

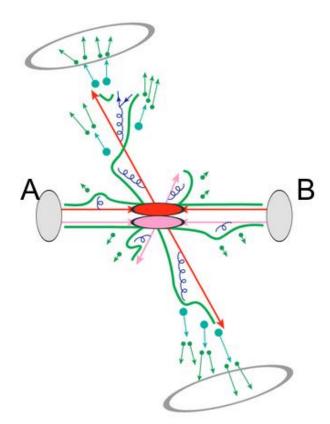
Particle Interaction with Matter and Detectors

Grigory Nigmatkulov

National Research Nuclear University MEPhl

Oslo Winter School "Standard Model, Quantum Chromodynamics, Heavy Ion Collisions" Jan. 5, 2019

Particle Production in Particle and RHI Physics





Hard interactions

- + Radiative cascade
- + Multiple interactions of initiators
- Hadron formation
- + Hadron decays (and rescattering)
- + Beam spectrum & material effects

Various evolution scenarios depending on the description approach (strings, thermodynamics, hydrodynamics, hybrids)

The information about the system is carried out by particles that must be detected

Requirements for Particle Detectors

- Particle registration (detection)
- Measurement of momentum or energy
- Particle identification (e, π , K, p, ...)
- Reconstruction of invariant mass via decay products

$$m_{inv}^2 = (\Sigma p_i)^2$$
, where p_i – four-momentum

- "Missing mass" or "missing energy" for undetected particles
- Sensitivity to lifetime or decay length
 - Unstable particles (short-lived):
 - Decay via strong interaction: $\rho \to \pi^+\pi^ \Gamma \approx 150 \text{ MeV/c}^2$ $\tau c = \hbar c/\Gamma \approx 1.5 \text{ fm} \quad (\tau \approx 10^{-23} \text{ s})$
 - Decay via electromagnetic interaction: $\pi^0 o \gamma \gamma \ \ (au pprox 10^{\text{-}16} \text{ s})$
 - Quasi-stable particles (long-lived):
 - Decay via weak interaction: $\Lambda o p\pi^{\scriptscriptstyle{-}} (au pprox 10^{\scriptscriptstyle{-}10} \, ext{s})$

Particle Interaction with Matter

There are 4 types of interactions in Nature but we use only 2 of them to detect particles:

- Strong interaction
 - Hadronic showers
- Electromagnetic interaction
 - Bremsstrahlung
 - Pair production
 - Ionization
 Tracking detectors

Calorimeters

- Scintillation
- Cherenkov radiation
 Cherenkov/TRD
- Transition radiation

Tracking detectors

Purpose:

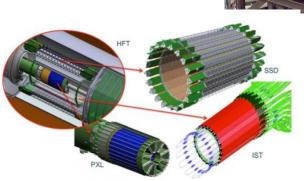
- Measurement of momentum and charge determination
- Tracking (production position)

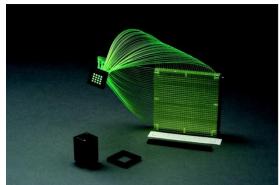
Material:

- Gaseous detectors (drift chambers, straws)
- Solid state (silicon detectors)
- Scintillating (fiber trackers)

Important concepts:

- Energy loss
- Resolution
- Possibility to place in a magnetic field





Specific Ionization Energy Loss

- Originates from the Coulomb interaction between charged particle and atom
- Dominated by inelastic collisions with electrons

- Classical derivation: N. Bohr 1913
- Quantum mechanical derivation:
 - H. Bethe, Ann. d. Physik 5 (1930) 325
 - F. Bloch, Ann. d. Physik 16 (1933) 285
- Bohr: particle with charge ze moves with velocity v through medium with electron density n, electrons considered free and, during collision, at rest

$$\Delta p_{\perp}=\Delta p=rac{2ze^2}{bv}$$
 Δp_{\parallel} averages to zero
$$\Delta E(b)=rac{\Delta p^2}{2m_e}$$
 energy transfer onto one electron at distance b

v M, ze b

per path length dx in the distance between b and b+db, n 2π b db dx electrons are found

Specific Ionization Energy Loss

$$-dE(b) = \frac{n4\pi z^2 e^4}{m_e v^2} \frac{db}{b} dx$$

- Diverges for $b \rightarrow 0$
- b_{min} relative to heavy particle electron is located only within the Broglie wavelength

 $\Rightarrow b_{min} = \frac{\hbar}{p} = \frac{\hbar}{\gamma m_e v}$

• b_{max} duration of perturbation should be shorter than period of electron:

$$b/\gamma v \le 1/\langle v \rangle$$
 $\Rightarrow b_{max} = \frac{\gamma v}{\langle \nu \rangle}$

integrate over b with these limits:

$$-\frac{\mathrm{d}E}{\mathrm{d}x} = \frac{4\pi z^2 e^4}{m_e c^2 \beta^2} n \ln \frac{m_e c^2 \beta^2 \gamma^2}{\hbar \langle \nu \rangle}$$

electron density $n = \frac{N_A \rho Z}{A}$

average revolution frequency of electron <v> \leftrightarrow mean excitation energy $I=\hbar<$ v>

Specific Ionization Energy Loss (Bethe-Bloch Equation)

Considering quantum mechanical effects and some other corrections

$$-\frac{\mathrm{d}E}{\mathrm{d}x} = Kz^2 \frac{Z}{A} \rho \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} - \beta^2 - \frac{\delta}{2} \right]$$

describes mean rate of energy loss in the range $0.1 \le \beta \gamma \le 1000$

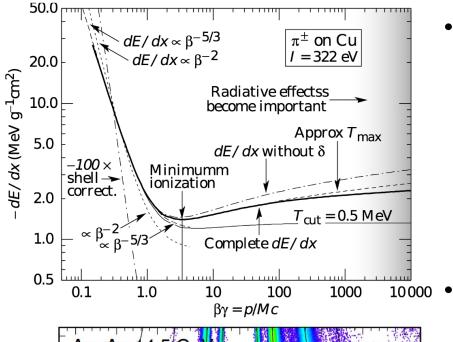
$$\frac{K}{A} = \frac{4\pi N_A r_e^2 m_e c^2}{A}$$
 with classical electron radius $r_e = \frac{e^2}{m_e c^2}$ $T_{max} \approx 2 m_e c^2 \beta^2 \gamma^2$ max. energy transferred in a single collision for M \gg m_e $I = (10 \pm 1) \cdot Z$ eV mean excitation energy (for elements beyond aluminum) density correction

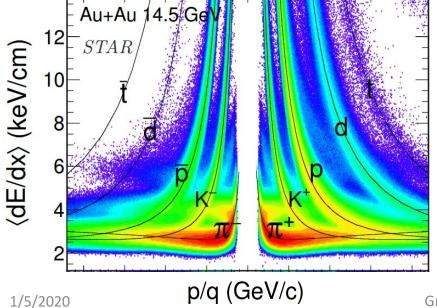
• with increasing particle energy \rightarrow Lorentz contraction of electric field, corresponding to increase of contribution from large b with $ln(\beta\gamma)$

left: for small
$$\gamma$$
 right: for large γ

• but: real media are polarized, effectively cuts off long-range contributions to logarithmic rise, term $-\delta/2$ leads to Fermi plateau

Specific Ionization Energy Loss





High energy limit

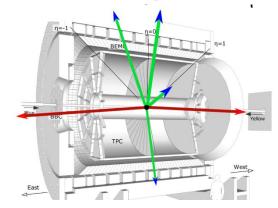
$$\frac{\delta}{2} \to \ln \frac{\hbar \omega_p}{I} + \ln \beta \gamma - \frac{1}{2}$$

with plasma energy

$$\hbar\omega_p = \sqrt{4\pi n r_e^3} m_e c^2/\alpha$$

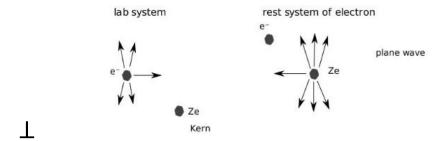
dE/dx increases more like $\ln \beta \gamma$ than $\ln \beta^2 \gamma^2$ and I should be replaced by plasma energy

- Remark: plasma energy Vn, i.e. correction much larger for liquids and solids, leading to smaller relativistic rise
- Allows to identify different particle species in a wide momentum range



Bremsstrahlung

QED process (Fermi 1924, Weizsäcker-Williams 1938)



electron is hit by plane electromagnetic wave (for large v)
 E B and both v; quanta are scattered by electron and appear as real photons

- In Coulomb field of nucleus electron is accelerated amplitude of electromagnetic radiation acceleration 1/m_ec²
- Cross section $\sigma_{\rm brems} \propto \frac{Z^2 \alpha^3}{(m_e c^2)^2}$

Bremsstrahlung

Energy loss by Bremsstrahlung – charged particle radiate photons in the Coulomb field of the nuclei of the absorber medium: $-\frac{\mathrm{d}E}{\mathrm{d}x} = 4\alpha N_A \frac{Z^2}{A} r_e^2 E \ln \frac{183}{7^{\frac{1}{2}}}$

Considering also interaction with electrons in atom:

$$-\frac{dE}{dx} = 4\alpha N_A \frac{Z(Z+1)}{A} r_e^2 E \ln \frac{287}{Z^{\frac{1}{2}}} = \frac{E}{X_0}$$

Thus:

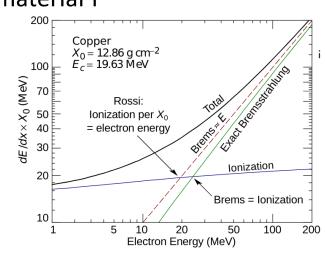
$$E(x) = E_0 \exp(-x/X_0)$$

 X_0 is distance over which energy decreases to 1/e of initial value

For mixtures: $\frac{1}{X_0} = \sum_i \frac{w_i}{X_{0i}}$ w_i weight fraction of material I

- Critical energy: $-\frac{dE}{dx}$ by ionization $\propto \ln E$ $-\frac{dE}{dx}$ by bremsstrahlung $\propto E$
- → existence of crossing point beyond which bremsstrahlung dominates

at critical energy
$$E_c$$
 $\left(\frac{dE}{dx}\right)_{ion} = \left(\frac{dE}{dx}\right)_{brems}$



Scintillation Counters

• <u>Principle of scintillation counter</u>:

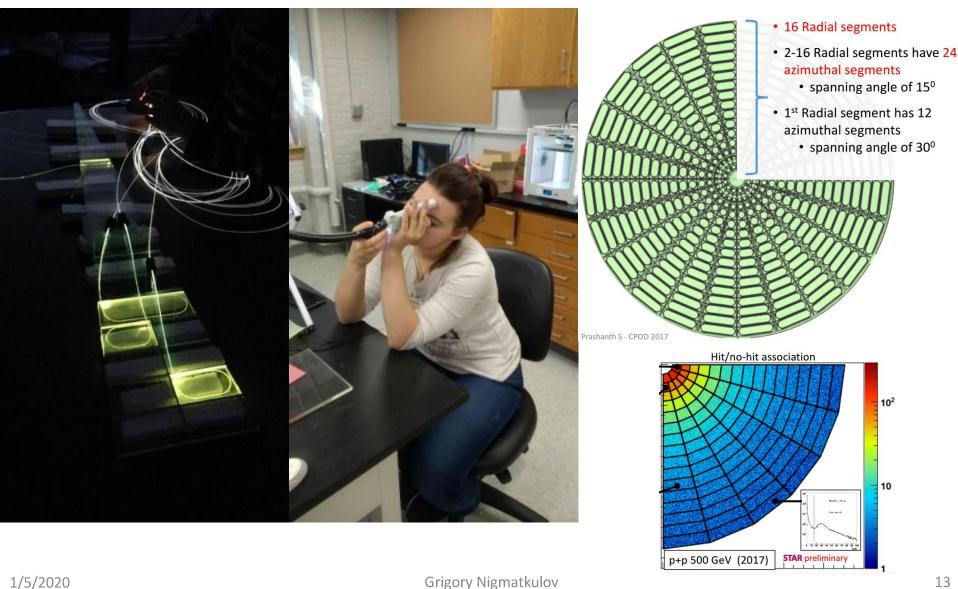
- dE/dxis converted into visible light and transmitted to an optical receiver sensitivity of human eye quite good: 15 photons in the correct wavelength range within $\Delta t = 0.1$ s noticeable by human
- scintillators make multipurpose detectors; can be used in calorimetry, timeof-flight measurements, tracking detectors, trigger or veto counters

Scintillating materials:

- inorganic crystals crystal (electric insulator) doped with activator (color center) e.g. NaI(Tl) (good energy resolution but \$)
- organic crystals aromatic hydrocarbon compounds (naphthalene, anthracene) (cheap, fast but light anisotropic output due to channeling in crystals)
- polymers (plastic scintillators p-Terphenyl, PBD (2-phenyl-5(4-biphenyl)-1,3,4-oxadiazole) polymer (polystyrene, plexiglas)+ scintillator+wavelength shifter or liquid (benzene, toluene)+scintillator+wavelength shifter (fast, cheap, may be sensitive for (n,p) reactions but large energy loss, low light yield)

Sintillation Detectors

Event Plane Detector (STAR)



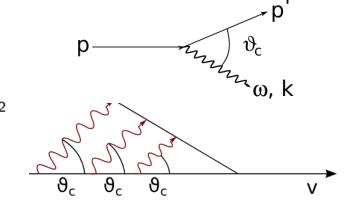
Vavilov-Cherenkov radiation

Particle of mass, M, and velocity, $\beta=v/c$, propagates through medium with real part of dielectric constant: $\epsilon_1 = n^2 = \frac{c^2}{c_m^2}$

part of dielectric constant:
$$\epsilon_1 = n^2 = \frac{c^2}{c_m^2}$$
 in case: $\beta > \beta_{\text{thr}} = \frac{1}{n}$ or $v > c_m$

real photons can be emitted with: $\begin{array}{ccc} |p| & \simeq & |p'| \\ \omega & \ll & \gamma Mc^2 \end{array}$

emission under angle:
$$\cos \theta_c = \frac{\omega}{k \cdot v} = \frac{1}{n\beta}$$



For distance, x, and frequency interval, dv, one can estimate number of photons, N_v :

$$N_{\gamma} = x \underbrace{\frac{\alpha}{\hbar c}}_{370/\mathrm{eV \cdot cm}} \int_{\omega_{1}}^{\omega_{2}} (1 - \frac{1}{\beta^{2} n^{2}(\omega)}) \hbar \mathrm{d}\omega$$

165

14

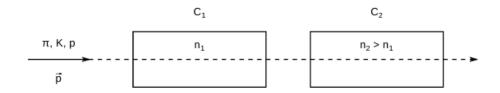
for interval d ω , where n(ω) varies not much, e.g. gases around visible wavelengths 300 nm $< \lambda < 600$ nm and $N_v = 750 \sin 2\theta_c / \text{cm}$

typical photon energy:	\simeq 3 eV		(n - 1)	$(eta\gamma)_{thr}$	$ heta_c^\infty(deg)$	$N_{\gamma}^{\infty}(cm^{-1})$
in water	$\frac{dE}{dx}\Big _{cher} = 0.5 \text{ keV/cm} = 0.5 \text{ keV/g/cm}^2$	H ₂	$0.14 \cdot 10^{-3}$	59.8	0.96	0.21
cf. ionization	$\left. rac{d \mathit{E}}{d \mathit{x}} \right _{ion} \geq 2 MeV/g/cm^2$	N_2	$0.3 \cdot 10^{-3}$	40.8	1.4	0.45
→ energy loss by Cherenkoy radiation negligible		$H_{\alpha}O$	0.33	1 13	41.2	165

1/5/2020 Grigory Nigmatkulov

Cherenkov Detectors

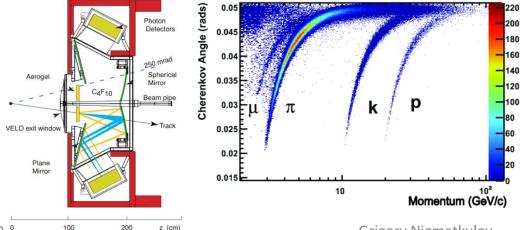
a) threshold detector: principle - if Cherenkov radiation observed $\Rightarrow \beta > \beta_{\text{thr}}$ e.g. separation of $\pi/\text{K/p}$ of given momentum p

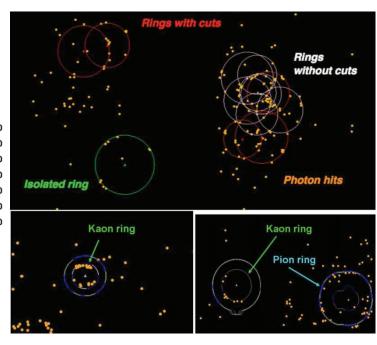


choose
$$\frac{n_2}{n_1}$$
 such that $\frac{\beta_\pi, \beta_K > \frac{1}{n_2}}{\beta_\pi > \frac{1}{n_1}}$ $\beta_p < \frac{1}{n_2}$ $\beta_k, \beta_p < \frac{1}{n_1}$

light in C_1 and C_2 : π light in C_1 and not in C_2 : K no light in C_1 and C_2 : K

b) measurement of θ_c in medium with known $n \Rightarrow \beta$ (RICH, DIRC, DISC detectors)





Time-Of-Flight Measurements

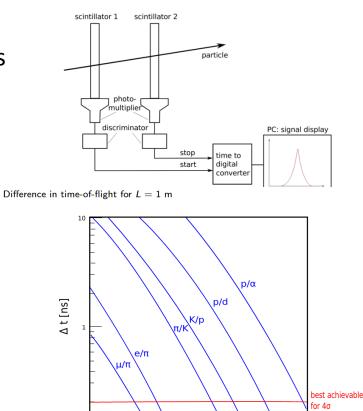
- Time difference between two detectors with good time resolution: "start" and "stop"-counter
 - typically scintillator or resistive plate chamber, also calorimeter (neutrons)
 - coincidence set-up or put all signals as stop into TDC (time-to-digital converter) with common start (or stop) from "beam" or "interaction"
- For known distance, L, between start and stop counters, time-of-flight difference of two particles with masses $m_{1.2}$ and energies $E_{1,2}$:

$$\Delta t = \tau_1 - \tau_2 = \frac{L}{c} \left(\frac{1}{\beta_1} - \frac{1}{\beta_2} \right)$$

$$\Delta t = rac{L}{c} \left(\sqrt{rac{1}{1 - (m_1 c^2 / E_1)^2}} - \sqrt{rac{1}{1 - (m_2 c^2 / E_2)^2}}
ight)$$

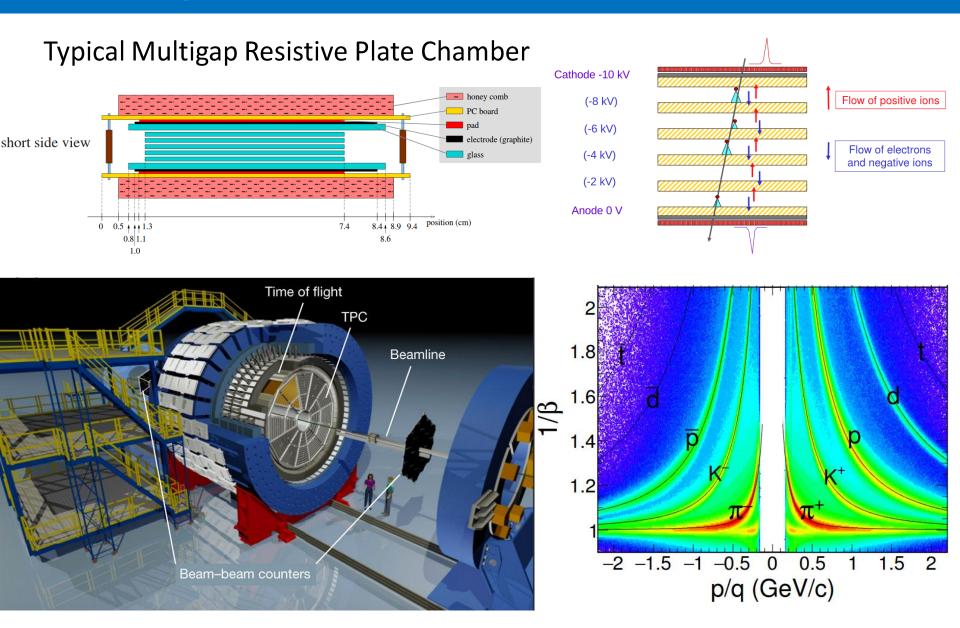
limiting case: $E \simeq pc \gg mc^2$

$$\Delta t = \frac{Lc}{2p^2}(m_1^2 - m_2^2)$$



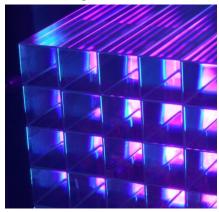
p [GeV/c]

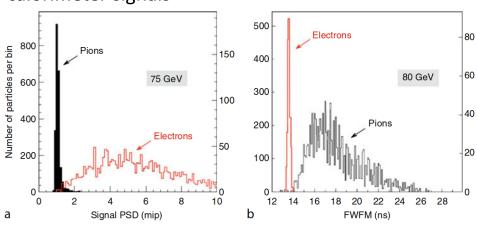
Time-Of-Flight Measurements (MRPC)



Calorimetry

- In nuclear and particle physics, calorimetry refers to the detection of particles, and measurement of their properties, through total absorption in a material
- The signals from a properly instrumented absorber may be used to measure the entire four-vector of the particles. By analyzing the energy deposit pattern, the direction of the particle can be measured. The mass of the showering particle can be determined in a variety of ways:
 - The E/p method, in which the energy measured in the calorimeter is compared with the momentum measured with a tracker in a magnetic field. This method only works for charged particles and relatively low energies.
 - By analyzing the energy deposit profile. This method is frequently used to identify electrons.
 Especially in calorimeters with high-Z absorber material, EM showers are much more shallow and concentrated around the shower axis than hadronic showers.
 - By measuring the time structure of the calorimeter signals





Calorimetry

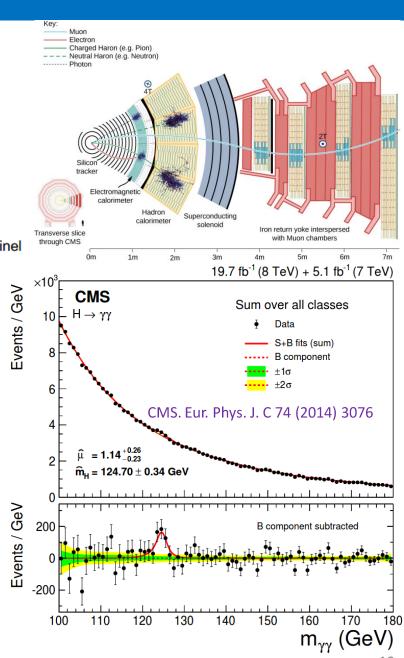
Electromagnetic shower

$$\gamma + \text{nucleus} \rightarrow e^+ + e^- + \text{nucleus}$$

 $e + \text{nucleus} \rightarrow e + \gamma + \text{nucleus}$

Hadronic interactions (e.g. for protons)

Elastic
$$p + N \rightarrow p + N$$
 σ_{el} Inelastic $p + N \rightarrow X$ σ_{inel} $\sigma_{tot} = \sigma_{el} + \sigma_{inel}$ $\sigma_{tot} = \sigma_{el} + \sigma_{inel}$



 $N(x) = N_0 \exp \left[-\right]$

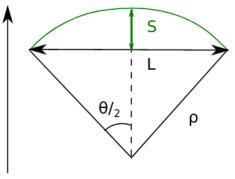
Momentum Measurements

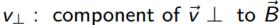
- Deflection of track of charged particle in magnetic spectrometer
- Lorentz force \rightarrow circular orbit of curvature radius, ρ , in homogeneous magnetic

field:
$$\frac{mv^2}{\rho} = q\vec{v} \times \vec{B} = qv_{\perp} \cdot |\vec{B}|$$
 v_{\perp} : component of $\vec{v} \perp$ to \vec{B}

$$\rho = \frac{p^2}{qp_{\perp}B}$$

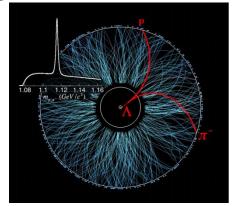
$$ho = rac{p^2}{qp_\perp B}$$
 for $ec{p}\perp B$: $ho = rac{p}{qB}$





$$p_{\perp}$$
 : analogue

units: for
$$\rho$$
 in m
 p in GeV/c
 B in T
 q in units of e



Sagitta
$$S = \rho - \rho \cos \frac{\theta}{2} = \rho \left(1 - \cos \frac{\theta}{2}\right)$$

$$= 2\rho \sin^2 \frac{\theta}{4}$$
for small θ $S \simeq \frac{\rho \theta^2}{8}$

with
$$\rho = \frac{p_{\perp}}{qB}$$
 and $\sin \theta/2 \simeq \theta/2 = \frac{L/2}{\rho}$ $S = \frac{qL^2B}{8p_{\perp}}$

$$S = \frac{qL^2B}{8p_{\perp}}$$

B in T, L in m, p_{\perp} in GeV/c, q in e $S(m) = \frac{0.3 \, qL^2B}{8n}$

20

Summary

- Basic principles of particle interactions with matter and detection have been discussed
- One has to remember detector limitations for measurements of various physics aspects
- Detector setups usually planned for specific/dedicated physics measurements measurements

