

The design of the ESSnuSB accumulator and its synergies with the different proposals presented

Ye Zou, Maja Olvegård, Uppsala University, on behalf of the ESSnuSB WG3

The European Spallation Source

Parameter	Value
Ion species	Proton
Average beam power	5 MW
Peak beam power	125 MW
Ion kinetic energy	2 GeV
Average macro pulse current	62.5 mA
Average macro pulse length	2.86 ms
Pulse repetition rate	14 Hz
Duty cycle	4%

 $> 2.7 \times 10^{23}$ p.o.t/year by 2023

Add a neutrino facility at the ESS

Why?

Because of the uniquely high power of the ESS linac we will have the opportunity to measure with high precision the neutrino CP-violating angle at the 2nd oscillation maximum

How?

- □ Linac modifications (double the rate (14 Hz \rightarrow 28 Hz), duty cycle (4% \rightarrow 8%), average beam power (5 MW \rightarrow 10 MW)) (see Björn Gålnander's talk)
- ☐ Neutrino target station (see Eric Baussan's talk)
- ☐ Underground detectors (studied in LAGUNA)

Accumulator

Highly compress the pulse from the ESS linac in order to meet the target station requirements

Pulse from linac

Transfer line

- Maximum magnetic field 0.15 T for 0.1 W/m loss due to Lorentz stripping.
- 2/3 of transfer line filled with dipoles yields a minimum total radius of 110 m.
- 2.5 GeV extraction not hit target building

Rasmus Johansson & Nick Gazis, ESS

Accumulator design

Sub-pulse from Linac:

• Energy: 2.5 GeV

• Power: 1.25 MW

• Current: 50 mA

• Beam intensity: 2.23×10^{14}

• The circumference of the ring: ~ 400 m

• Injection turns: ~ 600

• Extraction gap: ~100 ns

• Un-Norm. 100% emittance: $\sim 80 \, \pi$ mm mrad

• Total beam loss (1 W/m): $<10^{-4}$

• Collimation efficiency: 90%

• Space-charge tune shift: <0.05

$$DQ = -\frac{r_0 N}{2\rho E_{x,y} b^2 g^3 B f}$$

Uncontrolled beam loss usually comes from high space charge induced tune shift, beam injection, acceptance, instabilities...

Lattice development

Developed by Horst Schonauer

- Inspired by the SNS accumulator ring which runs under similar conditions
- Long straight section (56 m) and enough phase advance for beam injection and collimation
- Fixed injection chicane (9 cm) and fast programmable bump for injection painting

Parameter	ESSnuSB	SNS1.4MW
Circumference (m)	384	220
Average radius (m)	61	35
Inj./Ext. Energy (GeV)	2.5/2.5	1/1
Repetition rate (Hz)	14	60
Ring dipole field (T)	1.3	0.74
Magnetic rigidity, $B\rho$ (T m)	11	5.7
Max beta hor./ver. (m)	29/35	20/13
Hor./Ver. Tune	8.24/8.31	6.3/5.8
Transition energy, $\gamma_{\rm T}$	5.82	4.95
Hor./Ver. natural chromaticity	-11.2/-12.4	-7.5/-6.3
Number of superperiods	4	4

Beam injection

- Beam injection (proton or H⁻ injection?)
 - Proton injection: Liouvillean, Beam loss on septum unavoidable if many turns injected, in particular with space charge effect
 - H⁻ injection: Non-Liouvillean, proton can be overlaid on H⁻ in phase space, very high beam intensity can be injected to the accumulator
- H⁻ injection (foil stripping or laser stripping?)
 - Foil stripping: used in similar proton synchrotrons or accumulators, straightforward, but very challenge for ESSnuSB
 - Laser stripping: a promising alternative method

Foil stripping: very challenge

Foil stripping: very challenge

- Stripping efficiency:
 - A function of foil material, foil thickness, foil density, beam species, and beam energy
 - For carbon foil, thickness is 500 μg/cm² if stripping efficiency required at least 99%
 - As the foil thickness increases, stripping efficiency increases, scattering increases, energy deposition in the foil increases
- Foil temperature:
 - can decrease the foil lifetime sharply when temperature exceeds 2000 K
 - Several methods adopted to mitigate the issue
- Foil scattering, cause residual radiation
- H^{0*} (n=4, 5), should be considered carefully
- Stripped electrons, should be considered carefully

H- stripping cross section scaled from M.S. Gulley et al., Phys. Rev. A 53 (1996) 3201 W. Chou et al., Proceedings of PAC07, Albuquerque, New Mexico, USA, p1679

Laser stripping

- A very promising alternative method for chargeexchange injection
- First demonstration of laser-assisted stripping (>90%) for a 6 ns, 1 GeV H⁻ beam using a 10 MW UV-laser at SNS in 2006
- First demonstration of laser-assisted stripping (95%-98%) for microsecond duration (10 us) H⁻ beams at SNS in 2016, by reducing the required average laser power
- Average laser power is the main limitation for H⁻ laser assisted charge exchange
- New scheme at SNS: sequential excitation scheme for laser stripping

V. Danilov, S. Cousineau

V. Danilov et al., PRST-AB 10, 053501 (2007)

Sarah Cousineau et al., PRL 118, 074801 (2017)

Sequential excitation scheme for laser stripping at SNS

- Two steps excitation in stead of one: excite the H⁰ from the ground state to the 2nd state (1s \rightarrow 2p), followed by excitation from the 2nd to the 3rd state (2p \rightarrow 3d)
- Each step of the sequential excitation 1s → 2p and 2p →
 3d requires smaller laser power
- Other alternative laser wavelengths, e.g. green laser would be possible.
- The available laser power drops dramatically as the wavelength gets shorter
- An order of magnitude in laser power savings by using the double excitation scheme
- The experimentally testing for this scheme is in process at SNS this year

Timofey Gorlov

Timofey Gorlov et al., PRAB, 22, 121601 (2019)

Beam painting

- A good beam painting can reduce space charge effect, and mitigate peak foil temperature
- Correlated painting and anti-correlated painting

How to make a "good" painting

• Optimize the painting process to get beam distribution that we need

An example of beam painting

Painting in real space

Painting in phase space

Longitudinal shaping: RF cavity

- RF cavity used to keep extraction gap clean during accumulation process, no acceleration
- Utilizing different kind of rf cavities (single harmonic, dualharmonic, and barrier rf cavities) to trap the beam
- Single- or dual- harmonic rf cavity would increase energy spread to more than 1%, lead to more than 0.1 chromaticity-induced tune shift
- Barrier rf cavity only affect head and tail particles to keep the extraction gap clean

Single and dual harmonic rf bucket

Longitudinal beam distribution with RF cavity

Two main points

Point 1: Keep extraction gap clean during the whole accumulation process Point 2: Minimize the energy spread

Dual Harmonic RF cavity (Low voltage, 5kV)

Point 1: small risk to leak Point 2: excellent (~ ±0.2%)

Barrier RF cavity

Point 1: excellent

Point 2: excellent (~ ±0.15%)

- Beam is quite stiff
- Particles leakage to the gap would be possible without RF cavity
- Small risk to leak and small energy spread if dual harmonic rf cavity with low voltage (~5kV)
- Very small risk to leak and very small energy spread if barrier rf cavity implemented

Beam painting for the ESSnuSB AR (anti-correlated painting)

Basic parameters for simulations	Value
Hor./Ver. Norm. rms emittance	0.35 mm mrad
Extraction gap	133 ns
Energy spread, 1 sigma	0.02%
Foil thickness	$500 \mu g/cm^2$
Hor./Ver. beta function at injection point	10 m/ 20 m
Hor./Ver. tune	8.24/8.31
Injection turns	597
Macro particles per turn	500
Pulse length per turn	1.2 μs
Beam intensity per turn	3.7×10^{11}
Barrier RF voltage	5 kV
Barrier RF phase	162 deg

Tune and Emittance (anti-correlated painting)

- Very small tune spread (~ 0.05), which fits the calculation results
- 100% beam emittance: 59 π mm mrad in horizontal and 60 π mm mrad in vertical plane
- RMS emittance: 12.9 π mm mrad in horizontal and 12.5 π mm mrad in vertical plane

Foil temperature mitigation

- Foil temperature issue is very serious which can decrease the foil lifetime sharply when temperature exceeds 2000 K
- Several methods are considered to mitigate the peak temperature on the foil:
 - A good painting can decrease the peak foil temperature at inner corner
 - Splitting-foil scheme: splitting the foil into several thinner ones with the same total thickness along the beam, which can lower the peak temperature at both center and corner
 - Mismatched injection to mitigate temperature rise
 - Moving injection point or adopting several foils along horizontal plane is also considered

Foil-hits distribution and foil temperature

A good painting and splitting-foil scheme can dramatically reduce the peak temperature of the foil, however, peak temperature still exceeds 2000 K.

Mismatched injection

- In general match all the physical parameters of the linac and ring at injection point is a primary concern
- Twiss parameter mismatch can be used as a tool to reduce the foil hits (with small injection spot size) or lower the foil temperature (with large injection spot size)
- Mismatched injection need foil in larger size than matched injection and average foil hits will increase

Mismatched injection

Peak energy deposition $4.0 \times 10^{10} \,\text{J/m}^3$ for matched injection and $2.4 \times 10^{10} \,\text{J/m}^3$ for mismatched injection

Foil average hits and temperature

The maximum temperature can be lowered to 2000 K for a good anti-correlated painting, mismatched injection at β_i/β_m =2 and with splitting-foil scheme

The Switchyard

Updates of the principle 1

The beam deflected by D1 does not go through D2 but outside (to relax the constraints of D2 having consequent aperture)

Addition of a triplet of quadrupoles at the 2.5 GeV, U entrance of the BSY

D2 2.5 GeV, **D1** 5 MW Primary Collimators beam **Dipoles** Ouads **Targets BSY** May 2019 Sept. 2019 **D2** Quads

 $\overline{D1}$

Dipoles

Primary beam

Use of a single block of (carbon?) for collimation instead of 4 collimators

Addition of a beam dump after the 2 first dipoles

BSY

T4

Elian Bouquerel

The Switchyard

Elian Bouquerel

Synergies with other proposals

- H⁻ injection, H⁻ stripping and beam painting
- RF cavities adopted to keep gap clean for extraction
- A robust collimation system
- Transfer line and switchyard similar design
- Foil stripping most challenge

- Similar design for different proposals
- Pulse structure in the linac and on the target
- Beam intensity for each filling, injection turns, circulating turns after injection, extraction

From Jaroslaw Pasternak's talk

Summary

Where we are now:

- A well-designed lattice
- Beam painting to quite uniform distribution with 100% emittance $\sim 60 \pi$ mm mrad
- Space charge tune shift: ~0.03, very small
- Extraction gap can be kept clean
- Foil temperature issues can be mitigated in several ways and can be kept no exceed 2000 K
- A new designed switchyard which has very small beam losses

Still in progress:

- Collimation system
- Chromaticity correction
- Beam extraction

Back up slides

Configurations for simulation

- Lattice developed by Horst Schonauer
- Simulation tools: PTC-PyORBIT
- Linac beam: Gaussian distribution in transverse plane and uniform in longitudinal
- Energy spread in Gaussian distribution
- On-momentum matched beam injection
- RF cavity: no RF cavity, dual harmonic RF cavity, barrier RF cavity
- Both direct and indirect space charge included
- Foil scattering included
- Chromaticity not corrected
- Correlated and anti-correlated painting

Temperature calculation code benchmark with SNS results

J. Beebe-Wang et.al., BNL, proceedings of 2001 PAC Chicago, USA

Hits density (hits/(p mm²)	SNS results (K)	Code results (K)
0.2	~1660	1645
0.4	~2300	2244
0.6	~2750	2742
1.0	~3500	3500

Mismatched injection

- In general match all the physical parameters of the linac and ring at injection point is a primary concern.
- Twiss parameter mismatch can be used as a tool to reduce the foil hits (with small injection spot size) or lower the foil temperature (with large injection spot size).
- Mismatched injection should satisfy two preferred conditions in order to efficiently stack injected turns in phase space:

 - $\frac{\alpha_i}{\beta_i} = \frac{\alpha_m}{\beta_m} = -\frac{X_C'}{X_C}$ $\frac{\beta_i}{\beta_m} \ge \left(\frac{\varepsilon_i}{\varepsilon_m}\right)^{1/3}$ Satisfied automatically if you want large spot size
 - α_i , β_i , and ε_i are Twiss parameters in the transfer line at the injection point and normalized RMS emittance of injected beam
 - α_m , β_m , and ε_m are Twiss parameters in the ring at the injection point and normalized total emittance after injection