

Summary of electronics reliability studies

KM3NeT_ELEC_2016_003-Electronics_Reliability_Summary

D. Real, Diego.Real@ifiv.uv.es

IFIC

Abstract

Summary of FIDES reliability analysis of KM3NeT electronics boards

Recipients

The KM3NeT Collaboration

Document Status

Revision	Date	Comment	Reviewed by	Approved by
3	11/06/2019	Results updated	S. Colonges	

Revision History

Revision	Date	Description
3	11/06/2019	Third version
2	26/04/2016	Second version (added remarks and conclusion)
1	20/04/2016	First version
Draft	18/04/2016	First draft

1.1 Table of Contents

2	Documentation
2.1	Abbreviations2
2.2	Reference Documents2

3	Introduction	. 3
4	Outcome of the reliability studies	. 6

1. Documentation

1.1. Abbreviations

Abbreviation	Description
DU	Detection Unit
DOM	Digital Optical Module
FIDES	(Latin: Trust) It is a guide allowing estimated reliability calculation for electronic c
FIDE5	omponents and systems
FIT	Failure in Time
CLB	Central Logic Board
PB	Power Board
FMC	FMC connector expansion board for the DU Base
BPS	Base Power Supply board

Abbreviation	Title	Reference
RD1	KM3NeT TDR	KM3NeT_DS_TDR
RD2	KM3NeT CRD	KM3NeT_DS_CDR
RD3		KM3NeT_ELEC_2015_001-REP_PBRelReport_V6
RD4		KM3NeT_ELEC_2015_002-REP_CLBRelReport_V4
RD5		KM3NeT_ELEC_2015_003-ELEC_BaseRelReportV3
RD6		KM3NeT_ELEC_2015_004-REP_OCTOPUSRelReport_V4
RD7		KM3NeT_ELEC_2015_005-REP_FMCRELREPORT
RD8		KM3NeT_ELEC_2015_006-REP_BPSRelReport
RD9		KM3NeT_REL_2015_007-REP_PS_12V_ICL-R1RelReport
RD10		KM3NeT_ELEC_2015_008-REP_PS12VR4RelReport
RD11		KM3NeT_REL_2015_009-REP_OMsupplyNIKHEFRelReport
RD12	Risk management report	KM3NeT Risk KM3NeT_DET_2014_003-Risk_Managemen t_Report.pdf
RD13		KM3NeT_QA_2014_016_Manufacturing_Audit_RoadMap
RD14	KM3NET Overall RAMS an alysis	KM3NET_ELEC_2018_001_RAMS_Overall

1.2. Reference Documents

2. Introduction

In this document a summary is presented of the reliability studies performed on the KM3NeT electronics and power boards.

All such analyses have been performed using FIDES 2009 reliability handbook, comparing manufacturer data to FIDES evaluation when available.

Using the methodology FIDES, FIDES expert tool and Fides 2009 Excel template tool, it is possible to estimate the boards FIT (amount of failures per 109 hours).

Reliability evaluation is performed using FIDES Excel tools. The Fides guide is used as a reference in order to fill the FIDES excel table for the analysis. The FIDES is a guide structured in two main parts:

• A reliability prediction guide,

• A reliability process control and audit guide.

Excel tools help to evaluate the failure rate for boards, components and systems. These tools are built with the models and parameters presented in the FIDES guide.

To perform the analysis, we use FIDES expert tool 2009 version in order to use the latest prediction models.

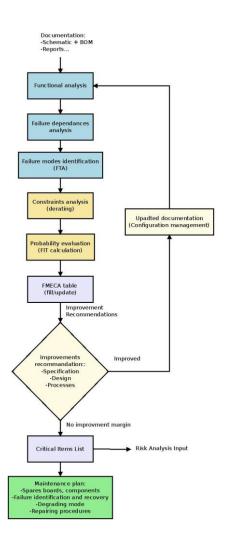
The analysis has been performed for each component reference, considering the worst case when the conditions are not perfectly known. When we have multiple components for a single component reference, the worst-case condition (i.e., component with the higher stress) has been considered.

The goal of the RAMS study is:

- List the reliability related requirements
- List functional blocks and dependencies
- Evaluate failure rate probabilities
- Analyse failure modes, effects and criticality
- Identify weakness point in term of criticality
- Define reliability improvements in terms of design and processes
- Define test strategy and youth failure procedure elimination
- Identify Failure detection identification and recovery and maintenance strategy

Then this report will be spread into 7 sections:

- 1) Reliability requirements and life profile
- 2) Contributing factors
- 3) Product functional description
- 4) Products, functions and failure rate analysis
- 5) Failure modes and weakness points



6) Reliability improvements recommendations

7) Maintenance and failure detection, identification and recovery strategy

A short FIDES presentation is given in annex

Reliability analysis process:

3. Reliability requirements and life profile

Lifetime : 15 years for ARCA – 10 years for ORCA

Environment : 2500 meter deep for ORCA (250 bars pressure) / 3500 meter deep ARCA

(350 bars pressure)

2 environment are considered:

- **Soft:** consider a good cooling (KM3NET_17°C life profile)
- Warm: cooling conditions not optimal is the case (KM3NET_17°C life profile)

Soft LIFE PROFILE

Standard life profile

		Temperature	Temperature cycling			ing	
Phase name	On / Off	Calendar time (hours)	Ambient temperature (°C)	∆t (°C)	Cycle duration (hours)	Number of cycles (/phase)	Maximum temperature during cycling (°C)
ON	ON	8 759 h	17,00 °C	0,00 °C	8 759 h	1	17,00 °C
OFF	OFF	1 h	13,00 °C	0,00 °C	1 h	1	13,00 °C

Warm LIFE PROFILE

Standard life profile

		Temperature	Temperature cycling			ing	
Phase name	On / Off	Calendar time (hours)	Ambient temperature (°C)	∆t (°C)	Cycle duration (hours)	Number of cycles (/phase)	Maximum temperature during cycling (°C)
ON	ON	8 759 h	25,00 °C	0,00 °C	8 759 h	1	25,00 °C
OFF	OFF	1 h	13,00 °C	0,00 °C	1 h	1	13,00 °C

We consider a really low vibration level, a good hermeticity and a humidity from 30 to 60% (the calculation is performed with 50%)

4. Contributing factors

See RD14

In the Fides method, the process impact is a multiplicating factor.

3 audits have been performed for this study:

- The application impact (Pi Application)
- Ruggedizing impact (Pi ruggedizing)
- Process impact (Pi process)

4.1. Pi Application

Different criteria are used to evaluate the severity of a usage phase in terms of exposure to overstresses. There are three levels per criterion. Evaluation of these levels provides a means of calculating the Inapplication parameter. The complete method is described in detail in the calculation sheets.

Item	Description		Off phase level	
User type in the phase considered	Represents the capability to respect procedures, facing operational constraints.	0: quality constraints (industrial)	0: quality constraints (industrial)	
User qualification level in the phase considered	Represents the level of control of the user or the worker regarding an operational context	0: Highly qualified	0: Highly qualified	
System mobility	Represents contingencies related to possibilities of the system being moved	0: Few contingencies (fixed or stable environment)	0: Few contingencies (fixed or stable environment)	
Product manipulation	Represents the possibility of false manipulations, shocks, drops, etc .	0: Not manipulated	0: Not manipulated	

Page **7** of 7

Item	Description		Off phase level
Type of electrical network for the system	Represents the level of electrical disturbance expected on power supplies, signals and electrical lines: power on, switching, power supply, connection/disconnection	1: Slightly disturbed network	0: Undisturbed network (dedicated regulated power supply)
Product exposure to human activity	Represents exposure to contingencies related to human activity: shock, change in final use, etc.	0: Uninhabitable zone	0: Uninhabitable zone
Product exposure to machine disturbances	Represents contingencies related to operation of machines, engines, actuators: shock, overheating, electrical disturbances, pollutants, etc.	1: Indirect exposure (product in compartment)	1: Indirect exposure (product in compartment)
Product exposure to the weather	Represents exposure to rain, hail, frost, sandstorm, lightning, dust	0: Null (home)	0: Null (home)

4.2. Pi ruggedizing

This factor allows evaluating the impact of applied recommendation in order to harden the product during the design and improve the reliability.

Detailled II ruggedising		
Recommendation	Level	
Check that environmental specifications are complete.	4	N3 - Recommendation is almost fully applied
Provide training and manage operation and maintenance for implementation and maintenance of the product	7	N3 - Recommendation is almost fully applied
Check that procedures specific to the product and rules specific to businesses are respected by an appropriate monitoring system	7	N3 - Recommendation is almost fully applied
Design dependable electrical protection devices	4	N3 - Recommendation is almost fully applied
Study and handle risks of the product under test being deteriorated by failures of its test or maintenance means.	4	N3 - Recommendation is almost fully applied
Identify and use appropriate prevention means of preventing reasonably predictable aggressions (related to the weather)	4	N3 - Recommendation is almost fully applied
Use appropriate prevention means to identify and handle reasonably predictable abnormal uses weather	4	N3 - Recommendation is almost fully applied
Include production, storage and maintenance environments in the product environment specifications	4	N3 - Recommendation is almost fully applied
Justify that environment specifications are respected	4	N3 - Recommendation is almost fully applied
Carry out a product improvement process (for example highly accelerated stress tests) so as to limit the product sensitivity to environmental constraints (disturbances, environments, overstress)	7	N3 - Recommendation is almost fully applied
Perform an analysis of failure cases that could result in failure propagation.	4	N3 - Recommendation is almost fully applied
Carry out a process analysis of implementation and maintenance operations	4	N3 - Recommendation is almost fully applied
Carry out a review of maintenance operations done by the final user and deal with his recommendations	4	N3 - Recommendation is almost fully applied

Detailled Π ruggedising		
Write complete procedures for all product implementation and maintenance operations	7	N3 - Recommendation is almost fully applied
Respect a standard dealing with conducted and radiated electromagnetic disturbances. This is equally applicable to the product and the system into which it is integrated	3	N3 - Recommendation is almost fully applied
Respect a standard dealing with power supplies (standard that defines possible disturbances and possible EN2282 type variations). The standard must be respected both for electricity generation and for electricity consumption	4	N3 - Recommendation is almost fully applied

4.3. Pi Process

The Π Process factor represents the quality and technical control over reliability in the product life cycle.

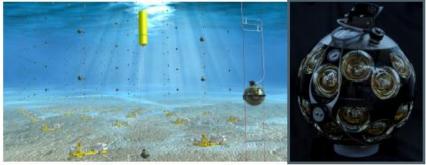
The evaluation method is based on the level of application of recommendations that apply to the entire life cycle. The product life cycle is broken down as follows with the specific impact of each phase in % on the reliability:

PHASE	Phase contribution %
Specification	8
Design	16
Manufacturing of board or subassembly	20
Integration into equipment	10
Integration into the system	10
Operation and maintenance	18
Support Activities	18
Total:	100

The variation range of the Π_{Process} factor is from 1 (for the best process) to 8 (for the worst process).

If \prod_{Process} is not evaluated, a default value of 4.0 is suggested. The use of the default value can reduce the precision of the final results.

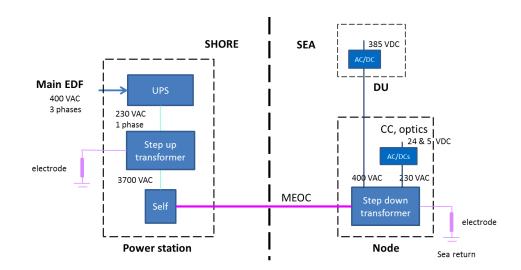
A process factor audit has been performed:


Pi Process result: 2

(see RD14, Process factor sheet)

5. Functional analysis:

ORCA will be a network of 115 Detection Unit line. ARCA will be a network of 2 building blocks with 115 detection unit line each. A detection unit is a line of 18 digital optical modules


(a) KM3NeT detector, artist impression.

(b) Digital Optical Module.

Figure 1: KM3NET artist view and DOM picture

5.1. Shore station:

The shore station host the power station, and the data acquisition and control system.

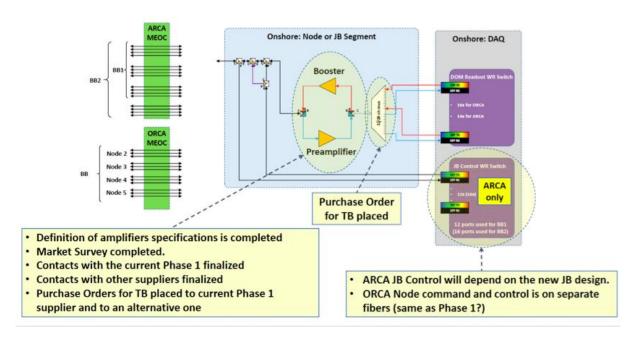
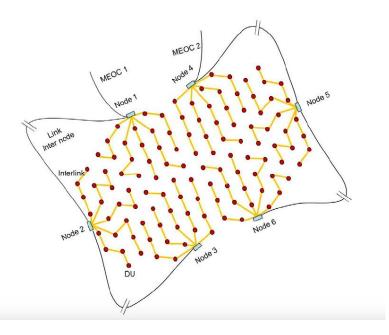



Figure 3: ORCA Onshore optical network

5.2. ORCA (French site) :

Figure 4: ORCA network

* Red point= Detection Units

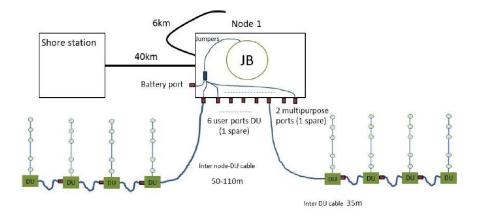
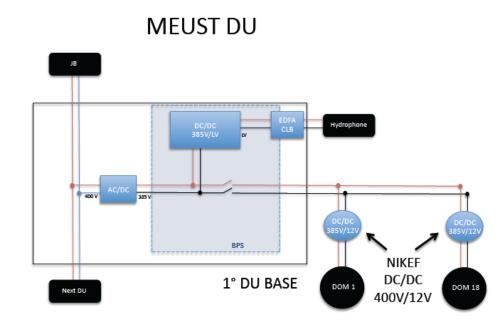



Figure 5: ORCA node principle

Figure 6: Detection Unit schematic

KM3NeT_ELEC_2016_003-Electronics_Reliability_Summary D. Real

Date: 26/04/2016

Page **13** of 7

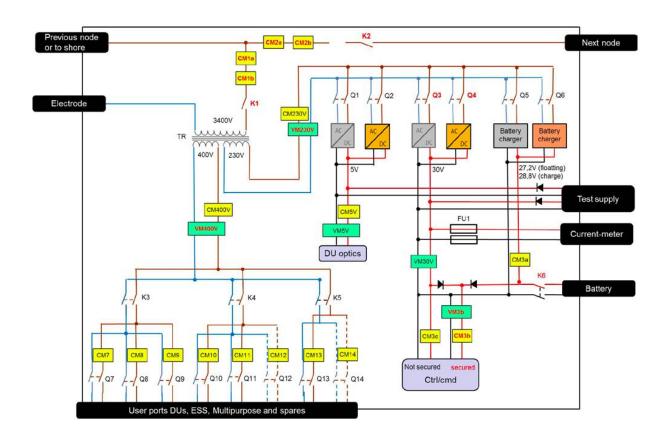


Figure 7: ORCA node electrical distribution scheme

Page **14** of 7

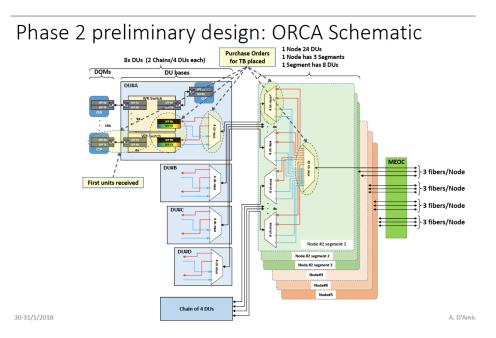


Figure 8: ORCA optical network

5.3. ARCA (Italian site):

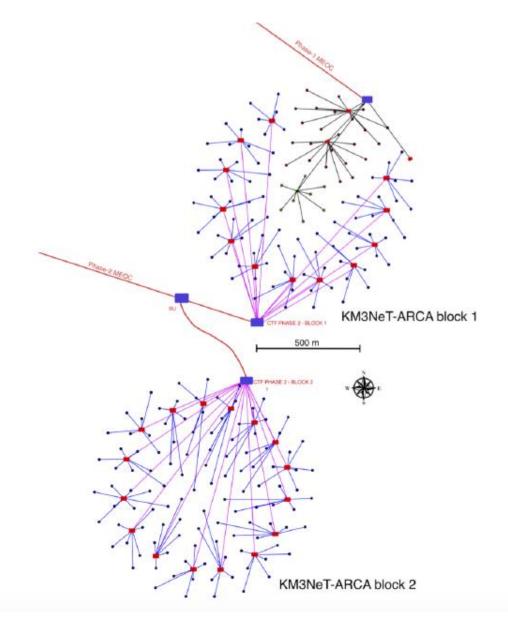


Figure 9: ARCA network

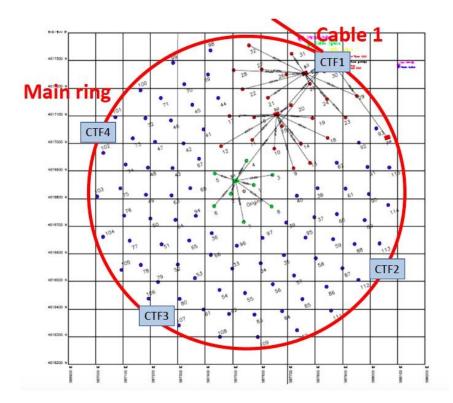


Figure 10: ARCA building block schematic

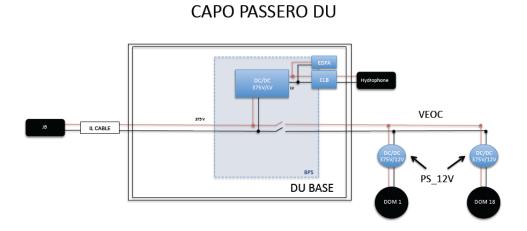


Figure 11: ARCA detection unit

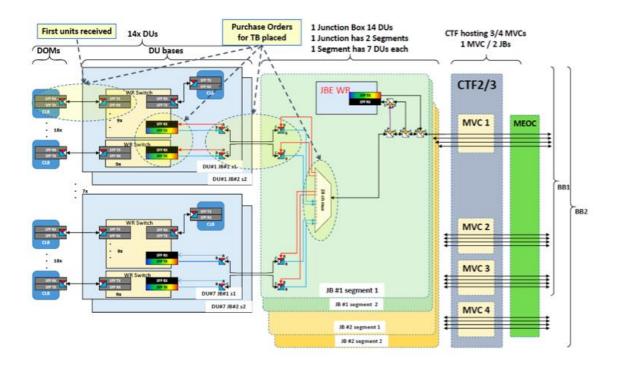


Figure 12: ARCA Optical network principle

5.4. Common ORCA / ARCA components:

Page 18 of 7

5.4.1.DU base optical architecture:

Date: 26/04/2016

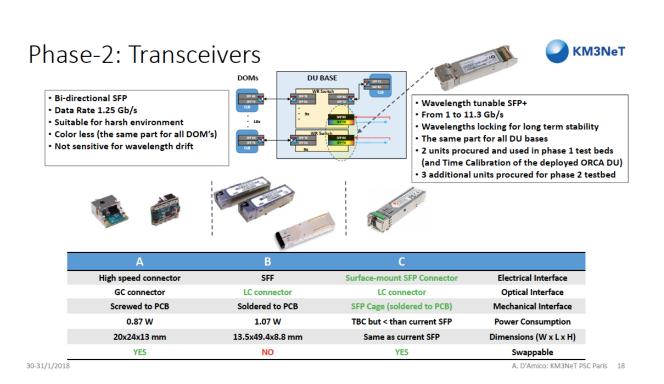
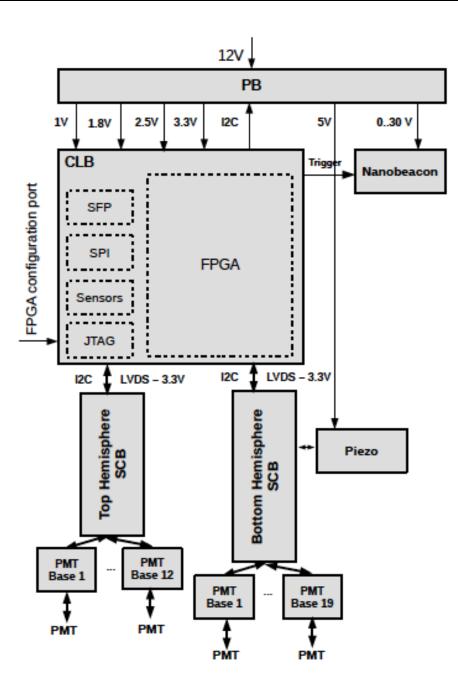


Figure 13: DU base optics

5.4.2.DOM for ORCA and ARCA:

The DOM are the detector optical modules. There are 18 DOM per DU line.


For phase 2, the number total of DOM will be 2070 for ORCA and 4140 for ARCA.

Each DOM is composed by 31 photodetectors.

For ORCA and ARCA, DOM are the same in term of architecture :

Page 19 of 7

5.5. Calibration unit:

The calibration unit will allow emitting acoustic wave towards all DOM, which will be detected by piezzo acoustic receiver. The signal analysis will permit to determine the exact position of each DOM in order to perform arrival direction muons particles analysis. A laser will permit to synchronise all detectors. Several instruments will permit to analyse water parameters useful for data analysis and sea science. A hydrophone allows measuring acoustic wave propagation on the DU foot to define the position of the line and DOM.

In order to calibrate the detectors, at least one calibration unit will be installed on the ORCA site and 5 on the ARCA site (because detectors spacing are different)

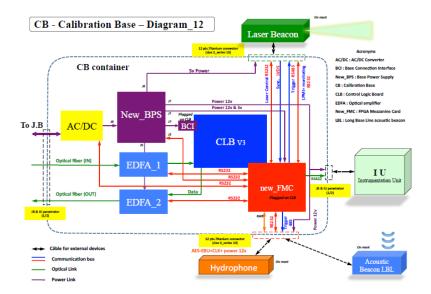


Figure 15: Calibration unit functional schematic

Page **21** of 7

6. Failure occurrence analysis:

The main results obtained from the FIDES analysis of the KM3NeT electronics boards is presented in this chapter.

In the following table the FIT, the corresponding percentage of failure in 15 years and the numbers of PMTs affected by a single failure are shown for each board. It should be emphasized that the failures in such table refer to random failures of the boards during operation, i.e. not linked to infant mortality nor to end-of-lifetime failures; consequently the probabilities of such failures scale linearly with operation time. A plan for burn-in of the electronics and power boards has been set up in KM3NeT in order to remove infant mortality.

In a conservative approach, any kind of failure has been considered as a reason for failure of a complete board.

The results are shown bellow for each product level (from level 1 to level 4 when necessary).

Bellow are the main structures of the telescope:

Product	Ref. Do c	Qty	FIT (unit)	% Failures in 10 years	% of the telescope a ffected	Comment
1. On Shore	This doc	1			Depend on the fail ure type (see lowe r levels)	FIT not evaluated – see FMECA
2. Deep Sea Network	This doc	1			Depend on the fail ure type (see lowe r levels)	Partially analysed . See FMECA for more info
3. Detection Unit	This doc	120 ORCA 240 ARCA			0,9% ORCA 0,45% ARCA (558 PMT a ffected if SPF).	
4. Calibration Unit	This doc	2 ORCA 8 ARCA (T BC)			Performance degr adation	Loss of calibratio n facility.

Detail for On shore:

BOARD	Ref. Do c.	Qty	FIT	Failures % / 10 years	Number of PM Ts affected by s ingle failure	Comments
1.1 Shore station	This docume nt	1	-			The shore station host DAQ syste m
1.2 Power feed station		1	-			The power feed transform and del iver the energy neceesary for the deep sea network
1.3 On shore interconn ection			-			ON shore / Off shore interface

No FIT data evaluated for the On Shore as the system is accessible and could be repaired in case of failure.

Recommendation: Ask the MTBF of the delivered equipment's to the manufacturer, in order to select the best choice in term of reliability

Detail for deep sea network:

BOARD	Ref. Doc.	Qty	FIT	Failures % / 10 years	Number of PMTs a ffected by single fa ilure	Comments
2.1 Link sea shore	This document	2 ORCA 2 ARCA	NA			Include the 40 km MEOC cable
2.2 Inter-node link		31 for ARCA 4 for ORCA	NA			JB link for ARCA, internode link for ORCA
2.3 Junction box or Node		6 Node (ORCA) 31 JB (ARCA)	-			Distribute the HV AC or DC to 20 DU for ORCA node and to 7 DU for ARCA JB
2.3.1 JB		1 ARCA				

Page **23** of 7

mechanics	1 ORCA		
2.3.2 JB container	1 ARCA 1 ORCA		
2.3.3 JB instrumentatio n	ARCA ORCA		
2.3.4 Power componen ts	ARCA ORCA		Breakers, contactors and ba ttery system
2.3.4 Control Command	ARCA ORCA		Control circuit switching via ethernet
2.3.6 Optical componen ts	ARCA ORCA		Optical amplifier and filter – optical connections with DU
2.3.7 Connection	ARCA ORCA		
2.3.8 Cable	ARCA		
2.3.9 JB subcontainer	1 ARCA		Instruments assembly

Detail on detection Unit:

BOARD	Ref. Do c.	Qty	FIT	Failures % / 10 years	Number of PM Ts affected by s ingle failure	Comments
3.1 Interlink Cable						
3.2 DU base						
3.2.1 Structure						
3.2.2 Base container						
3.2.2.1 Container						
3.2.2.2 Optical compo nents						

Page **24** of 7

3.2.2.3 Electronic co monents						
3.2.2.3.3 Power conve rters		1				AC/DC for ORCA DC/DC for ARCA
3.2.2.3.6 FMC	RD7	1	72	1.0	-	
3.2.2.3.7 BPS	RD8		517	4.4	558	Provide LV DU DC voltages - BPS V0-R1
3.2.2.4 Internal cablin g						
3.2.3 Instruments						
3.2.3.1 Hydrophone						
3.2.3.2 LBL Beacon						
3.3 VEOC						
3.3.1 Cable						
3.3.2 BoB						Break out Box : convert 375V DC t o 24V DC
PSU_WIR_12V-R4	RD9		289	2.5(**)	31	
PS_12V_ICL-R1	RD10		210	1.8(**)	31	
OMSupplyv5	RD11		202	1.8(**)	31	
3.4 Digital Optical Mo dule						
3.4.3.5 PB	RD3		1424	11.7%(*)	31	
3.4.3.2 CLB	RD4		417	3.6	31	
3.4.3.1.2 Octopus Lar ge	RD6		157	1.4	19	
3.4.3.1.1 Octopus Sho rt	RD6		156	1.4	12	
3.4.2 PMT Unit						
3.4.2.1 PMT			1		1	
3.4.2.2 PMT Base	RD5		1218	10.1	1	
3.4.3.3 Tiltmeter Board						

3.4.3.4 Compass Board				
3.4.3.6 Acoust ic Component				
3.4.3.7 Na no Beacon				
3.4.4 Cables				
3.5 Top Buoy Stor ey				

Table 1. Summary of the outcome of the FIDES analysis of the KM3NeT electronics and power boards. (*) The percentage of failures in 10 years of the power-boards is expected to decrease to 8% if failures affecting only the calibration devices are not considered.

(**) The 350 bars oil pressure environment is not considered in the fides method.

Action: confirm that the reliability is not affected by high-pressure environment

Detail for Calibration Unit:

BOARD	Ref. Do c.	Qty	FIT	Failures % / 10 years	Number of PM Ts affected by s ingle failure	Comments
4.1 CU interconnection	This docume nt	1	-			The shore station host DAQ syste m
4.2 Calibration Base		1	-			The power feed transform and del iver the energy neceesary for the deep sea network
4.2.2 CB container			-			ON shore / Off shore interface
42.2.5 BPS CB						
4.2.2.6 CLB						Same as 3.4.3.2 but specific firmw are

4.2.2.7 BCI			
4.2.2.8 FMC			
4.2.2.10 SFP			
4.2.2.11 Splice canister			
4.2.2.12 Add and Drop			
4.2.2.13 Electrical wiri ng			
4.2.2.14 AC/DC	ORC A		
4.2.2.15 EDFA			
4.2 Instrumentation Un it			
4.4 Laser beacon			Light pulse emitter
4.5 Hydrophone			Acoustic receiver
4.6 LBL beacon			Acoustic emitter

7. Failure modes:

In this chapter, we describe the main failure modes identified in the FMECA (see RD xx) and impact on the system in term of PMT loose quantity.

An acceptability scale is defined:

Red : This is a not acceptable failure mode resulting in more than 30% loss of the telescope availability or high risk. A compensating provision should be proposed.

Orange : Action is necessary in order to reduce as much as possible the risk. Partial loss of performance between 5 and 30%

Green : Less tan 5% availability telescope loss of performance. No action foreseen.

A new acceptability is evaluated if the recommendation or compensating provision is applied.

No red tagged acceptability allowed.

Page 27 of 7	Page	27	of	7
--------------	------	----	----	---

Product	Failure mode	RP N	Consequences	Compensating pr ovision
1. On Shore	Fire	12	Telescope loss	Fire prevention pla n
	Power feed los s		Telescope down	Evaluate years do wn time. Provide r edundant power sy stem
	Telescope Data processing los s		No data processing	Provide redundanc y
	ESS DAQ failur e			
	Communicatio n link			Redundancy
2. Deep Sea Networ k	MEOC LOSS			Depend on the fail ure type (see lower levels)
3. Detection Unit	This doc			558 if SPF. Depend on the failure type (see lower level)
4. Calibration Unit	This doc			

2 Conclusion

Analysis have been performed on electronics boards excluding calibration base which is still und er definition (for ORCA and ARCA). The study is planned to start as soon as all input data will be available

Page 28 of 7

Note that an update of theses analysis is necessary as new versions are still under development (CLB V3, BPS design update for calibration unit requirements, FMC...). A design review in order to check design rules applied for theses updates will be necessary.

A FMECA analysis is in progress in order to highlight most critical failures modes using probabili ty of occurrence calculated for each board. A prior interfaces analysis is currently in progress in order to identify all failure propagation path. Then it will be possible to take in account and focu s in priority on most critical failures

The reliability is strongly dependant to the process. A preliminary evaluation have been perform ed considering high reliability processes (not conservative approach) and design rules to be appl ied. Nevertheless, the next action is to perform a real audit on manufacturing and integration pro cesses.

A manufacturing matrix roadmap (draft version) written for KM3NET based on IPC standard. K M3NeT_QA_2014_016_Manufacturing_Audit_RoadMap (RD13) outline main recommandations fo r manufacturing audit

Commercial of the shelves (COTS) as ethernet and white rabbit switch and high voltage to low vo ltage power convertion (in nodes and detector unit bases) are not included in this study.

5. Fides short presentation

FIDES short presentation:

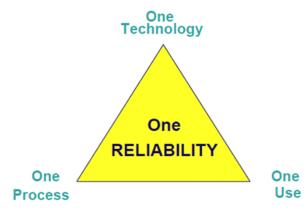


Figure 1: FIDES method philosophy

FIDES is not an acronym. FIDES is the Latin word for "faith" and is the root of the word "fidelity" and of the French word for reliability, "fiabilité".

The item failure rate is expressed in FIT (λ) i.e, number of failure per 10⁹ hours. The general for mula is:

$$\lambda = \left(\sum_{\text{Physical_contributions}}\right) \times \left(\prod_{\text{Process_contributions}}\right)$$

In practice this equation becomes:

$$\lambda = \lambda_{\text{Physical}} \cdot \prod_{\text{PM}} \cdot \prod_{\text{Process}}$$

Where:

 $\bullet \, \lambda$ Physical represents the physical contribution.

 \bullet Π_{PM} (PM standing for Part Manufacturing) represents the quality and technical control over ma nufacturing of the item.

• $\Pi_{Process}$ represents the quality and technical control over the development, manufacturing and u sage process for the product containing the item.

Physical contribution is:

$$\lambda_{Physical} = \left[\sum_{Physical_Contributions} (\lambda_0 \cdot \Pi_{acceleration})\right] \cdot \Pi_{induced}$$

Acceleration process is due to the environment (temperature, humidity, vibration, electrical):

Stress	Physic of fialure law	Stress symbol	s = stress number	g Function	Acceleration factor
Thermal	Arrhenius	т	1	$g1 = \frac{1}{T}$	$\exp\!\left[\frac{Ea}{Kb}\cdot\left(\frac{1}{T1}-\frac{1}{T2}\right)\right]$
Thermal cycling	Norris-Lanzberg	Τ&ΔΤ	2	$g1 = \frac{1}{T}$ $g2 = \ln(\Delta T)$	$\left(\frac{\Delta T2}{\Delta T1}\right)^{m} \cdot \exp\left(\frac{Ea}{Kb} \cdot \left(\frac{1}{T\max_ref} - \frac{1}{T\max}\right)\right)$
Humidity	Haldberg-Peck	RH	2	$g1 = \ln(RH)$ $g2 = \frac{1}{T}$	$\left(\frac{RH 2}{RH 1}\right)^p \cdot \exp\left(\frac{Ea}{Kb} \cdot \left(\frac{1}{T1} - \frac{1}{T2}\right)\right)$
Vibration	Basquin	Gms	1	$g1 = \ln(Grms)$	$\left(\frac{Grms 2}{Grms 1}\right)^{b}$
Electrical	Eyring	T&V	2	$g1 = \ln(V)$ $g2 = \frac{1}{T}$	$\left(\frac{V2}{V1}\right)^n \cdot \exp\left(\frac{Ea}{Kb} \cdot \left(\frac{1}{T1} - \frac{1}{T2}\right)\right)$

Π_{induced} represents the contribution of induced factors (also called overstress) inherent to an appl ication field. The induced factors considered are of mechanical (MOS), electrical (EOS) and ther mal (TOS) origin. The influence of the component placement inside the system, the application (usage environment), the ruggedizing policy (product overstress taken into account in the produc t development) and the component overstress sensitivity are the parameters taken into account to evaluate the induced factor:

$$\Pi_{\text{induce-}i} = \left(\Pi_{\text{placement-}i} \times \Pi_{\text{application-}i} \times \Pi_{\text{ruggedising}}\right)^{0.511 \times \text{Ln}(C_{\text{sensibility}})}$$

The factor take a value from 1 (best case) to 100. It's the reason why, for example, the usage of a component at its maximum rate decreases dramatically its reliability.

The Part Manufacturing contribution is:

$$\Pi_{PM} = e^{\delta_1 \cdot (1 - Part_Grade) - \alpha_1}$$

$$Part_Grade = \left[\frac{\left(QM_{manufacturer} + QA_{item} + RA_{component}\right) \times \varepsilon}{36}\right]$$

The evaluation method takes into account the manufacturer's quality assurance ($QM_{manufacturer}$) cr iteria, item quality assurance (QA_{item}) criteria and also the item purchaser's experience with his s upplier (ϵ). When not evaluated, the Part Manufacturing factor default value is 1.7 for active com ponents and 1.6 for other components and COTS boards.

The П_{Process} is:

the $\Pi_{Process}$ factor represents the quality and technical control over reliability in the product life c ycle. Its purpose is to globally evaluate the maturity of the designer and manufacturer on control over their reliability engineering process.

The evaluation method is based on the level of application of recommendations that apply to the entire life cycle. The product life cycle is broken down as follows:

- 1. Specification.
- 2. Design.

- 3. Board or subassembly manufacturing (manufacturing).
- 4. Integration into equipment (manufacturing).
- 5. Integration into system (manufacturing).
- 6. Operation and maintenance.
- 7. Support activities such as quality and human resources.

The recommendations are not intended to be exhaustive; they are more like a representative sa mple of good practice to improve the final reliability of products.

The variation range of the $\Pi_{Process}$ factor is from 1 (for the best process) to 8 (for the worst proce ss), with a suggested default value of 4.0 is suggested if $\Pi_{Process}$ is not evaluated.

The Audit to evaluate this factor has been done based on the PPM-DOM electronics using FIDES Mill V2004A - Process.xls tool. Main contributors and rules to be applied in order to obtain a real process factor conform to the evaluation.

High reliability process are considered for km3net. The evaluated value is 1,91. A more detalled audit (considering last updates) is suggested in order to be more confident about this value.

In terms of reliability for electronic systems, two strong needs must be managed:

To have realistic reliability prediction during the development of an electronic product

To be able to build-in the reliability of the electronic products ("design for reliability"), as done f or the electronics of KM3NeT, and not getting it only as a result.

FIDES Methodology is based on the physics of failures and supported by the analysis of test data, field returns and existing modelling.