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Particle Production in Particle and RHI Physics
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Requirements for Particle Detectors

* Particle registration (detection)
* Measurement of momentum or energy
* Particle identification (e, &, K, p, ...)
e Reconstruction of invariant mass via decay products
m...> = (£p,)?, where p, — four-momentum
* “Missing mass” or “missing energy” for undetected particles

* Sensitivity to lifetime or decay length
— Unstable particles (short-lived):
* Decay via strong interaction: p — n'm [~ 150 MeV/c?
tc=hc/T=15fm (t=10%5s)
 Decay via electromagnetic interaction: n° — vy (t =106 s)
— Quasi-stable particles (long-lived):
* Decay via weak interaction: A — pr (t=10105)
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Particle Interaction with Matter

There are 4 types of interactions in Nature but we use only 2 of them
to detect particles:

* Stronginteraction

— Hadronic showers

.. ) Calorimeters
° EIectromagnetlcmteractlon

— Bremsstrahlung
— Pair production

Pra—

— lonization

6 ’ Tracking detectors
Scintillation

— Cherenkov radiation

M Cherenkov/TRD
— Transition radiation
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Tracking detectors

* Purpose:

— Measurement of momentum and charge determination

— Tracking (production position)

* Material:
— Gaseous detectors (drift chambers, straws)
— Solid state (silicon detectors)
— Scintillating (fiber trackers)

* Important concepts:
— Energy loss

— Resolution
— Possibility to place in a magnetic field
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Specific lonization Energy Loss

Originates from the Coulomb interaction between charged particle and atom

Dominated by inelastic collisions with electrons

atom+ X — atomt 4+ e~ + X ionization
—  atom™* 4+ X excitation
L— atom + 7y de-excitation

Classical derivation: N. Bohr 1913

Quantum mechanical derivation:

— H. Bethe, Ann. d. Physik 5 (1930) 325
— F. Bloch, Ann. d. Physik 16 (1933) 285

Bohr: particle with charge ze moves with velocity v through medium with
electron density n, electrons considered free and, during collision, at rest e

2ze?
Ap, = Ap = Ap| averages to zero 'b
bv v i
Ap? : >
AE(b) = 5 energy transfer onto one electron at distance b M, ze
Mme

per path length dx in the distance between b and b+db, n 2t b db dx
electrons are found
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Specific lonization Energy Loss

2 4
ndmze™ db
_ —dE(b) = dx
Diverges forb — 0 mev? b
b, relative to heavy particle electron is located only within the Broglie
wavelength B B
=4 bmfn - — =
p  ymev
b, duration of perturbation should be shorter than period of electron:
"4
b/yv< 1/<v> s by = 2
¥)
integrate over b with these limits:
dE 4mz%e* mec?3°~2
- = n In
dx  mec?f3? h(v)
electron density n = %

average revolution frequency of electron <v> <> mean excitation energy
|I=h<v>

1/5/2020 Grigory Nigmatkulov 7



Specific lonization Energy Loss (Bethe-Bloch Equation)

* Considering quantum mechanical effects and some other corrections
_9E _ 22 L L 2mec? B Tmax  go O
dx A" B2 |2 /2 2
describes mean rate of energy loss in the range 0.1 < By < 1000
2
K _ amNaremee with classical electron radius e & -
A A mecC

Tmax =~ 2mec®3?4*  max. energy transferred in a single collision for M > m,

I =(10+1)-ZeV mean excitation energy (for elements beyond aluminum)
8/2 density correction

* with increasing particle energy - Lorentz contraction of electric field,
corresponding to increase of contribution from large b with In(By)

left: for small ~ _ \ / - x. \X f/
. . E \ ‘/ ‘
right: for large v ‘// \\ / 1\

* but: real media are polarized, effectively cuts off long-range contributions to
logarithmic rise, term —-6/2 leads to Fermi plateau
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Specific lonization Energy Loss

High energy limit

) hw 1
— —In—2 4+ 1In — —
5 | + In B 5

with plasma energy

hwp = \/dmnr3mec? /a

dE/dx increases more Iik%cInBv than InB2y?
and | should be replaced by plasma energy

Remark: plasma energy Vn, i.e.
correction much larger for liquids and
solids, leading to smaller relativistic rise

Allows to identify different particle species
in a wide momentum range




Bremsstrahlung

 QED process (Fermi 1924, Weizsacker-Williams 1938)

lab system rest system of electron
&

ev_} '4_\T -
n ..

J_ J_ Kern
* electron is hit by plane electromagnetic wave (for large v )

E Bandboth v; quanta are scattered by electron and appear as real photons

@ oder @ NN ‘
[oe [o¢
* |In Coulomb field of nucleus electron is accelerated

amplitude of electromagnetic radiation acceleration 1/m_c?

Z2a3

* Cross section Obrems X ( 2)2
mecC
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Bremsstrahlung

Energy loss by Bremsstrahlung — charged particle radiate photons in the Coulomb

field of the nuclei of the absorber medium: 4 72, 183
- = 4aNA—r Eln —
dX A Z3
Considering also interaction with electrons in atom:
dE Z(Z+1 287 E
- = 4aNAgre2Eln il = —
dx A 732 Xo
=
Thus: E(x) = Epexp(—x/Xp)

X, is distance over which energy decreases to 1/e of initial value

1 wW;
For mixtures: 5 = X—D’ w; weight fraction of materlal |
i ! 200 e S
Critical energy: dE i
&Y - by ionization x In E I )C(OEPEZrSGQCWZ i
dx 100 |- Eo- 1963 MeV §
dE 3 70 _ E
—— by bremsstrahlung o E = _F _ Rossi: E
dX s 50 E lonization per X, E
>>§ 40 — = electron energy —
— existence of crossing point beyond which g O E
bremsstrahlung dominates oL ]
t t | E (dE) B (dE) y p Brems = Ionllzatlon ]
atcritical energy t dx Jion  \dx/brems ' ° EljégtronEﬁgrgy(Me\?)o o
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Scintillation Counters

* Principle of scintillation counter:

— dE/dxis converted into visible light and transmitted to an optical receiver
sensitivity of human eye quite good: 15 photons in the correct wavelength
range within At = 0.1 s noticeable by human

— scintillators make multipurpose detectors; can be used in calorimetry, time-
of-flight measurements, tracking detectors, trigger or veto counters

e Scintillating materials:

— inorganic crystals - crystal (electric insulator) doped with activator (color
center) e.g. Nal(Tl) (good energy resolution but S)

— organic crystals —aromatic hydrocarbon compounds (naphthalene,
anthracene) (cheap, fast but light anisotropic output due to channeling in
crystals)

— polymers (plastic scintillators - p-Terphenyl, PBD (2-phenyl-5(4-biphenyl)-
1,3,4-oxadiazole) — polymer (polystyrene, plexiglas)+ scintillator+wavelength
shifter or liquid (benzene, toluene)+scintillator+wavelength shifter
(fast, cheap, may be sensitive for (n,p) reactions but large energy loss, low
light yield)
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Sintillation Detectors
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Event Plane Detector (STAR)

[| p+p 500 GeV (2017)

* 16 Radial segments

* 2-16 Radial segments have 24

azimuthal segments
* spanning angle of 15°

* 15t Radial segment has 12

azimuthal segments
* spanning angle of 30°

STAR preliminary



https://drupal.star.bnl.gov/STAR/starnotes/public/sn0666

Vavilov-Cherenkov radiation

» Particle of mass, M, and velocity, B= v/c propagates through medium with real

part of dielectric constant: e« =n*= C—2 o
1 m
incase: g Bpy = ~orv>cn 0 ’ N
. . pl ~ |p
real photons can be emitted with: P P
w << 'yMc
.. w

emission under angle: cosf. = =

k- v Ve

* Fordistance, x, and frequency interval, dv, one can estimate number of photons, N,:

N o oY
v=X he /wl (1- ﬁ2n2(w)) “
3TDXEV'Cm Sin2 gc

for interval dw, where n(w) varies not much, e.g. gasearé(jnd visib‘Ie
wavelengths 300 nm< A <600 nm and N = 750 sin26 /cm

typical photon energy: ~ 3 eV (n _ 1) (BW)thr ng(deg) N,?o(cm_l)
in water 3—"': = 0.5 keV/cm = 0.5 keV/g/cm? —3
e H, 0.14-10~3 59.8  0.96 0.21
cf. ionization ch . > 2 MeV/g/cm? N2 0.3 - 10—3 40.8 1.4 0.45
— energy loss by Cherenkov radiation negligible HQO 0.33 - 1.13 41.2 165

1/5/2020 Grigory Nigmatkulov 14



Cherenkov Detectors

a) threshold detector: principle - if Cherenkov radiation observed = 3 > B},
e.g. separation of w/K/p of given momentum p

—_— e - - - -k === —=—=b - mmm === === === F— — =

no
choose such that

n Br > nil Bk, Bp < ,,_11

light in C; and (5 T
light in C; and not in Cy: K
no light in ¢; and G;: p

b) measurement of 6. in medium with known n = 3

(RICH, DIRC, DISC detectors)

Photon
Detectors

1 jomed

= Spherical
Mirror

Cherenkov Angle (rads)
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Time-Of-Flight Measurements

* Time difference between two detectors with good time resolution: “start” and

“stop”-counter
— typically scintillator or resistive plate chamber, also calorimeter (neutrons)

— coincidence set-up or put all signals as stop into TDC (time-to-digital
converter) with common start (or stop) from “beam” or “interaction”

scintillator 1 scintillator 2

* For known distance, L, between start and stop
counters, time-of-flight difference of two particles

with masses m, , and energies E ,:

At:Tl—TQZE(i—i)
c\B [

L 1 1 Difference in time-of-flight for L = 1 m
At = — —
(Vimmerr mmemr)

limiting case: E ~ pc > mc?

Lc
sz(m% — m%) i

PC: signal display

At[ns]

At =

best achievable

A AN ] N

o 0 10
p [GeV/c]
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Time-Of-Flight Measurements (MRPC)

Typical Multigap Resistive Plate Chamber

Cathode -10 kV

honey comb (-8 kV) /X l..l- ] | Flow of pOSiﬁVe ions
1 PC board | é T i
- . pad _ (-6 kV) | 1 l ]
short side view clectrode (graphitc A | 1 1 Flow of electrons
1 :
glass (-4 kv) | l! 'T | and negative ions
(-2kv) | 1
|
Anode 0 V /f\ I‘

|
8.‘4+ 8I.9 9'_4 position (cm)
8.6

Time of flight

Beamline

215 1050 05
p/q (GeV/c)
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Calorimetry

* In nuclear and particle physics, calorimetry refers to the detection of particles,
and measurement of their properties, through total absorption in a material

* The signals from a properly instrumented absorber may be used to measure the
entire four-vector of the particles. By analyzing the energy deposit pattern, the
direction of the particle can be measured. The mass of the showering particle
can be determined in a variety of ways:

— The E/p method, in which the energy measured in the calorimeter is compared with the
momentum measured with a tracker in a magnetic field. This method only works for charged
particles and relatively low energies.

— By analyzing the energy deposit profile. This method is frequently used to identify electrons.
Especially in calorimeters with high-Z absorber material, EM showers are much more shallow and
concentrated around the shower axis than hadronic showers.

— By measuring the time structure of the calorimeter signals
7
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Calorimetry

Key:

Muon

Electron

Charged Haron (e.g. Pion)

- = = = Neutral Haron (e.g. Neutron)
--------- Photon

e Electromagnetic shower
v + nucleus — et 4+ e + nucleus

e + nucleus — e+ v+ nucleus

::4////
ke ”? ®

\
- . (@3\%\” il
* Hadronic interactions (e.g. for protons) //////// il

Electromagnetic <
l]ll calorimeter

1 Hadron uperconductin
EI aStIC p + N — p + N Oe| — T Ji ! st ) psolengidm ’ Iron return yoke interspersed
. O-t01 - Gel 0 | ne| r[:?;:;sg;ge with Muon chambers
Inelastic p+N— X o, O T
19.7fb" (8 TeV) + 5.1 fo " (7 TeV
\ ||||\| TTTI I \|| |||||| LA w \ll\ll 1Tl || ||\|||| [N | L > X103_ ( i )+ ( i )
: : : 3 10: I-(l:in?/ Sum over all classes
g o2l ® h ¢ Data
£t & gf —— S4B fits (sum)
3 = I N T LT B component
3 - g . 1o
S i | 5 6 I 20
Mo | |
ol ”ﬂ Celastic 4r
S T '33HA'“3“M3@'¥%¥.33; B I R S S S .
f o P,GeVt. o B
10" 1 10 10° 10° 10* 10° 10° 107 10° [ my=124. 70 1034 QeV
‘IEGEL" T T ey 7T . T TTTTT . T T T - . e . T 0 -I L1 | I 11 | I | -] | | ] I L1 1 1 I | - I I I ] |
1.9 2 10 ?{f -I[U-? JU‘ % _l LI I L I L | LB I T T 17T I L I LU I T 17T |_
. . A 0] L B tsublracted
Average nuclear interaction length: M = N o < 20 component susliact
)
A tot E. 0
. . . A o i
For inelastic processes — absorption: Ay = ———— D 00 i
NApG_ineI [ ] | | 1 | ] | ]

X 100 110 120 130 140 150 160 170 180
Ay m,, (GeV)
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Momentum Measurements

* Deflection of track of charged particle in magnetic spectrometer
* Lorentz force = circular orbit of curvature radius, p, in homogeneous magnetic
field: mv?

:qﬁxézqvl-|§| v, : component of ¥ L to B
p

p1 : analogue

_ P units: for p in m
qB pin GeV/c
Bin T
g in units of e
: 0 0
Sagitta S = p—pcosE =p 1—cos§
0
= 2p sin? —
62 4
for small 6 S ~ %
. L/2 B QLZB BinT,Linm,p;| |n2GeV/c, gine
with p=— and sinf/2~60/2=— S=—— S _ 03qL°B
qB P 3p 1 (m) = 8p.
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* Basic principles of particle interactions with matter and detection
have been discussed

* One hasto remember detector limitations for measurements of
various physics aspects

* Detector setups usually planned for specific/dedicated physics
measurements measurements
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