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The European Spallation Source

Parameter Value

Ion species Proton

Average beam power 5 MW

Peak beam power 125 MW

Ion kinetic energy 2 GeV

Average macro pulse current 62.5 mA

Average macro pulse length 2.86 ms

Pulse repetition rate 14 Hz

Duty cycle 4%

> 2.7x1023 p.o.t/year by 2023 
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Why?

Because of the uniquely high power of the ESS linac we will have the opportunity 

to measure with high precision the neutrino CP-violating angle at the 2nd

oscillation maximum

How?

 Linac modifications (double the rate (14 Hz → 28 Hz), duty cycle (4% → 

8%), average beam power (5 MW → 10 MW)) (see Björn Gålnander’s talk)

 Neutrino target station (see Eric Baussan’s talk )

 Underground detectors (studied in LAGUNA)

Add a neutrino facility at the ESS



Accumulator

Linac

Target station

Neutrino “near detector”

Neutrino “far detector”

2.86 ms

~1.5 μs

Accumulator
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Highly compress the pulse from the ESS linac in order to meet the target station requirements
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Pulse from linac

H-P P

2.86 ms 3.48 ms

H-

3.48 ms

14 Hz, 5 MW

2.86 ms

14 Hz, 5 MW

Gap for injection (0.1 ms)

Gap for extraction (~0.13 µs)

H- H- H- H- H- H- H- H- H- H- H- H-

1.2 µs



Transfer line
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• Maximum magnetic field 0.15 

T for 0.1 W/m loss due to 

Lorentz stripping. 

• 2/3 of transfer line filled with 

dipoles yields a minimum total 

radius of 110 m.

• 2.5 GeV extraction not hit 

target building

Rasmus Johansson & Nick Gazis, ESS
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Accumulator design

Uncontrolled beam loss usually comes from high space 

charge induced tune shift, beam injection, acceptance, 

instabilities…

• Sub-pulse from Linac:

• Energy: 2.5 GeV 

• Power: 1.25 MW

• Current: 50 mA 

• Beam intensity: 2.23 × 1014

• The circumference of the ring: ~ 400 m

• Injection turns: ~ 600

• Extraction gap: ~100 ns

• Un-Norm. 100% emittance: ~80 π mm mrad

• Total beam loss (1 W/m): <10-4

• Collimation efficiency: 90%

• Space-charge tune shift: <0.05

DQ = -
r0N
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Lattice development
Developed by Horst Schonauer

• Inspired by the SNS accumulator ring which runs under similar conditions 

• Long straight section (56 m) and enough phase advance for beam injection 

and collimation

• Fixed injection chicane (9 cm) and fast programmable bump for injection 

painting

Injection

extraction
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Parameter ESSnuSB SNS1.4MW

Circumference (m) 384 220

Average radius (m) 61 35

Inj./Ext. Energy (GeV) 2.5/2.5 1/1

Repetition rate (Hz) 14 60

Ring dipole field (T) 1.3 0.74

Magnetic rigidity, B𝜌 (T m) 11 5.7

Max beta hor./ver. (m) 29/35 20/13

Hor./Ver. Tune 8.24/8.31 6.3/5.8

Transition energy, 𝛾T 5.82 4.95

Hor./Ver. natural chromaticity -11.2/-12.4 -7.5/-6.3

Number of superperiods 4 4
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Beam injection

• Beam injection (proton or H- injection?)

 Proton injection: Liouvillean, Beam loss on septum unavoidable if many turns injected, 

in particular with space charge effect

 H- injection: Non-Liouvillean, proton can be overlaid on H- in phase space, very high 

beam intensity can be injected to the accumulator 

• H- injection (foil stripping or laser stripping?)

 Foil stripping: used in similar proton synchrotrons or accumulators, straightforward, but 

very challenge for ESSnuSB

 Laser stripping: a promising alternative method



Foil stripping: very challenge
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Foil stripping: very challenge
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• Stripping efficiency:

• A function of foil material, foil thickness, foil density, beam
species, and beam energy

• For carbon foil, thickness is 500 μg/cm2 if stripping
efficiency required at least 99%

• As the foil thickness increases, stripping efficiency
increases, scattering increases, energy deposition in the foil
increases

• Foil temperature:

• can decrease the foil lifetime sharply when temperature 
exceeds 2000 K

• Several methods adopted to mitigate the issue

• Foil scattering, cause residual radiation

• H0* (n=4, 5), should be considered carefully

• Stripped electrons, should be considered carefully 

W. Chou et al., Proceedings of PAC07, Albuquerque, New Mexico, USA, p1679  

H- stripping cross section scaled from M.S. Gulley et al., Phys. Rev. A 53 (1996) 3201

https://accelconf.web.cern.ch/accelconf/p07/PAPERS/TUPAS013.PDF
http://www.unm.edu/~wmiller/index/Publications/HiRAB/Measurement%20of%20H-,%20H%20zero,%20H+%20yields%20produced%20by%20foil%20stripping%20of%20800-MeV%20H-%20ions.pdf


Laser stripping
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Sarah Cousineau et al., PRL 118, 074801 (2017)

• A very promising alternative method for charge-
exchange injection

• First demonstration of laser-assisted stripping 
(>90%) for a 6 ns, 1 GeV H− beam using a 10 MW 
UV-laser at SNS in 2006 

• First demonstration of laser-assisted stripping 
(95%-98%) for microsecond duration (10 us) H−

beams at SNS in 2016, by reducing the required 
average laser power

• Average laser power is the main limitation for H−

laser assisted charge exchange

• New scheme at SNS: sequential excitation scheme 
for laser stripping

V. Danilov et al., PRST-AB 10, 053501 (2007)

V. Danilov, S. Cousineau 

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.118.074801
https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.10.053501
https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.10.053501


Sequential excitation scheme for laser stripping at SNS
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• Two steps excitation in stead of one: excite the H0 from 

the ground state to the 2nd state (1s → 2p), followed by 

excitation from the 2nd to the 3rd state (2p → 3d) 

• Each step of the sequential excitation 1s → 2p and 2p → 

3d requires smaller laser power

• Other alternative laser wavelengths, e.g. green laser 

would be possible. 

• The available laser power drops dramatically as the 

wavelength gets shorter

• An order of magnitude in laser power savings by using 

the double excitation scheme

• The experimentally testing for this scheme is in process 

at SNS this year

Timofey Gorlov et al., PRAB, 22, 121601 (2019)

Timofey Gorlov

https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.22.121601
https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.22.121601
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Painting



• A good beam painting can reduce space charge effect, and mitigate peak foil 
temperature

• Correlated painting and anti-correlated painting
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Beam painting

Correlated painting Anti-correlated painting



How to make a “good” painting

• Optimize the painting process to get beam distribution that we need
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An example of beam painting

Painting in real space Painting in phase space
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Longitudinal shaping: RF cavity

• RF cavity used to keep extraction gap clean during accumulation 

process, no acceleration

• Utilizing different kind of rf cavities (single harmonic, dual-

harmonic, and barrier rf cavities) to trap the beam

• Single- or dual- harmonic rf cavity would increase energy 

spread to more than 1%, lead to more than 0.1 chromaticity-

induced tune shift

• Barrier rf cavity only affect head and tail particles to keep the

extraction gap clean

Single and dual harmonic rf bucket

RF waveform
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Longitudinal beam distribution with RF cavity

Point 1: Keep extraction gap clean during the whole accumulation process

Point 2: Minimize the energy spread
Two main points

Dual Harmonic RF cavity 

(Low voltage, 5kV)

Point 1: small risk to leak

Point 2: excellent (~ ±0.2%) 

Barrier RF cavity

Point 1: excellent

Point 2: excellent (~ ±0.15%) 

• Beam is quite stiff

• Particles leakage to the gap would be possible without RF cavity

• Small risk to leak and small energy spread if dual harmonic rf cavity with low voltage (~5kV)

• Very small risk to leak and very small energy spread if barrier rf cavity implemented

Dual-h.

rf cavity

Barrier rf
cavity

No cavity
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Beam painting for the ESSnuSB AR (anti-correlated painting )

Basic parameters for simulations Value

Hor./Ver. Norm. rms emittance 0.35 mm mrad

Extraction gap 133 ns

Energy spread, 1 sigma 0.02%

Foil thickness 500 µg/cm2

Hor./Ver. beta function at injection point 10 m/ 20 m

Hor./Ver. tune 8.24/8.31

Injection turns 597

Macro particles per turn 500

Pulse length per turn 1.2 µs

Beam intensity per turn 3.7×1011

Barrier RF voltage 5 kV

Barrier RF phase 162 deg

Simulation with PyORBIT



2020-03-03 Ye Zou, Uppsala University 21

Tune and Emittance (anti-correlated painting)

• Very small tune spread (~0.05), which fits the calculation results

• 100% beam emittance: 59 π mm mrad in horizontal and 60 π mm mrad in vertical plane

• RMS emittance: 12.9 π mm mrad in horizontal and 12.5 π mm mrad in vertical plane



Foil temperature mitigation

• Foil temperature issue is very serious which can decrease the foil lifetime sharply 
when temperature exceeds 2000 K

• Several methods are considered to mitigate the peak temperature on the foil:

• A good painting can decrease the peak foil temperature at inner corner

• Splitting-foil scheme: splitting the foil into several thinner ones with the same total 
thickness along the beam, which can lower the peak temperature at both center and 
corner

• Mismatched injection to mitigate temperature rise

• Moving injection point or adopting several foils along horizontal plane is also 
considered
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Foil-hits distribution and foil temperature

Good painting

A good painting and splitting-foil scheme can 

dramatically reduce the peak temperature of the 

foil, however, peak temperature still exceeds 

2000 K.

Not good painting



Mismatched injection

• In general match all the physical parameters of the
linac and ring at injection point is a primary
concern

• Twiss parameter mismatch can be used as a tool to
reduce the foil hits (with small injection spot size)
or lower the foil temperature (with large injection
spot size)

• Mismatched injection need foil in larger size than
matched injection and average foil hits will
increase
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Mismatched injection

Energy deposition (4 batches) for 

matched injection, 𝛽𝑖/ 𝛽𝑚=1 

Energy deposition (4 batches) for 

Mismatched injection, 𝛽𝑖/ 𝛽𝑚=2 Injected beam distribution and foil

Peak energy deposition 4.0×1010 J/m3 for matched injection and 2.4×1010 J/m3 for mismatched injection 
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Foil average hits and temperature

The maximum temperature can be lowered to 2000 K for a good anti-correlated painting, 

mismatched injection at 𝛽𝑖/ 𝛽𝑚=2 and with splitting-foil scheme
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The Switchyard

Elian Bouquerel



The Switchyard

Elian Bouquerel



Synergies with other proposals

From Jaroslaw Pasternak’s talk

• Similar design for different proposals

• Pulse structure in the linac and on the target

• Beam intensity for each filling, injection 

turns, circulating turns after injection, 

extraction

• H- injection, H- stripping and beam painting

• RF cavities adopted to keep gap clean for 

extraction

• A robust collimation system

• Transfer line and switchyard similar design

• Foil stripping most challenge
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• A well-designed lattice

• Beam painting to quite uniform distribution

with 100% emittance ~60 π mm mrad

• Space charge tune shift: ~0.03, very small

• Extraction gap can be kept clean

• Foil temperature issues can be mitigated in

several ways and can be kept no exceed 2000 K

• A new designed switchyard which has very 

small beam losses

Where we are now:

Summary

Still in progress:

• Collimation system

• Chromaticity correction

• Beam extraction



Back up slides
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Configurations for simulation

• Lattice developed by Horst Schonauer

• Simulation tools: PTC-PyORBIT

• Linac beam: Gaussian distribution in transverse plane and uniform

in longitudinal

• Energy spread in Gaussian distribution

• On-momentum matched beam injection

• RF cavity: no RF cavity, dual harmonic RF cavity, barrier RF cavity 

• Both direct and indirect space charge included

• Foil scattering included

• Chromaticity not corrected

• Correlated and anti-correlated painting



Hits density 
(hits/(p mm2)

SNS results 
(K)

Code results 
(K)

0.2 ~1660 1645

0.4 ~2300 2244

0.6 ~2750 2742

1.0 ~3500 3500

Temperature calculation code benchmark with SNS 
results

J. Beebe-Wang et.al., BNL, proceedings of 2001 PAC Chicago, USA 



Mismatched injection

• In general match all the physical parameters of the linac and ring at injection point
is a primary concern.

• Twiss parameter mismatch can be used as a tool to reduce the foil hits (with small
injection spot size) or lower the foil temperature (with large injection spot size).

• Mismatched injection should satisfy two preferred conditions in order to
efficiently stack injected turns in phase space:

•
𝛼𝑖

𝛽𝑖
=

𝛼𝑚

𝛽𝑚
= −

𝑋𝐶
′

𝑋𝐶

•
𝛽𝑖

𝛽𝑚
≥

𝜀𝑖

𝜀𝑚

1/3
Satisfied automatically if you want large spot size

• 𝛼𝑖, 𝛽𝑖, and 𝜀𝑖 are Twiss parameters in the transfer line at the injection point and normalized
RMS emittance of injected beam

• 𝛼𝑚, 𝛽𝑚, and 𝜀𝑚 are Twiss parameters in the ring at the injection point and normalized total
emittance after injection
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