backgrounds:
 ❏ Proton recoil from fast neutrons.
 ❏ Cosmic muons.
 ❏ External gammas.

<table>
<thead>
<tr>
<th>Background</th>
<th>Fast neutrons</th>
<th>Cosmic muons</th>
<th>External gammas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Rate</td>
<td>3.87 Hz</td>
<td>260 Hz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>Rate*</td>
<td>0.92 Hz</td>
<td>10.4 Hz</td>
<td>10 Hz</td>
</tr>
</tbody>
</table>

➢ To deal offline with Rate* applying cuts:
 1. Fiducial volume: most of the background is at the edge.
 2. Energy cut.
 3. Timing.
 4. Topology.

⇒ Preliminary studies show that background can be kept under control.

* Rate after: water shielding, reconstruction efficiency and without neutron tag.
Constraints

- **Direct constraints:**
 - Main constraints from the kinematic of the Beta decay: experimental constraints study.
 - Stronger constraint for LNV senario.

- **Cosmological constraints:**
 - Strong tension mainly with BBN.
SoLid sensitivity range: 1.022 MeV up to ~ 9 MeV.

Previous results from the experiment at the nuclear power reactor of Bugey.

Expect to do better than the Bugey results.
- Higher trigger efficiency.
- Better technology.

Very promising results due to the specific topology of HNL signal.

C. Hagner, et al., PhysRevD.52.1343
Thanks for your Attention!