ROOT::RDataFrame
a swiss-army knife for data analysis and manipulation

Enrico Guiraud for the ROOT team
EP Software Seminar, October 2019, CERN
ROOT: a foundation library

The amount of data processed by HEP scientists is going to increase drastically

sources: CMS, ATLAS
The amount of data processed by HEP scientists is going to increase drastically

Multi-core hardware is commonplace
many-core architectures and computing clusters are increasingly available
ROOT: a foundation library

➔ The amount of data processed by HEP scientists is going to increase drastically.

➔ Multi-core hardware is commonplace. Many-core architectures and computing clusters are increasingly available.

➔ ROOT’s mission does not change: bring physicists from data to publication as effectively as possible.
We need better, faster software that takes full advantage of the underlying hardware.

On the other hand, in the context of data analysis, we cannot expect HEP physicists to also be high-performance computing experts.
What’s out there: Pandas, ReactiveX

Everything is a table, with powerful high-level transformations
Designed for in-memory data processing
Python only, **integrated with its data science ecosystem**

Strong arguments for a **functional/stateless** interface
Abstracts away **workflow parallelization**
Designed for streams of asynchronous events/values
LINQtoROOT

first presented:
G. Watts, CHEP 2012

SQL-like query language geared towards HEP analyses

Caching of results

Tied to C#/LINQ

Awkward Array

Easily manipulate arrays of (jagged) arrays

In-memory data model fits HEP data well

Implementation is Python only (but idea is portable)
A recipe for efficient HEP analyses

- strive for a **simple programming model**
- expose modern, elegant interfaces that are **easy to use correctly** and hard to use incorrectly
- **transparently benefit from multi-core** hardware
- scale up and scale down: 1 to 100 cores to computing cluster
- make **common tasks simple, complex tasks possible**
- consistent support for HEP languages: **C++ and Python**
A recipe for efficient HEP analyses

➔ strive for a **simple programming model**
➔ expose modern, elegant interfaces that are **easy to use correctly** and hard to use incorrectly
➔ **transparently benefit from multi-core** hardware
➔ scale up and scale down: 1 to 100 cores to computing cluster
➔ make **common tasks simple, complex tasks possible**
➔ consistent support for HEP languages: **C++ and Python**

RDataFrame is what you get if you follow this recipe.
RDataFrame in a nutshell

- **Datasource**: ROOT, CSV, Apache Arrow (ATLAS’ xAOD, LHCb’s MDF, ...)
- **Range Filter**:
- **Define**: p_x, p_y, p_z, eta, myvar
- **Operations**: histograms, profiles, new ROOT files, cut-flow reports, data reductions (mean, sum, ...), any user-defined operation
Elements of **declarative programming**

“user says what, ROOT chooses how”

High level interfaces provide less typing, increased readability, abstraction of complex operations

...and allow **transparent optimisations**, e.g. multi-thread parallelisation, lazy evaluation and caching
Elements of **declarative programming**
“user says what, ROOT chooses how”

High level interfaces provide less typing, increased readability, abstraction of complex operations
...and allow **transparent optimisations**, e.g. multi-thread parallelisation, lazy evaluation and caching

Elements of **functional programming**
pure functions & higher-order functions

Users code in terms of **small reusable components**
Less side-effects and less shared state increase **thread-safety and code correctness**
The result: an ergonomic C++ dataframe

```cpp
ROOT::RDataFrame df(dataset);  on this (ROOT, CSV, ...) dataset
```
The result: an ergonomic C++ dataframe

```cpp
ROOT::RDataFrame df(dataset);  // on this (ROOT, CSV, ...) dataset
auto df2 = df.Filter("x > 0");  // only accept events for which x > 0
```
The result: an ergonomic C++ dataframe

ROOT::RDataFrame df(dataset); on this (ROOT, CSV, ...) dataset
auto df2 = df.Filter("x > 0") only accept events for which x > 0
 .Define("r2", "x*x + y*y"); define r2 = x^2 + y^2
The result: an ergonomic C++ dataframe

```
ROOT::RDataFrame df(dataset); ................. on this (ROOT, CSV, ...) dataset
auto df2 = df.Filter("x > 0"); ....................... only accept events for which x > 0
    .Define("r2", "x*x + y*y"); ....................... define \( r^2 = x^2 + y^2 \)
auto rHist = df2.Histo1D("r2"); ............... plot \( r^2 \) for events that pass the cut
```

The result: an ergonomic C++ dataframe

```cpp
ROOT::RDataFrame df(dataset);  // on this (ROOT, CSV, ...) dataset
auto df2 = df.Filter("x > 0");  // only accept events for which x > 0
 .Define("r2", "x*x + y*y");  // define r2 = x² + y²
auto rHist = df2.Histo1D("r2");  // plot r2 for events that pass the cut
df2.Snapshot("newtree", "out.root");  // write the skimmed data and r2 to a new ROOT file
```
The result: an ergonomic C++ dataframe

```cpp
ROOT::EnableImplicitMT();                          // Run a parallel analysis
ROOT::RDataFrame df(dataset);                     // on this (ROOT, CSV, ...) dataset
auto df2 = df.Filter("x > 0");                   // only accept events for which x > 0
    .Define("r2", "x*x + y*y");                // define r2 = x² + y²
auto rHist = df2.Histo1D("r2");                 // plot r2 for events that pass the cut
df2.Snapshot("newtree", "out.root");           // write the skimmed data and r2 to a new ROOT file
```
The result: an ergonomic C++ dataframe

ROOT::EnableImplicitMT(); .. Run a parallel analysis
ROOT::RDataFrame df(dataset); ... on this (ROOT, CSV, ...) dataset
auto df2 = df.Filter("x > 0") .. only accept events for which x > 0
 .Define("r2", "x*x + y*y"); define r2 = x² + y²
auto rHist = df2.Histo1D("r2"); plot r2 for events that pass the cut
df2.Snapshot("newtree", "out.root"); write the skimmed data and r2
to a new ROOT file

Lazy execution guarantees that all operations are performed in a single event loop
ROOT::RDataFrame df(dataset);

auto df2 = df.Filter("x > 0")
 .Define("r2", "x*x + y*y");

auto rHist = df2.Histo1D("r2");

df2.Snapshot("newtree", "newfile.root");
Re-thinking one's analysis as a computation graph is often the biggest challenge when trying out RDataFrame for the first time.
Full modern C++ support...

C++

```cpp
auto d = Filter([](double t) { return t > 0.; }, \{"theta"\});
auto snapshot = Snapshot<vector<float>>(\"t\", \"f.root\", \"pt_x\");
```

or any type ROOT is able to read

```cpp
C++

d.Filter([](double t) { return t > 0.; }, {"theta"})
.snapshot<vector<float>>("t","f.root","pt_x");
```
C++

d.Filter([](double t) { return t > 0.; }, {"theta"})
 .Snapshot<vector<float>>("t","f.root","pt_x");

C++ with cling’s just-in-time compilation

d.Filter("theta > 0").Snapshot("t","f.root","pt_x");
C++

d.Filter([](double t) { return t > 0.; },{"theta"})
.Snapshot<vector<float>>("t","f.root","pt_x");

C++ with cling’s just-in-time compilation

d.Filter("theta > 0").Snapshot("t","f.root","pt_x");

PyROOT, automatically generated Python bindings

d.Filter("theta > 0").Snapshot("t","f.root","pt_x")
...and Python bindings

C++

d.Filter([](double t) { return t > 0.; }, {"theta"})
 .Snapshot<vector<float>>("t","f.root","pt_x");

C++ with cling's just-in-time compilation

d.Filter("theta > 0").Snapshot("t","f.root","pt_x");

PyROOT, automatically generated Python bindings

d.Filter("theta > 0").Snapshot("t","f.root","pt_x")
RVec is a new type that allows operating on vectors “à la numpy”

RDataFrame reads arrays and vectors as RVecs

```csharp
RVec<double> v = ...;
auto v2 = v[v > 3];
auto v3 = v[sin(v) < .5];
```

```csharp
df.Define("pts", "sqrt(pxs*pxs + pys*pys)");
  .Define("good_pts", "pts[E > 100]");
  .Histo1D("good_pts");
```

RVec reference guide
RDF in the Python world

Define your workflow in Python and run the event loop in C++

```
df = ROOT.RDataFrame(...)  
ROOT.gInterpreter.Declare('#include "lib.h"')  
df = df.Define('z', 'lib::myfunc(x, y)')
```

OR

Use RDF as a bridge to the python data science ecosystem, e.g. perform large cuts on remote files and then export to numpy

```
columns = ROOT.RDataFrame(...)\  .AsNumpy(['muon_pt', 'muon_eta'])\  pandas_df = pandas.dataframe(columns)
```
We cannot implement all features that our large user base requires at the timescale they require.

However, we can **make RDF easily extensible** to cover one’s particular needs.

Read any columnar data format by implementing your own **RDataSource**

Book arbitrary computations to be executed within RDF’s lazy event loop
High-level customization points: RDataSource

- **RDataFrame** can read non-ROOT data through RDataSource objects
- **third parties** can implement and seamlessly integrate RDataSource implementations for their format of choice
→ **RDataFrame can read non-ROOT data** through RDataSource objects
→ **third parties** can implement and **seamlessly integrate** RDataSource implementations for their format of choice

→ **CSV, Apache Arrow** and **RNTuple** currently supported via RDataSource
→ prototypes for **LHCb’s MDF** binary data format and **ATLAS’ xAOD event model**

RDataFrame can read non-ROOT data through RDataSource objects.

Third parties can implement and seamlessly integrate RDataSource implementations for their format of choice.

CSV, Apache Arrow and RNTuple currently supported via RDataSource.

Prototypes for LHCb’s MDF binary data format and ATLAS’ xAOD event model.

Users can write the same code independently of the data format analyzed.
1. user logs in to **SWAN**, requests a connection to a Spark computing cluster
2. writes RDF analysis in python notebook
3. computation is dispatched to cluster, user can access results as usual

Thanks to the declarative paradigm, distributed computation is transparent to the user

Published at EuroPar 2019:
Declarative Big Data Analysis for High-Energy Physics: TOTEM Use Case

github.com/JavierCVilla/PyRDF
Simple cut+calculation

Intel Core i7-4790 CPU
3.60GHz
4 physical cores
warm cache

CPU throttling disabled

Code and data available here
Scaling on many-core hardware (no I/O)

Monte Carlo QCD Low-Pt events generation+ analysis on the fly

Ad-hoc implementation (patched ROOT 5 + POSIX threads) vs RDF

Original performance analysis by X. Valls Pla, CERN IT Techlab
RDF and CERN experiments

- **CMS**: Nail and RDFprocessor frameworks
- **ATLAS**: LoopSusyFrame, xAOD RDataSource, software tutorials
- **LHCb**: MDF data source
- **ALICE**: Apache Arrow support contributed by G. Eulisse, currently investigating RDF-based analysis workflow for Run 3 ([D. Berzano, The ALICE Analysis Framework for LHC Run 3](https://example.com), slides 14-17)
- **Totem**: RDF analysis on Spark clusters, see previous slides
- **SHiP**: RDF presented at software tutorials
- **FCC**: plans to develop workflows based on RDF ([C. Helsens, “General status and plans”, FCC week 2019](https://example.com), slide 20)
- many users **“in the wild”**: 270 posts tagged “#rdataframe” on the ROOT forum as of today, 56 out of 69 bug reports fixed
- **CMS**: Nail and RDFProcessor frameworks
- **ATLAS**: LoopSusyFrame, xAOD RDataSource, software tutorials
- **LHCb**: MDF data source
- **ALICE**: Apache Arrow support contributed by G. Eulisse, currently investigating RDF-based analysis workflow for Run 3 (D. Berzano, *The ALICE Analysis Framework for LHC Run 3*, slides 14-17)
- **Totem**: RDF analysis on Spark clusters, see previous slides
- **SHiP**: RDF presented at software tutorials
- **FCC**: plans to develop workflows based on RDF (C. Helsens, “General status and plans”)
- many users “in the wild”: 270 posts tagged “#rdataframe” on the ROOT forum as of today, 56 out of 69 bug reports fixed
Since v6.14 (2017), ROOT provides a **modern, high-level, type-safe, parallel** interface for data analysis and manipulation.

One paradigm to fit all workflows

- from quick data exploration on a laptop...
- ...to large-scale studies on many-core architectures...
- ...to ntuple → ntuple transformations or even data generation
- already used in production by physicists of major LHC experiments: let’s hear how it worked out for Elisabetta!
Since v6.14 (2017), ROOT provides a **modern, high-level, type-safe, parallel** interface for data analysis and manipulation.

One paradigm to fit all workflows

- from quick data exploration on a laptop...
- ...to large-scale studies on many-core architectures...
- ...to ntuple → ntuple transformations or even data generation
- already used in production by physicists of major LHC experiments: let’s hear how it worked out for Elisabetta!

Coming soon

- low-level **performance optimization** (e.g. batch processing)
- more pythonic pyROOT bindings and quality of life upgrades
Getting in touch with the ROOT team

Ask for help
root-forum.cern.ch

Contribute
github.com/root-project/root

Report bugs
sft.its.cern.ch/jira/projects/ROOT/issues

Discuss
mattermost.web.cern.ch/root
More stuff!
RDataFrame’s parallelization scheme

- each task processes a range of entries (thanks to inherent independence of HEP events)
- **cannot overcommit**, plays well with e.g. experiment frameworks
- range granularity is the same as TTree compression’s to **avoid redundant decompressions**
- **Intel TBB** is currently ROOT’s task scheduler and thread pool manager
- **RDF parallel writing** is also task-based, see "Writing ROOT Data in Parallel", CHEP 2018
Case study: ATLAS SUSY ntuple \rightarrow ntuple

Local ntuple \rightarrow ntuple processing, MC data is processed to add quantities relevant for publication

\rightarrow program's main reads similarly to this graph

\rightarrow the large blue boxes represent one single function that applies the same operations to an RDF variable and is re-used for all different systematics

\rightarrow cuts, calculations and writing of the 60 output trees all happen in the same multi-thread event loop

The program's main reads similarly to this graph. The large blue boxes represent one single function that applies the same operations to an RDF variable and is re-used for all different systematics: cuts, calculations, and writing of the 60 output trees all happen in the same multi-thread event loop.

Data cleaning & generic selections data transformation result cutflow report snapshot

Case study: ATLAS SUSY ntuple

Local ntuple processing, MC data is processed to add quantities relevant for publication...
Jitted C++ or PyROOT

```cpp
auto inMemDF = d.Filter("All(event.muons.eta < 2.5)")
```
Jitted C++ or PyROOT

```cpp
auto inMemDF = d.Filter("All(event.muons.eta < 2.5)")
.Cache({"event.muons.eta"});
```

Collections, in-memory caching
Jitted C++ or PyROOT

```cpp
auto cutEtas = [] (RVec<float> etas) {
    return All(etas < 2.5);
};
auto inMemDF = d.Filter("All(event.muons.eta < 2.5)")
    .Cache({"event.muons.eta"});
```

C++

```cpp
auto cutEtas = [] (RVec<float> etas) {
    return All(etas < 2.5);
};
auto inMemDF = d.Filter(cutEtas, {"event.muons.eta"})
    .Cache<RVec<float>>({"event.muons.eta"});
```
// The pythia generator: a “slot” corresponds to a thread
Pythia8::Pythia pythia[nSlots];

// The generator function
auto genFunc = [&](unsigned int slot) {
 return &pythias[slot].event;
};

ROOT::Experimental::TDataFrame tdf(nevents);
tdf.DefineSlot("event", genFunc)
 .Filter(...).Define(...)
 .Snapshot<Pythia8::Event*>("tree", "hardQCD.root", {"event");
Transformations apply modifications to the dataframe, return a new RDataFrame

Actions (next slide) produce results from a (possibly transformed) dataset

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define</td>
<td>Creates a new column in the dataset.</td>
</tr>
<tr>
<td>DefineSlot</td>
<td>Same as Define, but the user-defined function must take an extra unsigned int slot as its first parameter. Slot will take a different value, (0) to (\text{nThreads} - 1), for each thread of execution. This is meant as a helper in writing thread-safe Define transformation when using \text{RDataFrame} after \text{ROOT::EnableImplicitMT()}. DefineSlot works just as well with single-thread execution: in that case slot will always be (0).</td>
</tr>
<tr>
<td>DefineSlotEntry</td>
<td>Same as DefineSlot, but the entry number is passed in addition to the slot number. This is meant as a helper in case some dependency on the entry number needs to be honoured.</td>
</tr>
<tr>
<td>Filter</td>
<td>Filter the rows of the dataset.</td>
</tr>
<tr>
<td>Range</td>
<td>Creates a node that filters entries based on range of entries.</td>
</tr>
<tr>
<td>Lazy action</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Aggregate</td>
<td>Execute a user-defined accumulation operation on the processed column values.</td>
</tr>
<tr>
<td>Book</td>
<td>Book execution of a custom action using a user-defined helper object.</td>
</tr>
<tr>
<td>Cache</td>
<td>Caches in contiguous memory columns’ entries. Custom columns can be cached as well, filtered entries are not cached. Users can specify which columns to save (default is all).</td>
</tr>
<tr>
<td>Count</td>
<td>Return the number of events processed.</td>
</tr>
<tr>
<td>Display</td>
<td>Obtains the events in the dataset for the requested columns. The method returns a TDisplay instance which can be queried to get a compressed tabular representation of the standard output or a complete representation as a string.</td>
</tr>
<tr>
<td>Fill</td>
<td>Fill a user-defined object with the values of the specified branches, as if by calling "Obj Fill(branch1, branch2,...)."</td>
</tr>
<tr>
<td>Graph</td>
<td>Fills a TGraph with the two columns provided. If MultiThread is enabled, the order of the points may not be the one expected, it is therefore suggested to sort if before drawing.</td>
</tr>
<tr>
<td>Hist2D3D</td>
<td>Fill a (one)two/three-dimensional histogram with the processed branch values.</td>
</tr>
<tr>
<td>Max</td>
<td>Return the maximum of processed branch values. If the type of the column is integer, the return type is double, the type of the column otherwise.</td>
</tr>
<tr>
<td>Mean</td>
<td>Return the mean of processed branch values.</td>
</tr>
<tr>
<td>Min</td>
<td>Return the minimum of processed branch values. If the type of the column is integer, the return type is double, the type of the column otherwise.</td>
</tr>
<tr>
<td>Profile2D3D</td>
<td>Fill a (one)two/three-dimensional profile with the branch values that passed all filters.</td>
</tr>
<tr>
<td>Reduce</td>
<td>Reduce (e.g. sum, merge) entries using the function (lambda, function) passed as argument. The function must have signature T(T, T) where T is the type of the branch. Return the final result of the reduction operation. An optional parameter allows initialization of the result object to non-default values.</td>
</tr>
<tr>
<td>Report</td>
<td>Obtain statistics on how many entries have been accepted and rejected by the filters. See the section on named filters for a more detailed explanation. The method returns a TClEventReport instance which can be queried programmatically to get information about the effects of the individual cuts.</td>
</tr>
<tr>
<td>StDev</td>
<td>Return the unbiased standard deviation of the processed branch values.</td>
</tr>
<tr>
<td>Sum</td>
<td>Return the sum of the values in the column. If the type of the column is integer, the return type is double, the type of the column otherwise.</td>
</tr>
<tr>
<td>Take</td>
<td>Extract a column from the dataset as a collection of values. If the type of the column is a C-style array, the type stored in the return container is a ROOT::VecOps::RVec<T> to guarantee the lifetime of the data involved.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instant action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreach</td>
<td>Execute a user-defined function on each entry. Users are responsible for the thread safety of this lambda when executing with implicit multi-threading enabled.</td>
</tr>
<tr>
<td>ForeachSlot</td>
<td>Same as Foreach, but the user-defined function must take an extra unsigned int slot as its first parameter. slot will take a different value, 0 to 1Threads - 1, for each thread of execution. This is meant as a helper in writing thread-safe Foreach actions when using RDataFrame after ROOT::EnableImplicitMT(). ForeachSlot works just as well with single-thread execution; in that case slot will always be 0.</td>
</tr>
<tr>
<td>Snapshot</td>
<td>Writes processed dataset to disk, in a new TTree and TFile. Custom columns can be saved as well, filtered entries are not saved. Users can specify which columns to save (default is all). Snapshot, by default, overwrites the output file if it already exists. Snapshot can be made lazy setting the appropriate flag in the snapshot options.</td>
</tr>
</tbody>
</table>

Other Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>Introduce an alias for a particular column name.</td>
</tr>
<tr>
<td>GetColumnNames</td>
<td>Get the names of all the available columns of the dataset.</td>
</tr>
<tr>
<td>GetDefinedColumnNames</td>
<td>Get the names of all the defined columns.</td>
</tr>
<tr>
<td>GetColumnType</td>
<td>Return the type of a given column as a string.</td>
</tr>
<tr>
<td>GetColumnTypeNamesList</td>
<td>Return the list of type names of columns in the dataset.</td>
</tr>
<tr>
<td>GetFilterNames</td>
<td>Get all the filters defined. If called on a root node, all filters will be returned. For any other node, only the filters upstream of that node.</td>
</tr>
<tr>
<td>Display</td>
<td>Provides an ASCII representation of the columns types and contents of the dataset printable by the user.</td>
</tr>
<tr>
<td>SaveGraph</td>
<td>Store the computation graph of an RDataFrame in graphviz format for easy inspection.</td>
</tr>
</tbody>
</table>