

SEARCH FOR LONG-LIVED NEUTRAL PARTICLES PRODUCED IN P P COLLISIONS AT $\sqrt{S} = 13$ TEV DECAYING INTO DISPLACED HADRONIC JETS IN THE ATLAS INNER DETECTOR AND MUON SPECTROMETER

Margaret Lutz, Tel Aviv University on behalf of

The ATLAS Collaboration

LHC LLP Workshop, Ghent 28 November 2019

LLPs at ATLAS

- New Results!
 - Coming soon on the arXiv
 - CERN preprint: CERN-EP-2019-240
 - Figures and tables: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2018-61

•
$$H/\Phi \rightarrow s \ s \rightarrow f\overline{f}f\overline{f}$$

- Search for pairs of displaced hadronic jets
- One decay in the ATLAS inner detector (ID)
- One decay in the ATLAS muon spectrometer (MS)
- Uses specialized trigger and specialized reconstruction algorithms for the displaced tracks, vertices in the ID and MS
- Complementary to searches for LLPs in the MS only (MS analysis) and the hadronic calorimeter (HCal) (CR analysis)

Analysis flow

- Search uses special subset of data which undergoes displaced reconstruction
- Events are collected by Muon Rol Cluster trigger
- Events are required to include an MS vertex (MSVx) which is matched to the trigger cluster
- Events are required to include an ID vertex (IDVx) which is isolated from the MSVx
- Data driven background estimation
- Results 🙂

Muon Rol Cluster trigger (also see John's talk)

- LLPs decaying at or after the end of the HCal leave clusters of hits in the MS around LLP path
- L1 trigger searches for 2 muon Rols with p_T ≥ 10 GeV
- At HLT, the trigger requires clusters of 3 (4) muon Rols in $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \varphi)^2} = 0.4$ cone in MS barrel (endcaps)
- High dependence on LLP decay position

- Data/MC scale factors
 - Data/MC 1.13 ± 0.01 in the barrel and 1.04 ± 0.02 in the endcaps

*MS analysis: <u>https://arxiv.org/pdf/1811.07370.pdf</u> LLP triggers: <u>https://arxiv.org/pdf/1305.2284.pdf</u>

4

MSVx reconstruction and selection

- Specialized MSVx reconstruction
 - Dense environment with lower p_T particles
 - Uses MDT chamber structure to form tracklets
 - Tracklets used to reconstruct vertices
 - Slightly different algorithms in barrel, endcaps

Selection	Barrel	Endcaps	
MSVx η	< 0.7	> 1.3	
Matching to trigger cluster	ΔR < 0.4	ΔR < 0.4	
Precision chamber hits	300 < n _{MDT} hits < 3000		
Trigger chamber hits	n _{RPC} hits > 250	n _{TGC} hits > 250	
Isolation from > 5 GeV tracks	ΔR > 0.3	ΔR > 0.6	
Max Σp_T in $\Delta R = 0.2$ cone	< 10 GeV	< 10 GeV	
Isolation from $p_T > 30$ GeV jets	ΔR > 0.3	ΔR > 0.6	

MS analysis: <u>https://arxiv.org/pdf/1811.07370.pdf</u> *MSVx Reco: <u>https://arxiv.org/pdf/1311.7070.pdf</u>

IDVx reconstruction

- Many tracks from displaced decays in the ID aren't reconstructed with standard tracking (ST)
- Large-radius tracking (LRT)
 - Silicon-seeded tracking
 - Relaxed requirements on track parameters to increase efficiency
 - Drastically improves sensitivity to decays at R > 100 mm
- Secondary vertex reconstruction
 - Uses both ST and LRT with d₀ > 2 mm and p_T > 1 GeV
 - Seed vertices formed pairs of tracks
 - Seed vertices merged
 - Poorly fitting tracks dropped

LRT Reco: <u>https://cds.cern.ch/record/2275635</u>

	ST	LRT
d ₀ [mm]	≤ 10	≤ 300
z ₀ [mm]	≤ 250	≤ 1500
Si hits	≥7	≥7
Unshared Si hits	≥6	≥ 5
Track p _T [MeV]	> 400	> 500

IDVx selection requirements					
IDVx R, z [mm]	< 300				
IDVx χ²/n _{DoF}	< 5				
Radial distance from PV [mm]	> 4				
Pass material veto and disabled module veto					
IDVx n _{trk}	≥ 4				
m _{IDVx} [GeV]	> 3				
IDVx be isolated $\Delta R > 0.4$ from good MSVx					

- Fiducial volume and vertex quality requirements
- Remove vertices from material interactions
- Isolation from MDVx to reduce chance of one high energy jet causing both an IDVx and an MSVx

IDVx selection – n_{trk} , m_{IDVx}

- Comparison of IDVx distributions in signal MC samples and background data samples
 - Signal MC IDVx required to be matched to generated LLP decays
- IDVx n_{trk} distribution in data dominated by n_{trk} = 2
 - Signal MC distribution much broader
- Selection: IDVx $n_{trk} \ge 4$
- Selection m_{IDVx} > 3 GeV
 - Removes ~4% ~50% of signal MC vertices passing other selections
 - Removes ~70% of data background vertices passing other selections

- IDVx selection efficiency depends strongly on decay position
- Selection efficiency also impacted by the mass of the LLP and the relative masses of the LLP and the Φ
 - Particle momenta impacts vertex opening angle
- Unique structure of the efficiency vs LLP decay R due to material veto

9

TFL AVIV UNIVERSITY

- Impact on selection efficiency of each selection requirement
- Structure vs R most impacted by material veto
- Relative impact of n_{trk} and m_{IDVx} requirements has strong dependence on LLP

TEL AVIV UNIVERSIT

Data driven background estimation

	Background events	Muon event	Rol cluster trigger s with good MSVx
Has IDVx passing full selection	Bkg+IDVx ÷		Sig
Agnostic to IDVx	Bkg	×	Sig – IDVx

- Background events selected to minimize signal contamination
- Use single muon trigger plus isolated muon requirements based on $Z \to \mu \mu$ event selection
- Very little overlap with signal MC samples
- Develop factor $F = \frac{N_{Bkg+IDVx}}{N_{Bkg}}$
- Estimate $N_{Sig}^{pred.} = N_{Sig-IDVx} \times F = N_{Sig-IDVx} \times \frac{N_{Bkg+IDVx}}{N_{Bkg}}$
- Estimate 1.16 ± 0.18 (stat.)

Data driven background validation

	Background events	Muon Rol cluster agnostic to MSVx	Muon Rol cluster with good MSVx
Has IDVx, <i>n</i> trk ≥ 4, <i>m</i> IDVx > 3 GeV	Bkg+IDVx		Sig
Has IDVx, n_{trk} = 3, 1 < m_{IDVx} < 3 GeV	Bkg, 3-trk	Trig, 3-trk	
Has IDVx, <i>n</i> _{trk} = 2, <i>m</i> _{IDVx} > 3 GeV	Bkg, 2-trk		Val, 2-trk
Agnostic to IDVx	Bkg	Trig	Sig – IDVx

- Use 2-track and 3-track vertices for the validation
- Reduce signal contamination for 3-track region, remove MSVx requirement
- Develop same factors to estimate number of events in Sig-like regions
- Good agreement found in predicted vs observed numbers
- 25% uncertainty applied to background estimate
- Background estimate: 1.16 ± 0.18 (stat.) ± 0.29 (syst.)

- One observed event – no excess above background $\ensuremath{\mathfrak{S}}$

 $\rightarrow ss$ [pb]

 B_{Φ}

×

CL Upper Limit on σ

95%

10-

10⊨

- Set limits using CL_S
- · Limits from this analysis only

- Limits combined with CR- and MS-analysis limits
- Limits on branching ratio for a SM Higgs \rightarrow HS
- Extension of limits at low ст

- Limits combined with CR- and MS-analysis limits
- Limits on production cross section of Φ x branching ratio to ss
- Extension of limits at low ст
- Limits for higher mass Φ do not surpass those set by the CR+MS analyses

- Addition of IDVx to displaced dijet searches allows for higher sensitivity at low cτ, particularly for Higgs or lower mass Φ as a mediator
- Extension to lower ct would benefit from specialized LLP trigger in the ID which would remove need for decay in the MS (or HCal) without relying on associated production
- LLP search program at ATLAS continues to be exciting
 - Looking forward to full Run 2 results and for potential gains in Run 3

BACKUP

Displaced jets in the HCal – H/ $\Phi \rightarrow$ s s $\rightarrow f\overline{f}f\overline{f}$

- Custom trigger
 - Relies on calRatio, trackless jet features of displaced jets
 - Two triggers for low and high E_{T} regions
- Multilayer perceptron (MLP)
 - TMVA trained on signal MC samples
 - Used to predict displaced jet decay position
- Per-jet BDT
 - Inputs MLP, track, jet properties
 - Trained on signal MC, multi-jet MC, BIB data
 - Assigns BIB-, multijet-, signal- weights to jets
- Per-event BDTs
 - Inputs per-jet BDT, event level variables
 - Trained on signal MC, BIB data
 - Separates BIB events from signal events
 - Event cleaning including BDT output removes BIB
- Data driven ABCD method
 - Use per-event BDT and $\sum \Delta R_{min}(jet, tracks)$

TEL AVIV UNIVERSITY

ATLAS muon spectrometer

https://arxiv.org/pdf/1311.7070.pdf

ATLAS inner detector

https://arxiv.org/pdf/1707.02826.pdf

Material in the inner detector

https://arxiv.org/pdf/1710.04901.pdf

IDVx reconstruction

Track parameter	Requirement
Track $ d_0 $	$2 \text{ mm} < d_0 < 300 \text{ mm}$
Track $ z_0 $	< 1500 mm
Track $p_{\rm T}$	> 1 GeV
Number of SCT hits	≥ 2
Number of pixel and TRT hits	$n_{\text{pixel}} \ge 2 \text{ or } n_{\text{TRT}} > 0$

No hits on track may be present before the vertex Hits on track must be present in the layer following the vertex

- IDVx selection efficiency depends on decay position
- Selection efficiency also impacted by the mass of the LLP and the relative masses of the LLP and the Φ
 - Particle momenta impacts vertex opening angle

23

TEL AVIV UNIVERSITY

DVx selection efficiency

- Impact on selection efficiency of each selection requirement
- Structure vs R most impacted by material veto
- Relative impact of n_{trk} and m_{IDVx} requirements has strong dependence on LLP mass

- Impact on selection efficiency of each selection requirement
- Structure vs R most impacted by material veto
- Relative impact of n_{trk} and m_{IDVx} requirements has strong dependence on LLP mass

Long-lived particle decay R [mm]

DVx selection efficiency

IDVx selection efficiency

- Impact on selection efficiency of each selection requirement
- Structure vs R most impacted by material veto
- Relative impact of n_{trk} and m_{IDVx} requirements has strong dependence on LLP mass

1.4 ATLAS Simulation No IDVx sel. n_o, m_c = [1000,150] GeV Dist from PV > 4 mm $\chi^{2}/n_{DOF} < 5$ Material veto 0.6 0.4 0.2 50 100 150 200 250 Long-lived particle decay R [mm] DVx selection efficiency ATLAS Simulation No IDVx sel. m_o, m_o = [1000,150] GeV —— m_{IDVx} > 3 GeV 1.2 – m_{IDVx} + n_{tr} 0.8 0. 0.2 0^L 50 100 150 200 250 300 Long-lived particle decay R [mm]

Overall selection efficiency

Selection requirements		Efficiency	Pass	Good	IDVx	<i>n</i> _{trk}	<i>m</i> _{IDVx}
Mass point [GeV]	<i>cτ</i> [m]	Enclency	trigger	MSVx		≥ 4	> 3 GeV
$m_H, m_s = [125, 8]$ 0.	0.200	Total	2.71%	1.07%	0.13%	0.005%	0.003%
	0.200	Relative	2.71%	39.3%	12.5%	3.61%	63.2%
$m_H, m_s = [125, 25]$ 0	0.760	Total	5.13%	2.23%	0.30%	0.03%	0.02%
	0.700	Relative	5.13%	43.5%	13.3%	9.15%	81.1%
$m_H, m_s = [125, 55]$	1 540	Total	1.98%	0.75%	0.11%	0.01%	0.01%
	1.340	Relative	1.98%	37.9%	14.2%	10.1%	85.4%
$m_{\Phi}, m_s = [200, 50]$ 1.	1 070	Total	7.06%	3.05%	0.47%	0.07%	0.06%
	1.070	Relative	7.06%	43.2%	15.3%	15.0%	83.9%
$m_{\Phi}, m_s = [400, 50]$ 0.	0 700	Total	13.7%	5.02%	0.73%	0.10%	0.09%
	0.700	Relative	13.7%	36.5%	14.5%	14.3%	83.5%
$m_{\Phi}, m_s = [600, 50]$	0.520	Total	16.4%	4.77%	0.69%	0.08%	0.07%
		Relative	16.4%	29.0%	14.5%	12.2%	78.4%

Data driven background, validation

	n _{obs}	
Region Bkg	6,099,660	
Region <i>Bkg+IDVx</i>	45	
Region Sig–IDVx	156,805	
	n _{pred}	<i>n</i> _{obs}
Region Val, 2-trk	$11,269 \pm 46$ (stat.)	11,470
Region Trig, 3-trk	1750 ± 64 (stat.)	2132
Region Sig	1.16 ± 0.18 (stat.) ± 0.29 (syst.)	1

Data driven background, validation

The factors used in the background estimation and the validation regions.

 $F_{2^{-trk}}$, and $F_{3^{-trk}}$ factors are the *F* factors used to predict the number of events in the 2and 3- track validation regions.

The F_* factors are compared using the background events, as in $F_{Bkg.} = N_{Bkg.2-trk}/N_{Bkg}$, or signal-like events, as in $F_{Sig.} = N_{Val,2-trk}/N_{Sig-IDVx}$.

F*, ±25% shown in solid blue lines
All variations, not considering statistical uncertainties, fall within 25%.

(Error bars are the stat only)

Background vs signal

Two dimensional distributions of $m_{\rm IDVx}$ vs IDVx $n_{\rm trk}$

m_{IDVx} [GeV]

n_{trk}

-all signal selection criteria other than the requirements on the IDVx *n*trk and *m*IDVx. -vertices in data are displayed as numbers -vertices in signal MC as 2D distribution -final signal region denoted red lines.

1 event in data (also 1 IDVx in data) consistent with

Estimated yield in the signal region for MC samples assuming ggF production of the Higgs boson and a 10% BR for the Higgs boson decay to the hidden sector.

Systematic Uncertainties – displaced track/vertex in ID

Data/MC systematic uncertainty

- Study performed using K_S⁰ vertices reconstructed using ST and LRT in multijet MC and in data
- Good agreement found in kinematic distributions
- Distributions of data and MC LRT-only vertices binned in R
- Distributions normalized by ST-only K⁰_S vertices
- Largest difference in radial bins taken as uncertainty
- Dominant syst uncertainty in this analysis

Other systematic Uncertainties

- Data/MC scale factor impact on trigger efficiency uncertainty
 - Scale factors varied up and down by uncertainty on their fit, resulting trigger eff evaluated
 - · Flat vs decay position. Uncertainties developed for barrel, endcap, per mass sample
- Pileup uncertainty
 - Impact trigger eff and MSVx reco eff
 - Pileup reweighting varied up and down by uncertainty, resulting effs compared to nominal
 - Flat vs decay position, uncertainties developed for barrel, endcap, per mass point
- PDF uncertainty
 - PDF value comes from 100 fits
 - Trigger, MSVx reco eff compared for each PDF fit vs central value
 - Flat vs decay position, uncertainties developed for barrel, endcap, per mass point
- Combination of all these, at most ~5.5% per mass sample in barrel or endcap on MSVx reco eff, and ~4.8 on trigger eff

More limits

ATLAS

m_H = 125 GeV, m_e = 25 GeV

Expected ± 1 σ

Expected $\pm 2 \sigma$

— Observed - - - Expected

ൃ 10'

10³

10²

10

10

10-

10⁻³

 10^{-1}

95% CL Upper Limit on $B_{
m H^-}$

Brazil plots for each mass sample

s proper lifetime (cτ) [m]

10

√s = 13 TeV

1

More limits

Brazil plots for each mass sample

More limits

Brazil plots for each mass sample

Event in data

Event in data

