

Fast inference on FPGAs

Javier Duarte, Sergo Jindariani, Ben Kreis, Ryan Rivera, Nhan Tran (Fermilab) Jennifer Ngadiuba, Maurizio Pierini, Sioni Summers, **Vladimir Loncar** (CERN)

Edward Kreinar (Hawkeye 360)

Phil Harris, Song Han, Dylan Rankin (MIT)

Zhenbin Wu (University of Illinois at Chicago) Giuseppe di Guglielmo (Columbia University)

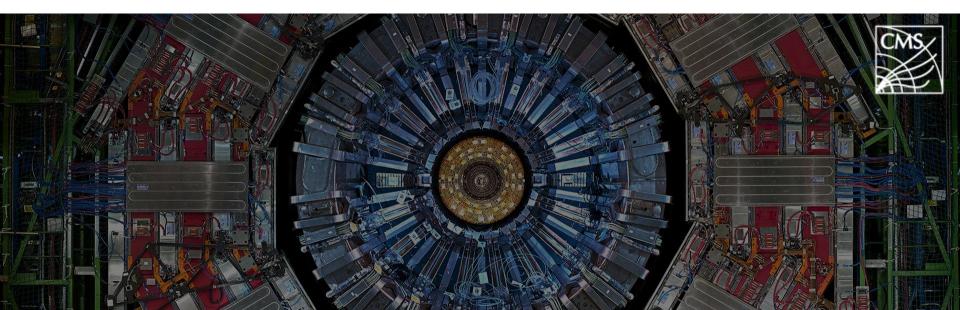
CERN

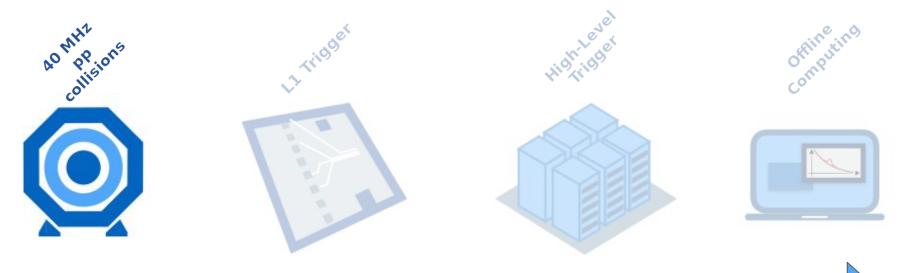
Challenges in LHC

At the LHC proton beams collide at a frequency of 40 MHz

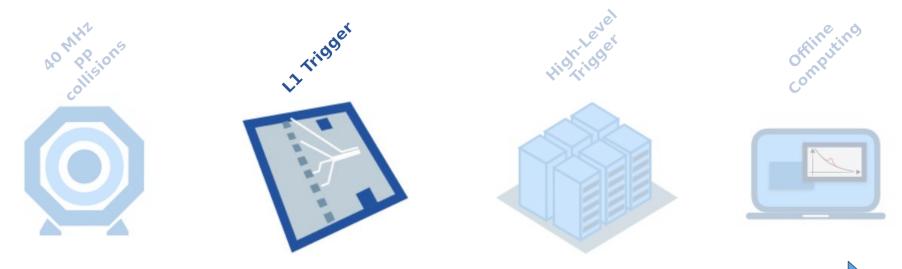
Extreme data rates of O(100 TB/s)

"Triggering" - Filter events to reduce data rates to manageable levels





DATA FLOW

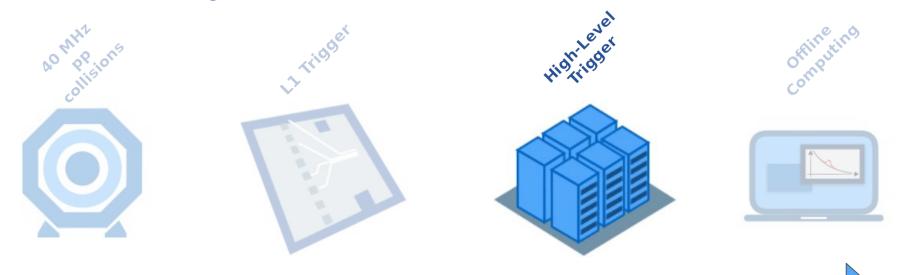


DATA FLOW

40 MHz in / 100 KHz out ⇒ absorbs 100s TB/s

Trigger decision to be made in \sim 10 μ s

FPGAs / Hardware implemented

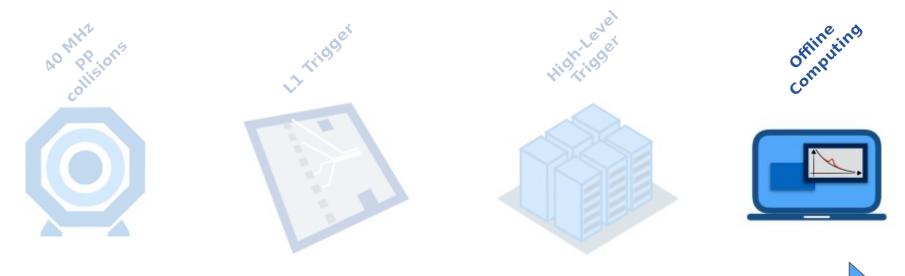


DATA FLOW

100 KHz in / 1 KHz out ⇒ ~ 500 KB/event

Processing time ~ 300 ms

Software implemented on CPUs

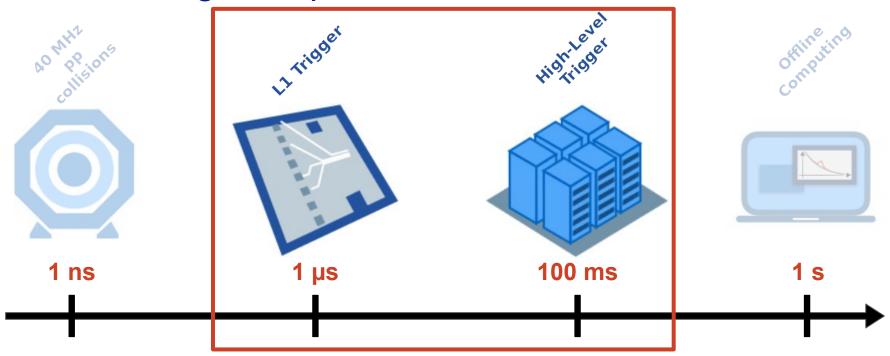


DATA FLOW

Output: max. 1 MB/event

Processing time ~ 20 s

Software implemented on CPUs



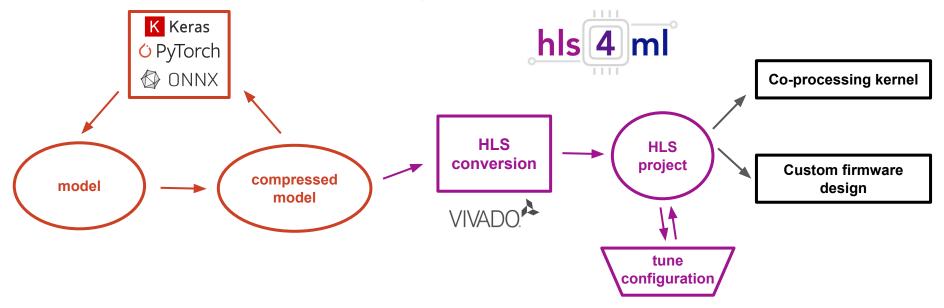
Deploy ML algorithms very early

Challenge: strict latency constraints!

high level synthesis for machine learning

User-friendly tool to automatically build and optimize DL models for FPGAs:

- Reads as input models trained with standard DL libraries
- Uses Xilinx HLS software
- Comes with implementation of common ingredients (layers, activation functions, binary NN ...)



On-chip weights

- Much faster access times
- For longer latency applications, weights storage in on-chip block memory is possible
- No loading weights from external source (e.g. DDR, PCIe)
- Not reconfigurable without reprogramming device

User controllable trade-off between resource usage and latency/throughput

Tuned via "reuse factor"

Fully extensible through API

Custom layers, custom HLS code, user-defined model transformations...

A handle to control resource usage and latency

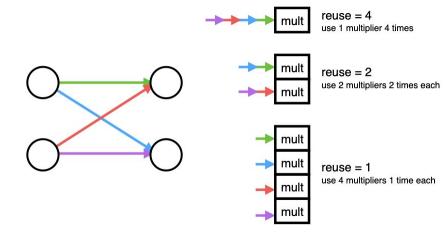
Can be specified per-layer

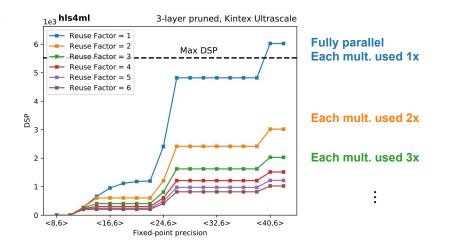
Reuse = 1: Fully unroll everything

Fastest, most resource intensive

Reuse > 1: reuse one DSP for several operations

- Increases latency, but uses less resources





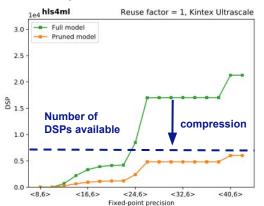
hls 4 ml : exploiting FPGA hardware

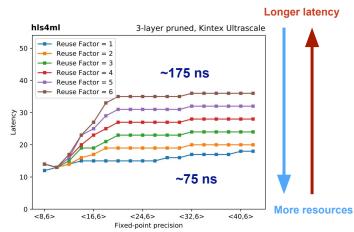
Parallelization (reuse): Control the inference latency versus utilization of FPGA resources

Quantization: Reduce precision of the calculations

Compression: Drop unnecessary weights (zero or close to zero) to reduce the number of DSPs used

70% compression ~ 70% fewer DSPs

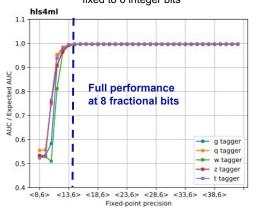




Scan integer bits fixed to 8 fractional bits hls4ml Full performance at 6 fractional bits g tagger 0.5 <10.2> <15.7> <20.12> <25.17> <30.22> <35.27> <40.32> Fixed-point precision

Scan fractional bits

fixed to 6 integer bits



Supported architectures:

- MLP
 - Numerous activation functions
 - Support for very large layers

Binary and Ternary MLP

- 1- or 2-bit precision with limited loss of performance
- Computation without using DSPs, only LUTs

Convolutional NNs

- 1D and 2D with pooling
- Currently limited to very small layers

- Other:

- Batch normalization
- Merge layers (concatenation, addition, subtraction etc)

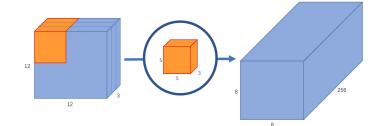
Convolutional layers

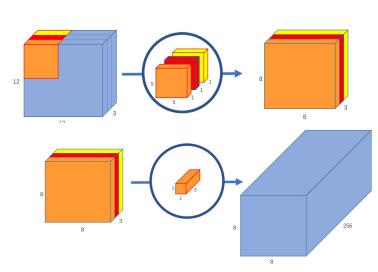
Support for "large" convolutional layers

- Express convolution as matrix multiplication
- im2col algorithm
- Reuse "large" matrix multiplication algorithm from MLP
- Quantized (binary and ternary) weights

Depthwise separable convolution

- First step: depthwise convolution
- Second step: pointwise convolution
- For 3x3 kernels this can yield 8-9 times less multiplications





Credit: Jennifer Naadiuba. Sioni Paris Summer Smages source: https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728

Boosted decision trees

Q4 2019

- BDTs have been popular for a long time in HEP reconstruction and analysis
- Suitable for highly parallel implementation in FPGAs
- Implementation in hls4ml optimised for low latency
- No 'if/else' statement in FPGAs → evaluate all options and select the right outcome
 - Compare all features against thresholds, chain together outcomes to make the 'tree'

Test for model with 16 inputs, 5 classes, 100 trees, depth 3 on VU9P FPGA:

- 4% LUTs, 1% FFs (0 DSPs, 0 BRAMs)
- 25 ns latency with II=1

Credit: Sioni Paris Summers

Recurrent neural networks

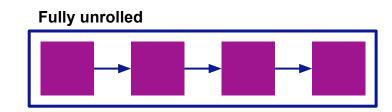
Q4 2019

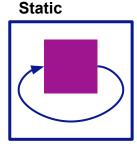
Simple RNN, LSTM, GRU

Two implementations:

- Fully unrolled:
 - Latency optimized with II=1
 - Large resource usage
- **Static:** same resources used for weights and multiplications
 - N (N=latency of layer) copies can go through at the same time
 - Latency is larger and II limited to clock time for each layer

Supports small networks → scale it up using "large" matrix multiplication algorithm



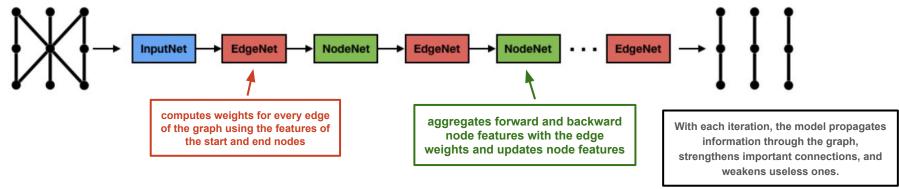


Credit: Phil Harris, Nhan Tran, Richa Rao

Graph networks

H1 2020

Natural solution for reconstructing the trajectories of charged particles



Preliminary implementation:

- Implemented as an HLS project, not supported in conversion tools
- Successfully tested a small example with 4 tracks, 4 layers
- Major effort required to scale up to larger graphs

Credit: Javier Duarte and Kazi Asif Ahmed Fuad

Multi-FPGA inference

H1 2020

- Main idea: place layers onto multiple FPGAs and pipeline the execution

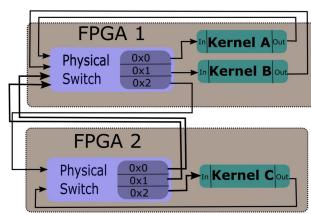
Leverage Galapagos framework (https://github.com/tarafdar/galapagos)

- "...a framework for creating network FPGA clusters in a heterogeneous cloud data center."

- Given a description of how a group of FPGA kernels are to be connected, creates a ready-to-use

network device

- Possible to use MPI programming model



Credit: Naif Tarafdar, Phil Harris

Training on FPGAs

H2 2020

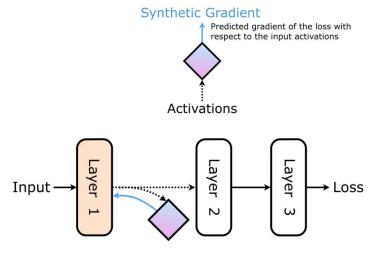
- Build on top of multi-FPGA idea

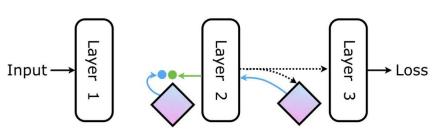
Use synthetic gradients (SG) to remove the update lock

Individual layers to learn in isolation

Train SGs by another NN

- Each SG generator is only trained using the SGs generated from the next layer
- Only the last layer trains on the data





Autoencoders

GarNet graph NN (https://arxiv.org/abs/1902.07987)

Alternate HLS implementations

- Intel HLS
- Mentor Catapult HLS

Inference engine for CPUs based on hls4ml

Targeting integration into CMSSW

Probably more...

Conclusions

hls4ml - software package for translation of trained neural networks into synthesizable FPGA firmware

- Tunable resource usage latency/throughput
- Fast inference times, O(1µs) latency

More information:

- Website: https://hls-fpga-machine-learning.github.io/hls4ml/
- Paper: https://arxiv.org/abs/1804.06913
- Code: https://github.com/hls-fpga-machine-learning/hls4ml

