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Challenges in LHC

At the LHC proton beams collide at a frequency of 40 MHz
Extreme data rates of O(100 TB/s)

“Triggering” - Filter events to reduce data rates to manageable levels




The LHC big data problem
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The LHC big data problem
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DATA FLOW

40 MHz in / 100 KHz out = absorbs 100s TB/s
Trigger decision to be made in ~ 10 ps

FPGAs / Hardware implemented



The LHC big data problem

DATA FLOW

100 KHz in / 1 KHz out = ~ 500 KB/event
Processing time ~ 300 ms

Software implemented on CPUs



The LHC big data problem

DATA FLOW

Output: max. 1 MB/event

Processing time ~ 20 s

Software implemented on CPUs



The LHC big data problem
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Deploy ML algorithms very early

Challenge: strict latency constraints!



high level synthesis for machine learning

User-friendly tool to automatically build and optimize DL models for FPGAs:

- Reads as input models trained with standard DL libraries
- Uses Xilinx HLS software
- Comes with implementation of common ingredients (layers, activation functions, binary NN ...)

his 4 ml
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hls 4 ml : features

On-chip weights

- Much faster access times

- For longer latency applications, weights storage in on-chip block memory is possible
- No loading weights from external source (e.g. DDR, PCle)

- Not reconfigurable without reprogramming device

User controllable trade-off between resource usage and latency/throughput

- Tuned via “reuse factor”

Fully extensible through API

- Custom layers, custom HLS code, user-defined model transformations...



hls 4 ml : reuse factor

A handle to control resource usage and latency
- Can be specified per-layer
Reuse = 1: Fully unroll everything

- Fastest, most resource intensive

Reuse > 1: reuse one DSP for several operations

- Increases latency, but uses less resources
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hls 4 ml : exploiting FPGA hardware

0.94

Parallelization (reuse): Control the inference latency versus utilization of

FPGA resources

Quantization: Reduce precision of the calculations

Compression: Drop unnecessary weights (zero or close to zero) to reduce

the number of DSPs used

70% compression ~ 70% fewer DSPs
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hls 4 ml : current status

Supported architectures:

- MLP
- Numerous activation functions
- Support for very large layers  YENIK
Binary and Ternary MLP
- 1- or 2-bit precision with limited loss of performance
- Computation without using DSPs, only LUTs
Convolutional NNs
- 1D and 2D with pooling
- Currently limited to very small layers

Other:
- Batch normalization
- Merge layers (concatenation, addition, subtraction etc)



hls 4 ml : ongoing work (1)

Convolutional layers -@
Support for “large” convolutional layers =BT 4 :

Express convolution as matrix multiplication
im2col algorithm

Reuse “large” matrix multiplication algorithm from MLP

Quantized (binary and ternary) weights ‘ i
Depthwise separable convolution 3
- First step: depthwise convolution
- Second step: pointwise convolution
- For 3x3 kernels this can yield 8-9 times less multiplications

Credlt Jennlfer Noadluba Slonl Parls Summergnages source: https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728



https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728

hls 4 ml : ongoing work (2)

Boosted decision trees

- BDTs have been popular for a long time in HEP reconstruction and analysis
- Suitable for highly parallel implementation in FPGAs
- Implementation in his4ml optimised for low latency
- No ‘if/else’ statement in FPGAs — evaluate all options and select the right outcome
- Compare all features against thresholds, chain together outcomes to make the ‘tree’

Test for model with 16 inputs, 5 classes, 100 trees, depth 3 on VU9P FPGA:

- 4% LUTs, 1% FFs (0 DSPs, 0 BRAMSs)
- 25 ns latency with [I=1

Credit: Sioni Paris Summers



hls 4 ml : ongoing work (3)

Recurrent neural networks
Fully unrolled

Two implementations:

- Fully unrolled: Static

- Latency optimized with [1=1
- Large resource usage
- Static: same resources used for weights and multiplications
- N (N=latency of layer) copies can go through at the same time
- Latency is larger and Il limited to clock time for each layer

Supports small networks — scale it up using “large” matrix multiplication algorithm

Credit: Phil Harris, Nhan Tran, Richa Rao



hls 4 ml : ongoing work (4)

Graph networks

- Natural solution for reconstructing the trajectories of charged particles
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computes weights for every edge
of the graph using the features of
the start and end nodes

Preliminary implementation:

\

aggregates forward and backward
node features with the edge
weights and updates node features

= =]

- Implemented as an HLS project, not supported in conversion tools
- Successfully tested a small example with 4 tracks, 4 layers
- Major effort required to scale up to larger graphs

Credit: Javier Duarte and Kazi Asif Ahmed Fuad

With each iteration, the model propagates
information through the graph,
strengthens important connections, and
weakens useless ones.




hls 4 ml : future directions (1)
Multi-FPGA inference < J[FFIT

- Main idea: place layers onto multiple FPGAs and pipeline the execution

Leverage Galapagos framework (nttps:/github.com/tarafdar/galapagos)

- “..a framework for creating network FPGA clusters in a heterogeneous cloud data center.”

- Given a description of how a group of FPGA kernels are to be connected, creates a ready-to-use
network device

- Possible to use MPI programming model

Credit: Naif Tarafdar, Phil Harris



https://github.com/tarafdar/galapagos

hls 4 ml : future directions (2)

Synthetic Gradient
Predicted gradient of the loss with
respect to the input activations

Training on FPGAs

- Build on top of multi-FPGA idea ;
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Use synthetic gradients (SG) to remove the update lock
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tps://deepmind.com/blog/article/decoupled-neural-networks-using-synthetic-gradients

Images source: ht


https://deepmind.com/blog/article/decoupled-neural-networks-using-synthetic-gradients

hls 4 ml : other future developments

Autoencoders

GarNet graph NN (https:/arxiv.org/abs/1902.07987)

Alternate HLS implementations

- Intel HLS
- Mentor Catapult HLS

Inference engine for CPUs based on hls4ml
- Targeting integration into CMSSW

Probably more...


https://arxiv.org/abs/1902.07987

Conclusions

his4ml - software package for translation of trained neural networks into synthesizable
FPGA firmware

- Tunable resource usage latency/throughput
- Fast inference times, O(1us) latency

More information:

-  Website: https://hls-fpga-machine-learning.github.io/hls4ml/
- Paper: https://arxiv.org/abs/1804.06913
- Code: https://github.com/hls-fpga-machine-learning/hls4ml

his 4 ml
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