
Preliminary draft 16:06 29 October 2019

29 October 2019
acts-developers@cern.ch

Concepts, design and Implementation of the A

Common Tracking Software (Acts) project

Acts Developers
CERN, CH-1211 Geneva, Switzerland

Keywords: Bending Magnet, path length, pole face angle, beam trajectory, survey, GEODE

Summary

Contents

1 Introduction 3

2 The ATLAS track reconstruction software 3
2.1 Review . 4

3 The Acts project 4
3.1 General design guidelines . 4

3.1.1 Public interfaces . 4
3.1.2 Configuration . 4
3.1.3 Parallelism . 4
3.1.4 Contextual data . 5
3.1.5 Plugins . 6

3.2 Unit and integration testing . 6

4 Repository components 6
4.1 The Surface and Geometry component . 6

4.1.1 Geometry and Navigation . 6
4.2 Event Data Model . 8

4.2.1 Track parameterisation . 8
4.2.2 Measurement description . 9

1

5 Performance examples 9

6 Conclusion 9

2

1 Introduction

The reconstruction of charged particle trajectories in the tracking detectors of the LHC ex-
periments is the most CPU intensive task of the entire event reconstruction. While it is
less pronounced at low particle multiplicities, the combinatorial character of track finding
becomes more and more computationally expensive the more charged particles are present
within the detector volume. At the time of writing, the LHC operates at a rate of 25 ns
bunch crossing rate and yields on average more than 40 instantaneous proton-proton colli-
sions (also called pile-up µ) per bunch crossing. The prospect of exceeding the LHC design
specifications of < µ > 23 before Run-2, had caused the experiments to lead quite extensive
software optimization campaigns [?] during the first long shutdown period LS-1 of the LHC.
The LS-1 work included software optimization, simplification of the event data and al-
gorithmic adjustments. The general data flow and strategy of the track reconstruction
as described in [?], however, remained unchanged. While during Run-3 of the LHC the
event complexity will stay approximately the same or at least only moderately increases, the
upcoming upgrade of the LHC to the high luminosity machine HL-LHC will dramatically
change this picture. The event pile-up will increase to < µ > 200, which will push the
event reconstruction by a factor of 5 at least out of the available computing budget. Look-
ing forward into the future, certain scenarios of the currently studied LHC successor option
FCC-hh may lead to the pile-up regime of 1000 instantaneous collisions per bunch crossing
[?]. One way to improve the event reconstruction throughput is to more optimally exploit
the available hardware. In current projections of future computing hardware, this usually
implies a shift to more concurrent design patterns. While the experiments frameworks are
currently updated to support multithreaded reconstruction data flow (see, e.g. [?], [?] and
[?]), also the algorithmic tools and concepts will need substantial updates, may it just be to
make the software components intrinsically thread-safe.

2 The ATLAS track reconstruction software

The ATLAS track reconstruction software [?] was designed and largely written following the
publication of the ATLAS Reconstruction Task Force report (RTF Report) [?] before the
start up of the ATLAS experiment in the years 2003 to 2008. It was partly based on two
prior reconstruction programs bib:xKalman and bib:iPatRec and served very successful
data taking and Monte Carlo (MC) simulation campaigns to date. It is characterised by a
vanishing low failure rate (typical MC or data taking campaigns process up to 109 events)
and a very high reconstruction efficiency. During the first long shut down (LS-1) a dedicated
clean-out and optimisation campaign was performed which led to a five-fold speed-up of the
ATLAS Inner Detector track reconstruction for expected Run-2 conditions without any loss
of reconstruction quality. This evolution comprised the move of all algorithmic code from the
CLHEP [?] linear algebra component to the Eigen [?] library, and a first attempt to minimize
heap memory allocations.

3

2.1 Review

Based on the component model of the underlying Gaudi [?] framework, the ATLAS track
reconstruction software implemented a plug-and-play like

3 The Acts project

3.1 General design guidelines

3.1.1 Public interfaces

3.1.2 Configuration

A light weight convention has been chosen for the configuration of Acts components. Con-
figurable components are requested to provide a nested configuration struct which is in-
stantiated and used for the constructing the object. This struct can then be interfaced with
the the experiment’s configuration system, e.g. the Gaudi declareProperty() macro with
its associated python binding.

#inc lude <s t r i ng>
/// @class A component , a r e a l work horse
c l a s s WorkHorse {

pub l i c :
/// Nested c on f i gu r a t i on s t r u c t
s t r u c t Conf ig {

std : : s t r i n g name = ”Beauty” ;
} ;

/// Constructor
/// @param c fg The con i gu ra t i on ob j e c t
WorkHorse (const Conf ig& c f g) = de f au l t ;

p r i va t e :
///!< In s tance o f the c on f i gu r a t i on
Config m cfg ;

} ;

The creation of two modules would read as:

WorkHorse : : Conf ig myCasperCfg{”Casper” } ;
WorkHorse myCasper (myCasperCfg) ;

3.1.3 Parallelism

Acts strives to provide a fully multithreaded track resconstructed toolkit, hence dedicated
care has to be taken in order to allow for inter and intra-event parallel execution of mod-
ules. A trivial step towards ensuring a save parallel execution is to apply const correctness
throughout the software stack. However, in several applications of track reconstruction, in-
termediate caching of information is required to optimise the execution speed. An example
for this is e.g. the magnetic field, where the current magnetic field cell (which is likely also
the magnetic fill cell of the subsequent call) is cached. Internal caching is evidently violating

4

const correctness. To allow caching during execution, any Acts component that requires
the caching of runtime information has to provide a nested State struct that is instantiated
before call and provided by the caller to ensure the cache object stays protected within its
call context.

#inc lude <s t r i ng>
/// @class A component , a r e a l work horse
c l a s s WorkHorse {

pub l i c :
/// Nested c on f i gu r a t i on s t r u c t
s t r u c t Conf ig {

std : : s t r i n g name = ”Beauty” ;
double maxHoursOut = 1000 h ;

} ;

/// Nested State ob j e c t
s t r u c t State {

double hoursOnField = 0 . ;
} ;

/// Method that r e qu i r e s caching
/// @param s t a t e cache r e co rd ing the hours
void workOnField (State& s t a t e) const ;

} ;

Note that the method that performs the operation is marked const, while certainly
in the operation a caching for this operation can be done. If e.g. a parallel execution is
performed, the multiple State objects guarantee that each operation respects its on own
caching constraints.

3.1.4 Contextual data

Apart from processing caches there is also contextual data that may prevent a seamless
parallel execution. Detector conditions, such as calibration constants, noise, detector status
and alignment and/or even the magnetic field strength may be subject to change during
a reconstruction job. Although in general those changes may be quite infrequent special
processing streams with stringent event selections can easily evoke a system where - when
executing events in parallel - multiple detector alignment and calibration conditions need to
be present and available in memory.

In Acts this is solved with so-called Context objects that have to be provided for any
contextual call. Three different flavors exist:

• Acts::CalibrationContext: this object holds the contextual information for meas-
urement calibrations

• Acts::GeometryContext: this object holds the contextual information for all geometry
related parameters

• Acts::MagneticFieldContext: this object holds the contextual information for mag-
netic field related parameters

5

The implementation of the context objects can be chosen freely, in Acts they are practic-
ally only provided through the call chain such that they can be resolved at the right moment.
In general, retrieval of the contextual information (e.g. changed alignment or calibration)
has to happen in this design at maximum once per event (or even less)1.

The context objects guarantee that an operation/data retrievals performed within the
right context, e.g. the request for a surface transform has to be done by providing the correct
alignment context

auto sur faceTrans form = su r f a c e . trans from (geoContext) ;

3.1.5 Plugins

Acts is designed with minmial dependency on other libraries, the core library itself only
requires the Eigen math library as a minimal depenency. However, it is certainly useful
to allow interfacing or using other external libraries, such as e.g. the ROOT [?] framework,
DD4hep [?] or Geant4 [?].

3.2 Unit and integration testing

4 Repository components

4.1 The Surface and Geometry component

The Acts::Surface class

The key geometric component of the Acts package is the Acts::Surface class. Surfaces
build up the higher level geometry objects that are described by the Acts::Layer and
Acts::TrackingVolume classes, but also combine event data model (and track paramet-
erisation) with the detector geometry.

The Acts::TrackingVolume class

4.1.1 Geometry and Navigation

In the following, the concepts of the Acts geometry and navigation structure is described
with a simple one layer detector2. Figure 4 shows a conceptional single layer detector (for
simplicity only in the x-y plane) that is built from certain detector components. For the use of
full simulation, this detector has to be described with a geometry modeller, in the current case
this has been done with the use of the DD4hep [?] toolkit, which leads to illustration displayed
in Fig. ??. Evidently, when describing a real detector in a 3D modeller, some simplifications
have to be done as in general not all shapes are possible to be described efficiently in such a
model. However, a certain level of detail is required to reflect the actual detector geometry
and material distribution. Especially for the full simulation, usually carried out with the

1Often various database requests are needed for establishing the detector conditions, hence this operation
should be done as infrequent as possible

2These steps can be followed in the framework repository

6

ACTS documentation Geometry module

CylinderBounds CylinderBounds(sectoral)

SurfaceBounds for  
CylinderSurface

x

y

z

r

2 hy

x

y

z

r

2 hy

2Δϕhalf

ϕavg

Figure 1: Examples of cylindrical surfaces in Acts with different cylinder boundaries.
.

Geant4 [?] toolkit, a detailed description is needed in order to guarantee good agreement
between simulated and taken data. DD4hep offers a convenient translation of the underlying
detector geometry (which is described with the TGeo component of the ROOT library) into
a Geant4 description, which allows to run a full simulation directly on DD4hep input. The
resulting tomography of the detector (in this context performed with non interacting virtual
particles, called Geantinos is displayed in Fig. 6.

For track reconstruction, on the other hand, the detailed description used for full simu-
lation is in general not necessary and would lead to unwanted CPU overhead when trying
to resolve the navigation through such a complicated geometry. This is, because in track
reconstruction, the interaction of the particle with the detector material is only taken into
account in a stochastic manner. The position, orientation and conditions of the sensitive
detector elements, however, are to be described with full detail as they are needed to determ-
ine the track measurements to the greatest detail. In Acts this is guaranteed by requiring
that the representing sensitive sensors, tubes or other detection devices are implemented
as an extension of the Acts::DetectorElementBase base class, which provides a surface
representation the rest of the Acts application. If a Acts::Layer contains several sensitive
detectors, such as, e.g. a collection of sensitive silicon wafers, they out to be grouped in a
so-called Acts::SurfaceArray which gives the layer an internal structure, see Fig 7. As long
as track reconstruction is concerned, only the sensitive detector elements and the material
description of the layer structure is relevant. When sub structure of a layer is present, the
layer has in general a thickness different from 0, and the layer boundaries will be guarded by
so called approach surfaces3. In case of a layer without sub structure, such as e.g. a simple
representation of a beam pipe as a cylinder, the layer thickness is forced to be zero and the
approach surfaces are omitted, see Fig 8.

The navigation between layers is straight forward: Acts::Layer objects are interlinked at

3For many classiscal layer setups, the Acts toolkit creates the layer sub structure automatically by parsing
the sensitive sensor dimensions and positions.

7

ACTS documentation Geometry module

x

y

rmin

rmax

x

y

rmin

rmax

x

y

rmin

rmax

RadialBounds RadialBounds(sectoral) DiscTrapezoidalBounds

SurfaceBounds for 
DiscSurface

ϕavg
Δϕhalf

Figure 2: Examples of disk-like surfaces in Acts with different disk boundaries.
.

construction time and hence approximate layers are registered to the current Acts::Layer ob-
ject. When navigation towards a layer, the layer provides in case of sub structure the
approach surface candidate, or - in absence of sub structure - the Acts::Surface rep-
resentation, respectively. From the intersection with the approach surface, the binned
Acts::SurfaceArray object provides compatible candidate sub structure surfaces (sensitive
or non sensitive) to the navigation module. If layers are in different volumes, the glueing
mechanism of the geometry building guarantees a common boundary surface between the
adjunct volumes, displayed in Figure 9. Finally, Fig. 10 shows the resulting navigation
and propagation steps of the Acts::Propagator with its internal navigation through this
detector setup.

4.2 Event Data Model

The track reconstruction event data model (EDM) has to describe track parameterisation,
a measurement expression, track objects and vertices.

4.2.1 Track parameterisation

The set of track parameters describes the parametrisation of a trajectory with respect to a
surface. Hence, different flavors of track parameters exist depending on the different surface
types. Acts provides a default track parameterisation, which is a combination of local and
global parameters, the first two parameters l0 and l1 (the ones defined by the surface reference
frame) are expressed locally, while the remaining parameters φ, θ, q/p and t (time) are in
global parameter space.

8

ACTS documentation Geometry module

x

y

hy

hx

x

y

hy

hx

hx

min

max

x

y

hy1

hy2

hx
med

hx
min

hx
max

x

y

x

y

v0

v1

v2

RectangleBounds TrapezoidBounds DiamondBounds

EllipseBounds TriangleBounds

SurfaceBounds for 
PlaneSurface

Figure 3: Examples of planar surfaces in Acts with different planar boundaries.
.

4.2.2 Measurement description

Following the Acts philosophy only minimal requirements are put onto the a correct and
complete measurement description. In order to minimise unnecessary operations measure-
ments are best expressed in the same coordinate system as the track parameterisation. By
doing so, the so-called measurement mapping function that relate a track parameterisation
to the actual measurement are reduced to simple projection matrix operations.

5 Performance examples

6 Conclusion

References

9

x

y

beam pipe

sensitive sensors

support cylinder

cooling pipe and structure

additional module structure

cables & connectors

Figure 4: A drawing of a conceptional single layer detector with a beam pipe and a certain
sub structure.

.

x

y
DD4hep implementation

Figure 5: DD4hep representation of the conceptual single layer detector. A certain level of
simplification has to be applied to allow a description in a 3D geometry modelling toolkit.

.

10

x

y Geant4 step map

Figure 6: Geant4 tomography of the conceptual single layer detector. The single structure
given by the DD4hep description can be clearly seen in this step recording.

.

x

y

sensitive sensors

Acts::Surface objects
ordered in a binned
Acts::SurfaceArray  
object.

Figure 7: Sensitive detector elements representing the sensors in the conceptual single layer
detector.

.

11

x

y

representing Acts::Surface

inner approach Acts::Surface
(including envelope clearance)

outer approach Acts::Surface
(including envelope clearance)

layer  
radius

layer  
thickness

Acts::Surface objects
ordered in a binned
Acts::SurfaceArray  
object

Acts::CylinderLayer object

Figure 8: Sensitive detector elements representing the sensors in the conceptual single layer
detector, leading to a layer with sub structure and non trivial thickness and approach sur-
faces. The beam pipe representation is without sub structure and hence neither a layer
thickness nor approach surfaces are present.

.

12

x

y
Acts::CylinderLayer object  
representing a sensitive layer

Acts::CylinderLayer object  
representing the beam pipe

Acts::TrackingVolume  
boundary

Figure 9: Relevant Acts surface descriptions for the navigation through the conceptual single
layer detector. The boundary surface between the beam pipe volume and the detection
layer volume is automatically created during the geometry construction and volume glueing
process.

.

13

x

y
propagation steps
on beam pipe layer

propagation steps
on volume boundary

propagation steps
on inner support

propagation steps
on sensitive surface

propagation steps
on volume boundary
(end of world)

navigation sequence

Figure 10: Resulting propagation steps on sensitive, passive, boundary and approach surfaces
in the conceptual single layer detector. The navigation sequence from inside out can be
followed.

.

14

	Introduction
	The ATLAS track reconstruction software
	Review

	The Acts project
	General design guidelines
	Public interfaces
	Configuration
	Parallelism
	Contextual data
	Plugins

	Unit and integration testing

	Repository components
	The Surface and Geometry component
	Geometry and Navigation

	Event Data Model
	Track parameterisation
	Measurement description

	Performance examples
	Conclusion

