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Heterotic theory as a series expansion

Frequently, effective field theories are defined through a series expansion.

The zeroth-order theory is intended to approximate, under certain con-

ditions, the dynamics of the fields encoding the relevant d.o.f.

Heterotic theory, bosonic fields gµν , φ, Bµν ,

S =
g2
s

16πG
(10)
N

∫
d10x

√
|g | e−2φ

[
R − 4(∂φ)2 +

1

2 · 3!
H2 + . . .

]
.

H = dB , dH = 0 .

Additional terms involve an expansion in gs and α′.
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Heterotic theory as a series expansion

If we are interested in performing precision studies or, alternatively, if

we are away from good conditions, the effect of additional terms in the

expansion can be very relevant and should be understood.

Specially important can be to determine if the effective theory (maybe

including some corrections) can still be used when not working in optimal

conditions.

First-order heterotic stringy corrections Bergshoeff, de Roo

S =
g 2
s

16πG
(10)
N

∫
d10x

√
|g | e−2φ

[
R − 4(∂φ)2 +

1

12
H2 − α′

8
R(−)µν

a
bR(−)

µν b
a + . . .

]

H = dB +
α′

4
ΩL

(−) , dH =
α′

4
R(−)

a
b ∧ R(−)

b
a .
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Supersymmetric four-charge

black hole



Supersymmetric four-charge black hole

Heterotic theory on T6,

4



Supersymmetric four-charge black hole

A supersymmetric black hole configuration has

ds2 =
2

Z−
du
(
dv − 1

2Z+du
)
−Z0dσ

2
(4) − dy idy i ,

H = dZ−−1 ∧ du ∧ dv + ?(4)dZ0 ,

e−2φ = g−2
s

Z−
Z0

,

dσ2
(4) = V−1(dz + χ)2 + Vd~x2

(3) ,

with dσ2
(4) a hyperkähler (Gibbons-Hawking) space, for 4d BH we have

V = 1 +
RzW

2r
, dV = ?(3)dχ .
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Supersymmetric four-charge black hole

The solution (including corrections) is given by

Z− = 1 +
q−
r
,

Z0 = 1 +
q0

r
− α′

[
(r + qv )(r + 2q0) + q2

0

4qv (r + qv )(r + q0)2
+

(r + qv )(r + 2qv ) + q2
v

4qv (r + qv )3

]
,

Z+ = 1 +
q0

r
+

q+α
′

2qvq0

r2 + r(q0 + q− + qv ) + qvq0 + qvq− + q0q−
(r + qv )(r + q0)(r + q−)

,

with

q+ =
α′2g2

s n

2RzR2
u

, q− =
α′g2

s w

2Rz
, q0 =

α′N

2Rz
.

One can check

lim
r→∞

Z0 = 1+

(
q0 −

α′

2qv

)
1

r
, lim

r→∞
Z+ = 1+

(
q0 +

q+α
′

2qvq0

)
1

r
,
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Supersymmetric four-charge black hole. Properties.

The metric is a 4d black hole, with AdS2 × S2 near-horizon unmodified

ds2 =
r2

L2
(nwNW )−1/2dt2 − L2(nwNW )1/2(

dr2

r2
+ dΩ2

(2)) ,

If any (n,w ,N,W ) vanishes, the horizon becomes singular.

The computation of the charges yields

Shift in the charges

QN = N − 2

W
, QW = W , Qw = w , Qn = n

(
1 +

2

NW

)
.

The ADM mass is just

M =
Ru

`2
s

Qn +
1

Ru
Qw +

Ru

g2
s `

2
s

QN +
R2
zRu

g2
s `

4
s

QW ,
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Supersymmetric four-charge black hole. Exact entropy.

After α′ corrections, the complete solution changes, but the near-horizon

remains the same.

The entropy is now given by Wald’s formula,

S = −2π

∫
Σ

d8x
√
|h| δL
δRabcd

εabεcd ,

which yields

SBH = 4π
√
nwNW

(
1 +

2

NW

)
= 4π

√
QnQw (QNQW + 4), ,

in exact agreement with Cardy formula of the dual CFT. Kutasov, Larsen,

Leigh
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Charge-to-mass ratio of extremal

non-supersymmetric black holes



Reissner-Nordström

Einstein-Maxwell theory,

S =
1

16π

∫
d4x

√
|g | (R − FµνF

µν) .

The equations of motion admit the static solution

ds2 =

(
1− 2M

r
+

Q2

r2

)
dt2 −

(
1− 2M

r
+

Q2

r2

)−1

dr2 − r2dΩ2 ,

A =
Q

r
dt .

There is a regular horizon when M ≥ Q.
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Extremal Reissner-Nordström + higher derivatives

Taking Einstein-Maxwell theory as the zeroth-order term of some effective

theory, there are many higher-derivative terms that can be added to the

action: h1R
2, h2RµνR

µν , h3(FµνF
µν)2, h4RµνρσF

µνF ρσ, . . .

The original extremal bound at Q/M|ext = 1 might now be shifted,

Q

M
|ext = 1 + f (M, hi ) .

Properties of the shift depend on the UV completion taken.

Mild version of the WGC: The Q/M ratio of extremal black holes should

increase as the mass of the BH decreases. Kats et al.

They argued that this is occurs in string theory, although not completely

satisfactorily:

• Example without dilaton and without ST embedding.

• Example with dilaton, GHS, not a BH in the extremal limit.
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Extremal charge-to-mass?
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Connection with the WGC

The question has recently attracted interest. Several studies related to the

extremal RN, among which:

• Imposing unitary and causality for the corrected theory, agreement

with the mild WGC. Cheung, Shiu, . . .

• Claims that it has been proved that, as a consecuence of entropy

increase, Q/M|ext > 1. Remmen, Goon, . . .

∆Mext = −T0(M, ~Q)∆S(M, ~Q)|
M≈M(0)

ext
.

But this is strange, as we know that susy BH have the mass given as a

linear combination of the charges and this is not (expected to be) modified

by the corrections...

We can use our tools to try to solve this puzzle.
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Connection with the WGC

Hence, at least one of the following options is true:

1. Supersymmetric BH’s do not preserve the (linear) relation between

M and Q.

2. The (universal) entropy-extremality relation between ∆S and ∆M is

not always true.

3. The entropy-extremality relation does not actually imply the mild

WGC.
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Stringy (non-susy) extremal RN-like black hole

We have studied 3 families of solutions of the heterotic theory and com-

puted the higher-derivative corrections. (non-extremal → Pablo’s talk)

• Start with a non-supersymmetric embedding of (dyonic)

Reissner-Nordström in string theory.

• Work directly with the full (10d) theory, solving the e.o.m.

perturbatively.

Embedding,

dŝ =e2(φ−φ∞)ds2 − c2(dz + V /c∞)2 − dy idy i ,

Ĥ =F ∧ (c∞dz + V ) + H ,

e−2φ̂ =
1

c
e−2φ ,

Compactification on S1
z × T5, where we truncate all the fields that have

indices on T5, while the KK reduction on S1
z is general.
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Stringy (non-susy) extremal RN-like black hole

At zeroth-order, the 4d effective action for these fields is

S =
1

16πG
(4)
N

∫
d4x

√
|g |

{
R + 2(∂φ)2 +

(∂c)2

c2
+

e−4(φ−φ∞)

2 · 3!
H2

+
e−2(φ−φ∞)

4

(
G 2 +

c2
∞
c2

F 2

)}
,

One could truncate V , H and c , obtaining Einstein-Maxwell-Dilaton. How-

ever, this is inconsistent once α′ corrections are taken into account.

Higher-derivative corrections to the Einstein-Maxwell-Dilaton effective model

in the context of string theory may require the activation of additional

fields!
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Stringy (non-susy) extremal RN-like black hole

Departing solution:

ds2 =

(
1 +

Q

r

)−2

dt2 −
(

1 +
Q

r

)2 (
dr2 + r2dΩ2

(2)

)
,

A =
2qA

(r + Q)
dt − 2pA cos θdϕ ,

V =
2qV

(r + Q)
dt − 2pV cos θdϕ ,

φ = φ∞ , c = c∞ , H = 0 .

with

|qA| = |pA| , |qV | = |pV | , Q =
√
q2
A + p2

A + q2
V + p2

V ,

qApV + pAqV = 0 .

Two (simple) inequivalent possibilities, qA = −qV = pA = pV = Q/2 and

qA = qV = pA = −pV = Q/2.
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Stringy (non-susy) extremal RN-like black hole: Case 1

Case 1 (qV < 0):

ds2 =

(
1 +

Q

r
+

α′Q2

8(r + Q)3r

)−2

dt2 −
(

1 +
Q

r
+

α′Q2

8(r + Q)3r

)2 (
dr 2 + r 2dΩ2

(2)

)
,

F =
Q

(r + Q)2

(
1 +

α′Q2

4(r + Q)4

)
dt ∧ dr + Q

(
1 +

α′Q(Q + 4r)

2(r + Q)4

)
sin θdθ ∧ dϕ ,

V = − Q

(r + Q)
dt − Q cos θdϕ ,

φ̂ = φ̂∞ +
α′Q2

4(r + Q)4
,

c = c∞

(
1 +

α′Q2

4(r + Q)4

)
, H = 0 .

Charge-to-mass ratio at extremality unmodified, entropy shifted

Q

M
= 1 +O(α′2) , S =

π

G
(4)
N

(
Q2 +

α′

4

)
+ . . .
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Stringy (non-susy) extremal RN-like black hole: Case 2

Case 2 (qV > 0):

ds2 = A2

(
1 +

Q

r

)−2

dt2 − B2

(
1 +

Q

r

)2 (
dr2 + r2dΩ2

(2)

)
,

where

A =1 + α′
6Q3 + 13Q2r + 8Qr2 + 2r3

40Q(r + Q)4
,

B =1− α′ 5Q
3 + 9Q2r + 7Qr2 + 2r3

40Q(r + Q)4
.

Charge-to-mass ratio at extremality modified, with same entropy shift

Q

M
= 1 +

α′

20M2
+O(α′2) , S =

π

G
(4)
N

(
Q2 +

α′

4

)
+ . . .
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Relation between shift in the entropy and Q/M?

The entropy-extremality relation Goon, Penco

∆Mext = −T0(M, ~Q)∆S(M, ~Q)|
M≈M(0)

ext
,

does not imply ∆S(M, ~Q) > 0→ ∆Mext < 0, as the relation trivializes to

0 = 0 in some cases.

Proof: According to the prescription, the r.h.s. is evaluated at M ≈
M

(0)
ext , which is defined as the mass slightly above extremality for which

∆T (M, ~Q) is subdominant with respect to T0(M, ~Q).

It follows that if for a solution ∆T (M, ~Q) = 0, by definition ∆Mext = 0.

Then, the r.h.s. must be evaluated precisely at M = M
(0)
ext , where T0 = 0

so this side vanishes as well regardless the sign of ∆S(M, ~Q).

Conclusion: The positivity of the corrections to the entropy does not

prove the mild WGC.
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Summary of results

Supersymmetric

• It is fundamental to distinguish between fundamental sources and

charges,

QN = N − 2

W
, QW = W , Qw = w , Qn = n

(
1 +

2

NW

)
.

Non supersymmetric

• Stringy black holes we studied have Q/M ≥ 1, with some

configurations saturating the bound.

• The corrections seem to quite generally require the activation of new

lower-dimensional fields, an important point which is (almost

always) not considered.

• The positivity of the correction to the entropy does not imply

Q/M > 1.
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