
Compressing deep NN on FPGAs  
to ultra-low precision

8 October 2019, CERN



08.10.2019

Efficient NN design

2

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

Number of DSPs available

compression

DSPs can be a limiting resource 
→ how to fit my model on a FPGA?

Happy to have many zeros but  
not straightforward to implement  

sparse matrix multiplication! 

FPGA can optimize those away  
but not in all cases.



08.10.2019 3

Replace 32-bit floating point 
multiplications with 1/2 bits arithmetics 
with limited loss in accuracy: 
• 1-bit: binary NN (arxiv.1602.02830) 
• 2-bits: ternary NN (arxiv.1605.04711) 

nb, only the weights and activations are binarized and not 
the gradients used to update parameters during 
backpropagation. 

Extremely attractive from a 
hardware perspective! BNN/
TNN computationally 
efficient at low power.

Ultra-low precision arithmetic

https://arxiv.org/pdf/1602.02830v3.pdf
https://arxiv.org/abs/1605.04711


08.10.2019

A bit of literature: Xilinx BNN

4

arxiv.1612.07119

•Demonstrated that for by binarizing dense and Conv2D the small memory required 
removes the off-chip memory bottleneck by keeping parameters on-chip, even for 
large networks!

Zynq device

https://arxiv.org/abs/1612.07119


08.10.2019

Benchmark models: jet tagging

5

Study a multi-classification task:  
discrimination between highly energetic (boosted) q, g, W, Z, t initiated jetsCASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

 top
other quark

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

Z W gluon

t→bW→bqq

3-prong jet

Reconstructed as one massive jet with substructure

q/g backgroundW→qqZ→qq

2-prong jet 2-prong jet no substructure

and/or mass ~ 0



08.10.2019

Benchmark models: jet tagging

6

16 inputs

Float jet tagging model

5 outputs 
activation: SofMax

32 neurons 
activation: ReLU

64 neurons 
activation: ReLU

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

 top other quark

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

Z W gluon

Average accuracy ∼ 0.75



08.10.2019

Benchmark models: MNIST

7

784 inputs

Float MNIST-128

10 outputs 
activation: SofMax

128 neurons 
activation: ReLU

Average accuracy ∼ 0.98 
AUC per class > 99% 



08.10.2019

Binary/Ternary architectures

8

…Binary/Ternary Dense

Batch Normalization

Activation Function

INPUT

OUTPUT

Binary/Ternary Dense

Batch Normalization

Activation Function

Binary/Ternary Dense

Batch Normalization

(First tests and implementation for MLP)



08.10.2019

hls4ml implementation

9

binary product

ternary product
Fused batch normalization + 

ternary/binary tanh: 
compare with a threshold

+ optimizer of layer-by-layer  
fixed point precision



08.10.2019

Results: jet tagging model

10

16 inputs

Float jet tagging model

5 outputs 
activation: SofMax

32 neurons 
activation: ReLU

64 neurons 
activation: ReLU

…Binary/Ternary Dense

Batch Normalization

Activation Function

INPUT

OUTPUT

Binary/Ternary Dense

Batch Normalization

Activation Function

Binary/Ternary Dense

Batch Normalization

binary net



08.10.2019

Results: jet tagging model
•Run hyper parameter bayesian optimization: neurons, layers, batch size, learning 

rate, different optimizers 

•Recover performance with 16x448x224x224x5 model (7 times more neurons)

11

full precision Optimized binary net

Average acc: 0.75 Average acc: 0.72



08.10.2019

Results: jet tagging model
•Run hyper parameter bayesian optimization: neurons, layers, batch size, learning 

rate, different optimizers 

•Recover performance with 16x448x224x224x5 model (7 times more neurons) 

•For Ternary Net converge to smaller model: 16x128x64x64x64x5 (2 times 
more neurons + one more layer)

12

full precision Optimized ternary net

Average acc: 0.72Average acc: 0.75



08.10.2019

Results: jet tagging model

13

Architecture AUCs  
[%]

Average  
accuracy

Minimum  
latency  

[μs]
DSPs  
[%]

LUTs  
[%]

FFs  
[%]

BRAMs 
[%]

float model
(16x64x32x32x5) 90 - 96 0.75 0.060 60 7 1 0

float model 
(compressed) 91 - 96 0.75 0.090 15 1.7 0.7 0.3

Small BNN  
(16x64x32x32x5) 75 - 89 0.62 0.040 0 0.8 0.1 0

Optimized BNN
(16x448x224x224x5) 88 - 94 0.72 0.210 0 15 7 0

BNN + ReLu 
(16x128x64x64x5) 88 - 93 0.70 0.140 4 6 1 0

Optimized TNN 
(16x128x64x64x64x5) 88 - 94 0.72 0.110 0 6 1 0

TNN + ReLu 
(16x64x32x32x5) 88 - 92 0.68 0.060 2 2 0.2 0



08.10.2019

Results: MNIST

14

Architecture
784x128x128x128x10

Average  
accuracy

Minimum  
latency  

[μs]
DSPs  
[%]

LUTs  
[%]

FFs  
[%] BRAMs [%]

float model 0.98 0.56 100 134 23 54

Binary model
(binary tanh) 0.93 0.21 0 34 11 16

Ternary model
(ternary tanh) 0.95 0.21 0 34 11 16



08.10.2019

Results: MNIST

15

full precision

D
SP

s 
[%

]

binary net

D
SP

s 
[%

]

BR
A

M
s 

[%
]

BR
A

M
s 

[%
]



08.10.2019

Results: MNIST

16

LU
Ts

 [%
]

LU
Ts

 [%
]

FF
s 

[%
]

full precision binary net

FF
s 

[%
]


