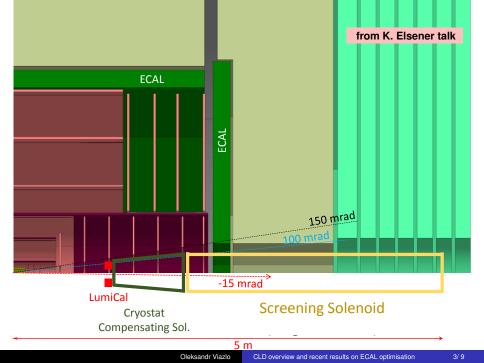
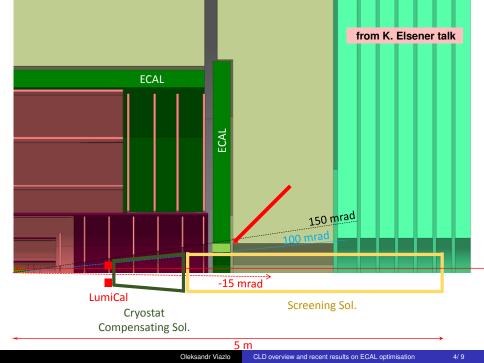
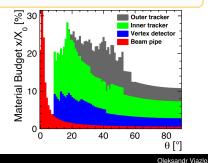

CLD overview and recent results on ECAL optimisation


Oleksandr Viazlo

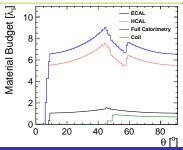

Detector Design Meeting

4 October 2019

CLD detector model

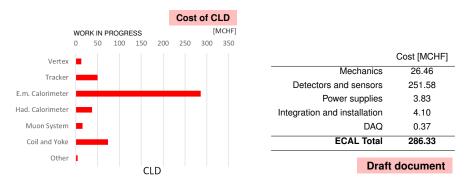

Tracking and calorimeter systems

Vertex detector


- 3 double layers in barrel and endcaps
- Single-point resolution: 3 μm
- Material budget: 0.6% X₀ per double layer

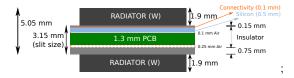
Tracker detector

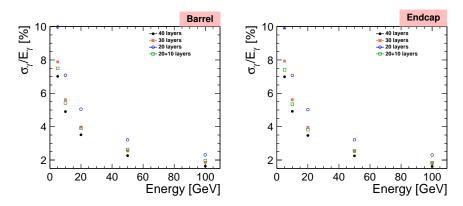
- Silicon pixel and microstrips detector
- Single-point resolution: 7 μm x 90 μm (except 1st IT disk: 5 μm x 5 μm)
- Material: 1.1-1.6% X₀ per layer



- Electromagnetic Calorimeter
- Si-W sampling calorimeter
- cell size 5x5 mm²
- 40 layers (1.9 mm thick W plates)
- Depth: 22 X₀, 1 λ₁, 20 cm
- Hadronic Calorimeter
- Scintillator-steel sampling calorimeter
- cell size 30x30 mm²
- 44 layers (19 mm thick steel plates)
- Depth: 5.5 λ_I , 117 cm (inspired by ILD)

Motivation of ECAL optimization


- ECAL is the most expensive piece of the CLD detector
- 40 layers of ECAL consist of \sim 4000 m² of silicon
 - is \approx 90 % of ECAL cost
 - is \approx 50% of total cost of CLD
 - assuming 6 CHF/cm² for silicon
- Reduction of the number of layers will significantly affect the total detector cost


• Four different ECAL configurations are considered:

Layer structure	Thickness tungsten alloy [mm]	Total thickness per layer [mm]
40 uniform	1.9	5.05
30 uniform	2.62	5.77
20 uniform	3.15	7.19
20 thin + 10 thick	1.9 + 3.8	5.05 + 6.95

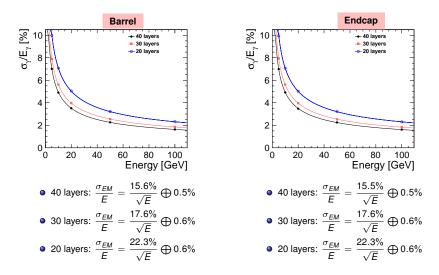
- All configurations have the same total thickness of \approx 22 X_0 \rightarrow vary the thickness of the tungsten layer
- Every ECAL configuration requires calorimeter recalibration (done by the iLCDirac calibration system)

• The number of ECAL layers strongly affects photon energy resolution.

- 40 layers configuration provides the best photon performance
- 20+10 layers configuration provides better performance at low energies compared for 30 layers which probably better fits needs of FCC-ee
- 20 layers option leads to significant degradation of photon resolution

• Jet energy resolution ($Z \rightarrow q\bar{q}, (q = u, d, s)$) is almost not affected by the number of ECAL layers

Layer structure	JER [%] $\sqrt{s}=$ 365 GeV	JER [%] $\sqrt{s} = 91.2 \text{ GeV}$
40 uniform	$\textbf{3.62}\pm\textbf{0.05}$	$\textbf{4.52} \pm \textbf{0.06}$
30 uniform	$\textbf{3.72} \pm \textbf{0.05}$	$\textbf{4.45} \pm \textbf{0.06}$
20 uniform	$\textbf{3.78} \pm \textbf{0.05}$	$\textbf{4.82} \pm \textbf{0.07}$
20 thin + 10 thick	$\textbf{3.67} \pm \textbf{0.05}$	$\textbf{4.56} \pm \textbf{0.06}$


Summary

- Reduction of ECAL layers allows to significantly reduce the total cost of the detector with a moderate degradation of photon energy resolution and almost no effect on jet energy resolution.
- Configuration with 20 thin + 10 thick layers looks like a good option for a new baseline configuration of ECAL for CLD.

9/9

BACKUP

 Effect of reducing number of layers in ECAL to 30 or 20 (keeping constant depth of ECAL about 22 X₀, increasing thickness of W plates)

