

Compressing deep NN on FPGAs to ultra-low precision

8 October 2019, CERN

Efficient NN design

DSPs can be a limiting resource → how to fit my model on a FPGA?

Happy to have many zeros but not straightforward to implement sparse matrix multiplication!

FPGA can optimize those away but not in all cases.

Ultra-low precision arithmetic

Replace 32-bit floating point multiplications with 1/2 bits arithmetics with limited loss in accuracy:

- 1-bit: binary NN (<u>arxiv.1602.02830</u>)
- 2-bits: ternary NN (<u>arxiv.1605.04711</u>)

nb, only the weights and activations are binarized and not the gradients used to update parameters during backpropagation.

Extremely attractive from a hardware perspective! BNN/ TNN computationally efficient at low power.

A bit of literature: Xilinx BNN

FINN: A Framework for Fast, Scalable Binarized Neural Network Inference

Yaman Umuroglu^{*†}, Nicholas J. Fraser^{*‡}, Giulio Gambardella^{*}, Michaela Blott^{*}, Philip Leong[‡], Magnus Jahre[†] and Kees Vissers^{*} *Xilinx Research Labs; [†]Norwegian University of Science and Technology; [‡]University of Sydney

yamanu@idi.ntnu.no

• Demonstrated that for by binarizing dense and Conv2D the small memory required removes the off-chip memory bottleneck by keeping parameters on-chip, even for large networks!

Neurons/layer	Binary Err. (%)	Float Err. (%)	# Params	Ops/frame
$128 \\ 256 \\ 512 \\ 1024 \\ 2048 \\ 4096$	$\begin{array}{c} 6.58 \\ 4.17 \\ 2.31 \\ 1.60 \\ 1.32 \\ 1.17 \end{array}$	$2.70 \\ 1.78 \\ 1.25 \\ 1.13 \\ 0.97 \\ 0.91$	$134,794\\335,114\\932,362\\2,913,290\\10,020,874\\36,818,954$	268,800 668,672 1,861,632 5,820,416 20,029,440 73,613,312

Table 1: Accuracy results - BNN vs NN.

Table 3: Summary of results from FINN 200 MHz prototypes.

Name	Thr.put (FPS)	${ m Latency}\ (\mu { m s})$	LUT	BRAM	$P_{ m chip} \ ({ m W})$	$egin{array}{c} P_{ m wall} \ ({ m W}) \end{array}$
SFC-max	12361 k	0.31	91131	4.5	7.3	21.2
LFC-max	1561 k	2.44	82988	396	8.8	22.6
CNV-max	21.9 k	283	46253	186	3.6	11.7
SFC-fix	12.2 k	240	5155	16	0.4	8.1
LFC-fix	12.2 k	282	5636	114.5	0.8	7.9
CNV-fix	11.6 k	550	29274	152.5	2.3	10

models: jet tagging

a multi-classification task: y energetic (boosted) **q, g, W, Z, t** initiated jets

Benchmark models: MNIST

Average accuracy ~ 0.98 AUC per class > 99%

Binary/Ternary architectures

(First tests and implementation for MLP)

hls4ml implementation

- Run hyper parameter bayesian optimization: neurons, layers, batch size, learning rate, different optimizers
- Recover performance with 16x448x224x224x5 model (7 times more neurons)

- Run hyper parameter bayesian optimization: neurons, layers, batch size, learning rate, different optimizers
- Recover performance with 16x448x224x224x5 model (7 times more neurons)

Architecture	AUCs [%]	Average accuracy	Minimum latency [µs]	DSPs [%]	LUTs [%]	FFs [%]	BRAMs [%]
float model (16x64x32x32x5)	90 - 96	0.75	0.060	60	7	1	0
float model (compressed)	91 - 96	0.75	0.090	15	1.7	0.7	0.3
Small BNN (16x64x32x32x5)	75 - 89	0.62	0.040	0	0.8	0.1	0
Optimized BNN (16x448x224x224x5)	88 - 94	0.72	0.210	0	15	7	0
BNN + ReLu (16x128x64x64x5)	88 - 93	0.70	0.140	4	6	1	0
Optimized TNN (16x128x64x64x64x5)	88 - 94	0.72	0.110	0	6	1	0
TNN + ReLu (16x64x32x32x5)	88 - 92	0.68	0.060	2	2	0.2	0

Results: MNIST

Architecture 784x128x128x128x10	Average accuracy	Minimum latency [µs]	DSPs [%]	LUTs [%]	FFs [%]	BRAMs [%]
float model	0.98	0.56	100	134	23	54
Binary model (binary tanh)	0.93	0.21	0	34	11	16
Ternary model (ternary tanh)	0.95	0.21	0	34	11	16

Results: MNIST

Results: MNIST

