Same-sign WW scattering as a test of Beyond the SM (BSM) physics: Effective Field Theory (EFT) approach, HL-, HE-LHC

Paweł Kozów
University of Granada, University of Warsaw
supported by: National Science Centre, Poland, PRELUDIUM, 2018/29/N/ST2/01153

Plan of the talk:

1. brief characterization of the EFT approach
2. brief description of discovery regions in the EFT approach to same-sign WW scattering
3. discussion of two EFT: SMEFT and HEFT
4. 1905.03354; PK, L. Merlo, S. Pokorski, M. Szleper (the HEFT context, HL-LHC)
5. 1906.10769; G. Chaudhary, J. Kalinowski, M. Kaur, PK, K. Sandeep, M. Szleper, S. Tkaczyk
(27 TeV study)
$p p \rightarrow 2 j+W^{+} W^{+} \rightarrow 2 j+2\left(I \nu_{l}\right), \quad I=e^{+}, \mu^{+}$
with particular emphasis on EFT validity

Characterization of the EFT approach:

- EFT: existence of a new heavy particle manifests itself at energies $E \ll \Lambda$ as deviations suppressed as $(E / \Lambda)^{n}$
- these effects are parametrizable by non-renormalizable operators added to $\mathcal{L}_{S M}$
- each concrete model, after decoupling of heavy fields:

$$
\mathcal{L}_{\text {eff }}=\mathcal{L}_{S M}+\Sigma_{i} f_{i} \cdot \mathcal{O}_{i}, \quad f_{i}=\frac{g_{*}}{\Lambda}
$$

- the strength of EFT: one can investigate the experimental reach for NP discovery without specifying concrete models
- choice of \mathcal{O}_{i}, f_{i} defines an "EFT model" to be tested for its discovery potential
the goal: to examine discovery reach of the HL, HE-LHC in $W^{ \pm} W^{ \pm}$scattering, using EFT by studying discovery regions for a class of "EFT models",

- the discovery regions should be reported in the $\left(f_{i}, \Lambda\right)$ space
- Λ bounded from above from unitarity; the bound is a function of f_{i} (blue curve)
- for fixed f_{i} different assumptions on Λ can be considered
- for BSM signal estimate, the EFT amplitudes are regularized $M_{W W}>\Lambda$
- orange contour: lower bound on f_{i} from the condition $>5 \sigma$ BSM discrepancy
- green contour: contribution to the discrepancy from $M_{W W}>\Lambda$ in the regularized amplitudes must be negligible
- since $f=f\left(g_{*} / \Lambda\right)$ one obtains the region in $\left(g_{*}, \Lambda\right)$ that can be discovered via EFT in the future LHC data

Two ways of constructing $\mathcal{L}_{\text {eff }}$, depending on how the scalar sector SM global symmetry breaking

$$
\begin{equation*}
S U(2)_{L} \times S U(2)_{R} \longrightarrow S U(2)_{V}, \quad g_{V}: g_{L}=g_{R} \tag{1}
\end{equation*}
$$

is realized:

1. the linear realization on the Φ Higgs doublet; parametrization of Φ in the broken phase:

$$
\begin{equation*}
\exp \left\{i \pi^{a} T^{a} / v\right\}\binom{0}{v+h}, \quad T^{a}|0\rangle \neq 0 \tag{2}
\end{equation*}
$$

\rightarrow the physical Higgs boson h is a component of the doublet Standard Model Effective Field Theory (SMEFT) the expansion is in $1 / \wedge$ an EFT realization for the unbroken phase
2. non-linear realization of (1) on the 3 Goldstone Bosons (GB) $\left(\equiv W_{L}^{ \pm}, Z_{L}\right)$ described by the matrix:

$$
\begin{equation*}
U=\exp \left\{i \pi^{a} T^{a} / v\right\}, \quad U \rightarrow g_{L} \cdot U \cdot g_{R} \tag{3}
\end{equation*}
$$

- expansion in $\# \partial U$
- the physical Higgs h is a singlet of the global group (1)
- construction for the broken phase
- Higgs Effective Field Theory (HEFT) the most general EFT assuming (1): includes SM, SMEFT, ... ${ }^{1}$
- particularly suitable as the effective description of Composite Higgs (CH) scenarios ${ }^{2}$
- interesting question: discovery potential depending on the EFT construction used

[^0]
The results of 1905.03354:

- main goal: to determine discovery potential of HEFT approach to HL-LHC data by finding discovery reach in $\left(f_{i}, \Lambda\right)$ of several "EFT models" defined as SM + single effective operator at a time
- operators choice: modify VVVV quartic vertex, but not triple gauge and Higgs-to-gauge; start at dimension $(D)=8$ in the SMEFT
- start at primary dimension $\left(d_{p}\right)=8$ in HEFT ($d_{p}=$ leading D after U expanded)
- operators of the same d_{p} have similar pheno impact ${ }^{3}$

$$
\begin{array}{c|c}
\text { SMEFT } & \text { HEFT } \\
\mathcal{O}_{S_{0}}=\left[\left(D_{\mu} \Phi\right)^{\dagger} D_{\nu} \Phi\right]\left[\left(D^{\mu} \Phi\right)^{\dagger} D^{\nu} \Phi\right] & \mathcal{P}_{6}=\operatorname{Tr}\left(\mathbf{V}_{\mu} \mathbf{V}^{\mu}\right) \operatorname{Tr}\left(\mathbf{V}_{\nu} \mathbf{V}^{\nu}\right) \\
\mathcal{O}_{S_{1}}=\left[\left(D_{\mu} \Phi\right)^{\dagger} D^{\mu} \Phi\right]\left[\left(D_{\nu} \Phi\right)^{\dagger} D^{\nu} \Phi\right] & \mathcal{P}_{11}=\operatorname{Tr}\left(\mathbf{V}_{\mu} \mathbf{V}_{\nu}\right) \operatorname{Tr}\left(\mathbf{V}^{\mu} \mathbf{V}^{\nu}\right) \\
& \mathcal{T}_{42}=\operatorname{Tr}\left(\mathbf{V}_{\alpha} W_{\mu \nu}\right) \operatorname{Tr}\left(\mathbf{V}^{\alpha} W^{\mu \nu}\right) \\
\mathcal{O}_{M_{7}}=\left(D_{\mu} \Phi\right)^{\dagger} W_{\alpha \nu} W^{\alpha \mu} D^{\nu} \Phi & \mathcal{T}_{43}=\operatorname{Tr}\left(\mathbf{V}_{\alpha} W_{\mu \nu}\right) \operatorname{Tr}\left(\mathbf{V}^{\nu} W^{\mu \alpha}\right) \\
& \mathcal{T}_{44}=\operatorname{Tr}\left(\mathbf{V}^{\nu} W_{\mu \nu}\right) \operatorname{Tr}\left(\mathbf{V}_{\alpha} W^{\mu \alpha}\right) \\
\mathcal{O}_{M_{0}}=W_{\mu \nu}^{a} W^{a \mu \nu}\left[\left(D_{\alpha} \Phi\right)^{\dagger} D^{\alpha} \Phi\right] & \mathcal{T}_{61}=W_{\mu \nu}^{a} W^{a \mu \nu} \operatorname{Tr}\left(\mathbf{V}_{\alpha} \mathbf{V}^{\alpha}\right) \\
\mathcal{O}_{M_{1}}=W_{\mu \nu}^{a} W^{a \nu \alpha}\left[\left(D_{\alpha} \Phi\right)^{\dagger} D^{\mu} \Phi\right] & \mathcal{T}_{62}=W_{\mu \nu}^{a} W^{a \mu \alpha} \operatorname{Tr}\left(\mathbf{V}_{\alpha} \mathbf{V}^{\nu}\right) \\
\mathcal{O}_{T_{0}}=W_{\mu \nu}^{a} W^{a \mu \nu} W_{\alpha \beta}^{b} W^{b \alpha \beta} & \mathcal{O}_{T_{0}}=W_{\mu \nu}^{a} W^{a \mu \nu} W_{\alpha \beta}^{b} W^{b \alpha \beta} \\
\mathcal{O}_{T_{1}}=W_{\alpha \nu}^{a} W^{a \mu \beta} W_{\mu \beta}^{b} W^{b \alpha \nu} & \mathcal{O}_{T_{1}}=W_{\alpha \nu}^{a} W^{a \mu \beta} W_{\mu \beta}^{b} W^{b \alpha \nu} \\
\mathcal{O}_{T_{2}}=W_{\alpha \mu}^{a} W^{a \mu \beta} W_{\beta \nu}^{b} W^{b \nu \alpha} & \mathcal{O}_{T_{2}}=W_{\alpha \mu}^{a} W^{a \mu \beta} W_{\beta \nu}^{b} W^{b \nu \alpha}
\end{array}
$$

$$
\mathbf{V}_{\mu} \equiv\left(D_{\mu} U\right) U^{\dagger}
$$

We performed a generator level study:

- the SM process $p p \rightarrow 2 j+W^{+} W^{+} \rightarrow 2 j+2\left(I \nu_{l}\right)$ is treated as the irreducible background
- "signal" is defined as the enhancement of over the SM prediction
- event selection: $M_{j j}>500 \mathrm{GeV}, \Delta \eta_{j j}>2.5, p_{T}^{j}>30 \mathrm{GeV},\left|\eta_{j}\right|<5, p_{T}^{\ell}>25 \mathrm{GeV}$ and $\left|\eta_{\ell}\right|<2.5$

- BSM signal significance: $\chi^{2}=\sum_{i}\left(N_{i}^{B S M}-N_{i}^{S M}\right)^{2} / N_{i}^{S M} \quad\left(\sqrt{\chi^{2}} \geq 5\right)$
- EFT consistency: $\chi_{a d d}^{2}=\sum_{i}\left(N_{i}^{B S M}-N_{i}^{E F T}\right)^{2} / N_{i}^{B S M} \quad\left(\sqrt{\chi_{a d d}^{2}} \leq 2\right)$
- SMEFT analyzed in 1802.02366; except for $\mathcal{O}_{S 1}(L L \rightarrow L L)$ all discovery regions non-empty
- most HEFT operators have their equivalents in SMEFT (Lorentz structure)
- correspondingly all discovery regions in HEFT found non-empty, except for \mathcal{P}_{11} $(L L \rightarrow L L)$

The discovery regions for $\mathcal{T}_{42}, \mathcal{T}_{44}$:

- dominating helicity amplitudes at $M_{W W} \lesssim \Lambda$ for $\mathcal{T}_{42}, \mathcal{T}_{44}$ are different than those found for the SMEFT operators (on-shell study)
- polarization studies in WW for SMEFT vs HEFT disentangling
- The results for \mathcal{P}_{6} and \mathcal{P}_{11} also interesting: in the literature, the coefficients c_{6} and c_{11} (typically labelled a_{5} and a_{4}, respectively) may vary within a large range of values providing hypothetically visible signals at colliders
- we found, instead, that chances to find a signal of NP in the $W_{L} W_{L} \rightarrow W_{L} W_{L}$ scattering, described in a consistent HEFT framework \mathcal{P}_{6} and \mathcal{P}_{11}, are present essentially only for negative c_{11}

The results of 1906.10769:

- the goal: to examine what the gain in the EFT discovery potential can be, when increasing the pp energy
- We applied the analysis chain to the events generated at 27 TeV pp energy
- and compared the discovery reach with the HL-LHC case

shifts to lower values of f_{i}, but the overall discovery potential (total area) does not get larger at 27 TeV only $i=S 0, S 1$ in perturbative regime, but close to strong interaction regime

Conclusions:

- $W^{ \pm} W^{ \pm}$scattering with its purely leptonic W decays features severe restrictions in describing the data in terms of the EFT
- The reason: lack of experimental access to the $M_{W W}$ \rightarrow extra bound: bulk of the BSM signal must be in the EFT controlled region
- Moreover, we found that going to higher pp energies (e.g. 27 TeV) does not make the EFT discovery reach larger
- also, interpretation of the SMEFT discovery regions unclear for most operators and close to strongly interacting regime for $W_{L} W_{L} \rightarrow W_{L} W_{L}$
on the other hand: interesting HEFT discovery regions non-empty and our study indicates that projections onto (concrete) WW helicity combinations could be a sensitive test of (non)linearity of the Higgs (sector)...

back up

- perturbative partial wave unitarity condition:

$$
\begin{equation*}
\left|\operatorname{Re} \mathcal{T}_{J}\right| \leq 1 / 2 \tag{4}
\end{equation*}
$$

- in the presence of non-renormalizable operators in EFT

$$
A(V V \rightarrow V V) \sim E^{n}, \quad A \equiv A\left(f_{i}\right)
$$

- \rightarrow EFT applicable at most for $E<E^{U}\left(f_{i}\right)$, where $\left|\operatorname{Re} \mathcal{T}_{J}\left(E^{U}\right)\right|=1 / 2$
- the Λ sector 'protects' the unitarity of amplitudes:

$$
\Lambda<E^{U}
$$

- hence the region of validity of an "EFT model"

$$
\begin{equation*}
E<\Lambda<E^{U}\left(f_{i}\right), \quad E \equiv M_{W W} \tag{5}
\end{equation*}
$$

- in particular, for a fixed f_{i} one should consider different assumptions on the cut-off Λ in the EFT analysis
- if access to $M_{W W}$, the EFT analysis more straightforward - apply cut-off at Λ in $M_{W W}$ distribution both in data and simulated EFT prediction
- Discovery region of an "EFT model" : region in (Λ, f_{i}) for which deviation from the SM is $>5 \sigma$
- for a single operator

- since $f=f\left(g_{*} / \Lambda\right)$ one obtains the region in $\left(g_{*}, \Lambda\right)$ that can be discovered via EFT in the future LHC data
- in the case of

$$
\begin{equation*}
p p \rightarrow 2 j+W^{+} W^{+} \rightarrow 2 j+2\left(I \nu_{l}\right), \quad I=e^{+}, \mu^{+} \tag{6}
\end{equation*}
$$

$M_{W W}=$?

- one has necessarily rely on other (observable) distributions
- what are the consequences for the EFT analysis?
- generally, it may happen that for considered f_{i} the assumed scale Λ is within kinematic reach of WW collision energy

$$
\Lambda<M_{\max }
$$

then one has to care about two aspects:

1. BSM signal as predicted by $\mathcal{L}_{E F T}$ must be necessarily regularized above $\wedge 4$

$$
\begin{equation*}
\underbrace{\left.\int_{2 M_{W}}^{\wedge} \frac{d \sigma}{d M_{W W}}\right|_{E F T \text { model }} d M_{W W}}_{\text {EFT controlled region }}+\underbrace{\left.\int_{\Lambda}^{M_{\max }} \frac{d \sigma}{d M_{W W}}\right|_{\text {regularized }} d M_{W W}}_{\text {the tail }} \tag{7}
\end{equation*}
$$

2. any physics conclusions from the EFT analysis can be taken only if bulk of the signal is in the EFT controlled region $E<\Lambda$ and not in the tail $\overline{E>} \wedge$

$$
\begin{equation*}
\left.\int_{2 M_{W}}^{\Lambda} \frac{d \sigma}{d M_{W W}}\right|_{E F T \text { model }} d M_{W W}+\left.\int_{\Lambda}^{M_{\max }} \frac{d \sigma}{d M_{W W}}\right|_{S M} d M_{W W} \tag{8}
\end{equation*}
$$

it defines signal coming uniquely from the EFT in its range of validity
EFT prediction sensible only if both (7) and (8) are statistically consistent at 2σ

[^1]as a result one obtains smaller discovery regions
an extra contour (green) occurs which bounds the discovery regions ("from the right")

discovery regions \equiv irregular "triangles"

Simple matching ${ }^{5}$:

$$
\begin{aligned}
\mathcal{L}_{\text {SMEFT }} \supset & f_{i} \mathcal{O}_{i} \equiv c_{i} \cdot 2 \frac{g^{2}}{\Lambda^{4}} \mathcal{O}_{i}, \quad i=M 0, M 1 \quad \sim\left(D_{\alpha} \Phi\right)^{2}\left(W_{\mu \nu}^{i}\right)^{2} \\
& f_{i} \mathcal{O}_{i} \equiv c_{i} \cdot 2^{2} \frac{g^{4}}{16 \pi^{2} \Lambda^{4}} \mathcal{O}_{i}, \quad i=T 0, T 1, T 2 \quad \sim\left(W_{\mu \nu}^{i}\right)^{4} \\
& f_{i} \mathcal{O}_{i} \equiv c_{i} \cdot 2^{2} \frac{g^{2}}{\Lambda^{4}} \mathcal{O}_{i}, \quad i=M 6, M 7 \quad \sim\left(D_{\alpha} \Phi\right)^{2}\left(W_{\mu \nu}^{i}\right)^{2}
\end{aligned}
$$

$\left|c_{i}\right|<1$ in perturbative deeper completions, but instead e.g. for $c_{i}>0$

27 TeV	$T 0$	$T 1$	$T 2$	$M 0$	$M 1$	$M 7$
$C_{\min }-c_{\max }$	$130 .-770$.	$120 .-1300$.	$670 .-2200$.	$23 .-32$.	$45 .-133$.	$33 .-140$.
$\mathrm{HL}-\mathrm{LHC}$	$T 0$	$T 1$	$T 2$	$M 0$	$M 1$	$M 7$
$c_{\min }-c_{\max }$	$137 .-790$.	$76 .-1300$.	$280 .-2200$.	$23 .-33$.	$38 .-140$.	$24 .-130$.

[^2]
[^0]: ${ }^{1}$ see e.g. $1212.3305,1406.6367,1307.5017$
 ${ }^{2}$ see e.g. 1409.1589, 1904.00026 and references therein

[^1]: ${ }^{4}$ see 1907.06668 for study of impact on different popular regularizations

[^2]: ${ }^{5}$ see 1601.07551

