

The University of Manchester

nuSTORM Neutrinos from STORed Muons

Sam Tygier*, NuSTORM Collaboration

*Manchester Cockcroft Accelerator Group, UK Cockcroft Institute, Daresbury, UK

2 March 2020

sam.tygier@manchester.ac.uk

Overview

- Muon storage ring (μ or μ +)
- Long straight sections for decays
- Produce $v_e, v_\mu, \overline{v}_e$ and \overline{v}_μ beams
- Well known spectrum and flux
- Candidate site at CERN

$$\mu^{-} \longrightarrow e^{-} + \bar{\nu}_{e} + \nu_{\mu}$$
$$\mu^{+} \longrightarrow e^{+} + \nu_{e} + \bar{\nu}_{\mu}$$
$$\pi^{-} \longrightarrow \mu^{-} + \bar{\nu}_{\mu}$$
$$\pi^{+} \longrightarrow \mu^{+} + \nu_{\mu}$$

Physics case

- < 1% flux error give unique precision
- measure neutrino-nucleon cross sections
 - $\nu_{e}, \nu_{\mu}, \overline{\nu}_{e} \text{ and } \overline{\nu}_{\mu}$
 - First precision v_e and \overline{v}_e cross sections in 1-4 GeV range
- Sterile neutrinos search
- R&D synergy with Neutrino Factory, Muon accelerators and colliders

- Proton target with magnetic horn produces pion beam
- Chicane for charge selection
- Stochastic injection into main ring
- Long decay straights ~150m
- Return arcs total ring ~500m

- No kickers
- no acceleration
- no ramping

Fermilab

- Project definition report stage
- 120 GeV from the Main Injector
- 10²¹ POT
- 5±1 GeV/c pions injected
- 3.8±10% GeV/c muon stored
- 50m, 2000m detectors

CERN

- Investigated as part of Physics Beyond Colliders
- 100 GeV protons from SPS
- Muons up to 6.5 GeV/c
- Far detector at LHC point 2 (1.75 km) + near detector
- Feasibility studies done for integration, civil eng and radiation protection

Stochastic injection

- Novel stochastic injection purely optical
- Injection channel for Pion momentum
- Pions decay to muon in 1st straight
- Muons within momentum acceptance captured

Stochastic injection

Lattice options

 $\frac{3}{2}$ (m), $\frac{3}{2}$ (m)

- Requirements
 - Large dynamic aperture
 - Small angles in straights
- 3 lattice options
 - FODO traditional FODO lattice
 - Fixed-Field Alternating-Gradient (FFA)
 - Hybrid (FODO on injection straight)

FODO lattice

000 000

90

100

15

5

0

-5

-10

-1580

- Race-track synchrotron
- Zero dispersion straights
- Tune crosses integers

14

13

15

-100

-15

[u

×

-88

-86

-50

• Significant resonant losses

-84

n

[m]

y

-82

50

80

Fixed-field Alternating-Gradient

- Magnets fixed in time
 - Like a cyclotron
- Alternating Gradient
 - Like a Synchrotron
- Field increases with radius
- Higher momentum particles move outwards
- In scaling FFA optics same for all momentum

 $B(x, y) = B_0(x - x_0)^k F(y)$

FFA lattice

- Straight FFA section
- Magnets have field $B(x, y) = B_0 e^{m(x-x_0)} F(y)$
- Zero chromaticity
- Large acceptance
- Triplet and quadruplet options

100 150 200

ar asher

z [mm]

FFA issues

- FFA inherently has dispersion
 - Closed orbit for incoming pions is offset from captured muons
 - Reduces capture efficency
- Scallop angle
 - Closed orbits not straight
 - Greater spread in v beam

Hybrid lattice

- FODO straight for capture/decay •
 - Zero dispersion to maximised capture —

45

0

x [m]

50

50

0

-10

85 90

100

- No scallop angle —
- FFA return straight to control tune
 - Low chromaticity _

-50

35

17 16

[u

N

20

10 0

-10

20

-100

Higher acceptance _

Prospects at ESS

- Protons at 2 GeV
 - Smaller arcs
 - New horn design
 - Lower pion momentum
 - Reduced pion lifetime
 - Compact pion transport

• Early study on muon storage rings by Neuffer considered 8, 4.5 and 1.5 GeV muons (based on 80, 30 and 8 GeV protons)

Conclusion

- NuStorm low flux error gives unique access to v cross sections which are a large source of systematic in long baseline experiments
- Contributes to searches for sterile ν
- Proof or principle for Neutrino Factory, step to Muon Collider
- Several lattice options being optimised and compared
- Feasibility study for CERN
- ESS source would be lower momentum than previously investigated
- Detailed studies needed