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Introduction

• The SM of particle physics is an effective QFT.

• Its low-dimension operators Oi couple to ”couplings” gi(x)

SSM =
∫

d4x
∑
i

gi(x) Oi(x)

• The couplings gi(x) (also known as sources) may be dynamical:

♠ The coupling to the energy-momentum tensor Tµν is the space-time
metric and is dynamical (gravity).

♠ We also believe that the QCD θ-angle is dynamical (QCD axion).

♠ The Yukawa couplings are believed to be dynamical scalars that in string
theory are known as (quasi) moduli.

♠ The “coupling” multiplying the identity operator, is the potential of all
scalars not belonging to the SM. It is also known as the Cosmological
Constant.

3



• All such potential couplings are known currently as the “portals” of the

SM.

• They allow the SM to “interact” with other sectors of the total theory.

• The most sensitive portals correspond to gauge invariant, low-dimension

operators of the SM, and they are two:

♠ The Higgs mass term HH† whose existence is responsible for the Hierar-

chy problem of the SM.

♠ The field strength of the hypercharge gauge field, FY
µν that can couple

with the field strength of hidden U(1) gauge boson FD
µν via an operator of

dimension four: FD
µνF

µν
Y .

• If the gauge boson Dµ is light enough, such a coupling is experimentally

excluded by about > 10 orders of magnitude.

Axions, Elias Kiritsis
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The string theory picture

• Such a state of affaires is generic in string theory.

• The geometrical picture of the SM depends to a certain degree on the
(weakly-coupled) string theory it is embedded into.

• The most clear picture comes from type II orientifolds.

• In that, the SM is realized on a stack of D-branes.

• Other stacks that are at distances longer than the string scale correspond
to standard “hidden sectors”.

• The type II closed string sector is the “gravitational sector”: apart from
the graviton it supplies graviphotons (dark photons), (RR) axions and other
scalar (quasi) moduli.

• The SM parameters (couplings and vevs) are functions of scalars and
vector fluxes and are determined dynamically.

Axions, Elias Kiritsis
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The QFT picture

• In QFT the “hidden sector” particles may arise in a weakly coupled QFT.

• In that case, scalars, axions and vectors may be considered as weakly

coupled elementary particles.

• The “hidden” QFT may also be strongly coupled.

• In that case the “hidden sector” particles are tightly-bound composites

made of other elementary particles.

• A controllable example of this, is a holographic theory.

• The gauge interactions provide (singlet) bound-states of the generalized

(super)-gluons, that are in one to one correspondence with the bulk (string

theory) singlet fields.

Axions, Elias Kiritsis
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Attempts at quantizing gravity

• Many attempts in the past tried to capitalize on a winning strategy:

resolving non-renormalizable interactions.

• A good example for us will be the low-energy theory of the strong in-

teractions: It is the IR-free (but non-renormalizable) theory of pions, that

reminds quite well the problems with quantizing gravity.

• In that theory, it was eventually understood, that one can quantize the

low energy degrees of freedom (pions) in the chiral Lagrangian, but this

description has a cutoff, Λ ∼ GeV .
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• Instead, the high-energy degrees of freedom (quarks+gluons) are different

and the QFT associated to them is UV complete (and effectively strongly-

coupled in the IR)

• Taking this as clue, it would suggest that the non-renormalizability of the

graviton appears because of its compositeness: the graviton is a low-energy

bound-state.

• This idea is VERY old: Many attempts were made in the past to construct

gravity theories where the graviton is a composite field, made out of more

elementary fields, of all types: scalars, fermions, vectors etc.

• All such attempts failed to go beyond the classical and provide a dynamical

explanation of why the bound state appears “feature-less” at low energies.
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• Holographic theories are modern example of composite gravitons.

• Their interactions are higher-dimensional and non-renormalizable in the

usual sense.

• The underlying (string theory) has an effective cutoff at the string scale

and that renders it finite.

• It is not UV complete as perturbative string theory cannot answer ques-

tions at or above the Planck scale.

• The dual (QFT) description in terms of gluons is however UV complete

and well defined at all scales.

Axions, Elias Kiritsis
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Enter holography

• Holography gives a concrete idea on how to realize the graviton and other

(gauge-singlet) fields as composites of more elementary fields (like gluons

etc).

• The large N limit suppresses large gravitational loop fluctuations.

• Strong coupling suppresses stringy physics.

• If we want observable gravity to be emergent in this sense, we must

couple the SM to a holographic theory.

• We are led to consider a (holographic) large N QFTN coupled in the UV

by bifundamental massive “messenger” fields to the SM.
Kiritsis
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• Much below the messenger mass scale, they can be integrated out to

generate direct couplings between the holographic operators and the SM

operators.

• In the geometrical picture of the holographic theory this is described by a

SM brane inserted and coupled to a (holographic) gravitational bulk theory.
Betzios+Kiritsis+Niarchos

• A priori, all QFTN operators can couple to all SM operators. However,

at low energies only “light” composites are relevant.

♠ One of the special QFTN operators is Tµν that appears as an external

metric for the SM. This generates gravity.

♠ Another class of “protected” operators are instanton densities and η′s.
They will appear as axions in the SM

♠ A third class corresponds to global conserved currents. They generate

“dark” photons or graviphotons.

Axions, Elias Kiritsis
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Preview

• Generic Composite axions.

• Composite axions emerging from a holographic theory.

• Holographic axions and the dynamics of instanton densities.

Axions, Elias Kiritsis
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Preview II

• Axion-like particles (ALPs) are omnipresent in physics beyond the SM

• They were introduced to solve the strong CP problem.

• Because of the protection rendered by PQ symmetry , they can serve as

dark matter, dark energy, and drive inflation.

• They can be around without “serving” anything in particular.

• They are ubiquitous in string theory and typical vacua have hundreds of

axions.

• Here we will study emergent/composite axions dual to instanton densities

that DO NOT have an exact PQ symmetry.

Axions, Elias Kiritsis
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Composite axions

• Consider a large-N gauge theory coupled to the SM via a coupling of the
form

S12 = λ
∫

d4x Tr[F ∧ F ] Tr[G ∧G] = λ
∫

d4x O1(x)O2(x)

and the generating functional of the coupled theory

Z(J1, J2) = ⟨0|eiS12+i
∫
d4x (J1(x)O1(x)+J2(x)O2(x))|0⟩ , eiW (J1,J2) ≡

Z(J1, J2)

Z(0,0)

By performing a Hubbard-Stratonovich transformation we can write

eiS12 = N0

∫
Dζ1Dζ2 e

∫
d4x

(
− i

λζ1(x)ζ2(x)−iζ1O1−iζ2O2

)
that allows us to express the complete generating functional as follows

Z(J1, J2) = ⟨0|eiS12+i
∫
d4x (J1(x)O1(x)+J2(x)O2(x))|0⟩ =

= N0

∫
Dζ1Dζ2 e

∫
d4x

(
− i

λζ1(x)ζ2(x)
)
Z1(J1 − ζ1)Z2(J2 − ζ2)

where Z1, Z2 are the Schwinger functionals of the respective uncoupled
theories

Z1(J1) = ⟨0|ei
∫
d4x J1(x)O1(x)|0⟩1 , Z2(J2) = ⟨0|ei

∫
d4x J2(x)O2(x)|0⟩2 ,
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We henceforth work at the quadratic order in which

Z1(J1) = e
i
2

∫
d4xd4x′ J1(x)J1(x

′)G11(x−x′) = e
i
2

∫ d4p
(2π)4

J1(p)J1(−p)G11(p)

G11(x− x′) = ⟨O1(x)O1(x
′)⟩1

is the translationally invariant, unperturbed two-point correlation function

of O1 in theory T1.

• Performing the integral over ζ1, ζ2 explicitly, we obtain the quadratic order

generating functional (expressed in momentum space) as

W (J1, J2) =
i

2

∫
d4p

(2π)4

(J1(p), J2(p)
) 1

G11(p)
−λ

−λ 1
G22(p)


−1J1(−p)

J2(−p)




More explicitly, one can rewrite the matrix as 1
G11(p)

−λ

−λ 1
G22(p)


−1

=
1

1− λ2G11(p)G22(p)

 G11(p) λG11(p)G22(p)

λG11(p)G22(p) G22(p)


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• We notice that the interaction between the two theories modifies the

non-interacting correlators and create cross-correlations between the two

sectors.

• The new correlator for O2 in momentum space is

i⟨O2(p)O2(−p)⟩ =
G22(p)

1− λ2G11(p)G22(p)
= G22(p) + λ2

G11(p)G
2
22(p)

1− λ2G11(p)G22(p)

• We now consider the IR expansion of the correlators.

• In a theory with a single scale, which is also its mass gap m (like YM),

the IR expansion in p ≪ m reads

i⟨O2(p)O2(−p)⟩2 = b0 + b2p
2 + b4 p4 log

p2

m2
+ · · · , bn ∼ m4−n

• for p ≫ m the UV expansion of the (renormalized) correlator is

i⟨O2(p)O2(−p)⟩2 = p4
[
log

p2

m2

(
a0 + a2

m2

p2
+O

(
m4

p4

))
+

+c0 + c2
m2

p2
+O

(
m4

p4

)]
10-



• This expansion reflects the fact that at short distances p ≫ m, the

correlator in configuration space asymptotes to the CFT value, proportional

to |x|−8.

• If the theory has a UV scale Λ, but also other smaller IR scales like m ≪ Λ

then for generic scalar operators, the larger scale dominates the coefficients

in the expansion

bn ∼ Λ4−n

[
1+O

(
m2

Λ2

)]
• There is however a scalar operator in the gauge theory that is special and

for which this scaling is not valid. This is the (CP-odd) instanton density.

• It is well known from studies in QFT, and holography, that the correlators

of the instanton density are UV insensitive.

• The reason is that the θ angle in QCD is not UV-renormalized, as shown

rigorously on the lattice.

10-



• This is also true in holography, whereby the bulk axion field dual to the in-

stanton density does not have a potential and the procedure of holographic

renormalization allows to derive its correlation functions.

• However, in holographic QCD there is a non-trivial (and non-perturbative)

β-function for θ driven by the vev of the instanton density on the (non-

trivial) YM vacuum (encoded in the topological susceptibility).

• Notwithstanding this, all θ-dependent contributions to the vacuum energy

are cutoff independent.

• Therefore, even though there is a non-trivial UV structure in the gauge

theory, the two-point function is insensitive to the the messenger mass.

• This is an important feature that distinguishes the instanton density

operator from all other scalar operators.

Axions, Elias Kiritsis
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Integrating-in a pseudoscalar

• We would like now to interpret the presence of the interaction S12 from

the point of view of theory T2.

• We imagine that we probe theory T2 and we can perform experiments

involving only the operator O2 of T2.

• We can represent the effects of T1 and its interaction to T2 as coming

from an “emergent” dynamical field coupled linearly to O2.

• We consider a new scalar field χ coupled to the operator O2 as follows:

Seff =
∫

d4x

[
1

2
χ K χ+ χ O2

]
+ S2 =

=
∫

d4p

(2π)4
χ(p)K(p)χ(−p) + χ(p) O2(−p) + S2

• K is a kinetic operator that we want to determine using consistency with

the previous results.
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• In order to determine the correct form of K, we now compute the O2

correlator by integrating out the scalar field.

• We find

K(p) = −
1

λ2G11
∼

M8

G11

• The IR structure of this emergent axion kinetic term is

iK(p) =
M8

a0 + a2p2 + a4p4 + · · ·
≃

M8

a0

[
1−

a2
a0

p2 +
a22 − a0a4

a20
p4 + · · ·

]
If we parametrize

iK(p) = f2a (p
2 +ma

2) +O(p4)

we obtain

m2
a ∼

a0
a2

, f2a ∼
a2

a20
M8

• For a generic scalar operator O1, as argued before, we have an ∼ M4−n

and we obtain

m2
a ∼ M2 , f2a ∼ M2

11-



• Such a scalar is irrelevant at low energy despite the weakness of the

interaction.

• On the other hand if the operators O1,2 are the instanton densities, then

their two-point function is not UV sensitive

an = ān m4−n
1 , bn = b̄n m4−n

2

• m1,2 are the IR mass scales of the hidden and visible theories.

• If the hidden theory were YM then m1 is ΛYM . In this special case we

obtain instead

m2
a ∼ m2

1 , f2a = m2
1

(
M

m1

)8
• If m1 ≪ M then this is an emergent weakly-coupled axion-like field that

couples to the SM instanton densities.

• We conclude that an emergent axion has a mass determined by the hidden

theory scale m1, and a coupling fa depending on the messenger scale M .

Axions, Elias Kiritsis
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The SM contributions

• If the axion is elementary then its mass so far would have been zero,
because it is protected by the Peccei-Quinn symmetry.

• However SM corrections can contribute to the axion mass.

p

k

p-k

νν ΄

μμ
p

΄

• In perturbation theory, there is no mass generation (protected by the
approximate PQ symmetry of the instanton density.

• However, as is well known the QCD dynamics will generate a mass beyond
perturbation theory.

−i⟨χχ⟩(p) =
−i

K(p) +G22(p)
=

1
M8

iG11
+ iG22

12



• We obtain the QCD corrections

f2r =
M8

m6
2
+ m2

2 + · · · ≃ f2a +Λ2
QCD

m2
r = m2

1 +
m6

1m
4
2

M8
+ · · · ≃ m2

1 +
Λ4
QCD

f2a
+ · · ·

• When m1,2 ≪ M they are subleading.

Axions, Elias Kiritsis
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The holographic emergent axion

• We now assume that T1 is a large N holographic theory.

• The general action can be written as

S = S1 + S12 + S2 , S12 = λ
∫

d4x O1O2

⟨eiS12⟩T1 =
∫
limz→0 a(x,z)=O2(x)

Da eiSbulk[a]

• We insert a functional δ-function

⟨eiS12⟩ =
∫
limz→0 a(x,z)=ϕ(x)

Da(x, z)Dϕ(x)Dk(x) eiSbulk[a]+i
∫
k(x)(ϕ(x)−O2(x))

• We now integrate ϕ(x) first in the path integral to obtain the Legendre

transform of the Schwinger functional of the bulk axion which becomes the

bulk effective action.
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• This corresponds in holography to switching boundary conditions at the

AdS boundary from Dirichlet to Neumann, and where k(x) is the expectation

value of the operator O1.

⟨eiS12⟩ =
∫
limz→0 ∂za(x,z)=z3k(x)

Da(x, z)Dk(x) eiSN [a]−i
∫
k(x)O2(x)

• We may imagine the SM action as coupled at the radial scale z0 ∼ 1/M

to the bulk action.

• We may then rewrite the full bulk+brane action of the emergent axion

as

Stotal = Sbulk + Sbrane

Sbulk = M3
P

∫
d5x

√
g
[
Z(∂a)2 +O((∂a)4)

]
Sbrane = δ(z − z0)

∫
d4x

√
γ
[
λâ(x)O2(x) +M2(∂â)2 − Λ4â2 + · · ·

]
where â(x) ≡ a(z0, x) is the induced axion on the brane.

13-



• The equation that determines the bulk-to-bulk propagator of the axion

is

M3
P

[
∂2z +

(
Z′

Z
+4A′

)
∂z − e−2Ap2

]
G(p, z)−δ(z−z0)(M

2p2+Λ4)G(p, z) = δ(z−z0)

where p2 = pipi is the (Euclidean) momentum squared.

• The general solution is

G(p, z; z0) =
G0(p, z; z0)

1 + (M2p2 +Λ4)G0(p, z0; z0)

• The propagator on the brane is obtained by setting z = z0 and becomes

G(p, z0; z0) =
G0(p, z0; z0)

1 + (M2p2 +Λ4)G0(p, z0; z0)

13-



• For generic holographic RG flows and generic scalars

G0(p, z0; z0) =
1

2(MP ℓ)3



ℓ3

p
, p ≫ R0

d0
m4

− d2
p2

m6
− d4

p4

m8
+ · · · , p ≪ R0.

• We may now extract the effective axion parameters in the far IR

f2eff = M2 +N2 m2 , m2
eff =

Λ4 +N2 m4

f2eff
.

• When Nm >> M this reduces to the non-holographic result.

• The axion interaction is 4d at short and long distances but can be 5d in

intermediate distances.

Axions, Elias Kiritsis
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Phenomenology

• Axions are of various types:

♠ Dark Matter axions (with QCD constraints).

10−25 eV < mDM
a < 10−18 eV

1010 GeV < fDM
a < 1016 GeV

♠ Dark Energy axions (with QCD constraints).

10−33 eV < mDE
a < 10−30 eV

1010 GeV < fDE
a < 1015 GeV

♠ Axions as Inflatons. These are highly model dependent and there are

no strict bounds.
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♠ Heavy Axions. Masses are larger than 1 eV. The allowed axion masses

and lifetimes are

ma > 10 MeV and τaγ < 10−2 s

or

ma < 10 eV or τaγ > 1024 s

♠ QCD axion.

10−12 eV < mQCD
a < 10−3 eV

109 GeV < fQCD
a < 1015 GeV

• Generic composite axions can play the role of inflatons or heavy axions.

They can be more general but their consequences need reexamination, as

in some regimes their kinetic terms are non-local.

• Holographic composite axions can play also the role of dark matter, dark

energy or QCD axions.

Axions, Elias Kiritsis
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Holographic axions

• Axions abound in string theory: all forms including the IIB axion are

sources of such examples upon compactification.

• Because of the associated gauge symmetry, they have no potential in

perturbation theory.

• This implies the existence of a perturbative global symmetry.

• This symmetry is always broken by string instantons to a discrete sym-

metry.

• The breaking may or may not generate a potential for the axion.

• Such a potential is exponentially suppressed in the coupling constant.

• In holography, it is ∼ e−N .

15



• In the prototypical AdS/CFT paradigm the type-IIB RR axion is dual to
the YM Instanton density

a ↔
i

64π2
Tr[F ∧ F ] (Euclidean)

• The topological properties of this operator and its irrelevance in pertur-
bation theory are related to the perturbative PQ symmetry of axions in
type IIB string theory.

• According to the AdS/CFT dictionary the near AdS boundary expansion
of the axion is

a(r) = aUV + rd Q+ · · ·

where aUV is the source and Q is related to the vev of the instanton density.
• The source is related in a many to one ways to the field theory source,
the θ-angle as

aUV = c
θUV +2πk

Nc

where θUV ∈ [0,2π), k ∈ Z and c a dimensionless number of O(N0
c ).

Axions, Elias Kiritsis

15-



General properties

• There is a general line of arguments about the θ dependance of the
vacuum energy or partition function of a gauge theory at large Nc.

Witten

• The proper variable that is kept fixed in the large Nc limit is ζ = θ
Nc

.

F (θ) = N2
c f(ζ) , f(ζ) = f(−ζ) , F (θ) = F (θ +2π)

and

F (θ) = N2
c f(0) + χ θ2 +O

(
θ4

N2
c

)
at tree level in string theory.

• χ > 0 is the famous topological susceptibility of the gauge theory.

• The periodicity of is restored in the large Nc theory by the existence of
an infinite number of saddle points (known as oblique vacua)

Fk(θ) = N2
c f

(
θ +2πk

Nc

)
= N2

c f(0) + χ (θ +2πk)2 +O
(
(θ +2πk)4

N2
c

)
16



• The true ground state has free energy that is discontinuous

E(θ)− E(0) = Mink∈Z χ (θ +2πk)2

• The minimum of E(θ) is always at θ = 0 because the integrant is real

and positive in that case.

• There is a non-analyticity for θ = π that signals the existence of two

vacuum states and a phase transition.
Witten

• In string theory the correct Nc dependence is there because the axion is

a RR state

S =
∫

d10x e−2ϕ
[
R−

1

2
e2ϕ(∂a)2 + · · ·

]
• Remembering that λ ∼ Nceϕ is fixed, the scaling follows.

• The fact that χ ̸= 0 is related in QCD to the resolution of the U(1)A
problem.

Axions, Elias Kiritsis
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General axion flows

• We will parametrize the bulk axion action as follows

S = Md−1
p

∫
dd+1x

√
−g

[
R−

1

2
gab∂aΦ∂bΦ−

1

2
Y (Φ)gab∂aa∂ba− V (Φ)

]
+SGHY ,

• There are always couplings of the axion a to scalars, Φ.

• Standard RG flows have Φ varying along the flow but a = θ= constant.

• The a = θ= constant solution is always a regular solution.

• This is the solution relevant for N = 4 sYM and corresponds to

⟨Tr[F ∧ F ]⟩ = 0

• If ȧ(u) ̸= 0 then ⟨Tr[F ∧ F ]⟩ ̸= 0.

For a Lorentz invariant ansatz

ds2 = du2 + e2A(u)dxµdxµ , Φ(u) , a(u)

17



the axion equation is

ȧ =
Q

Y edA
,

• Q is proportional to the vev ⟨Tr[F ∧ F ]⟩

• If the flow ends at a finite endpoint Φ∗, the flow is regular if Y diverges
sufficiently fast as Φ → Φ∗.

• However, Y coming from string theory effective actions never has poles
in the middle of scalar space.

• The conclusion is that in regular flows with a standard holographic CFT
in the IR limit, the axion flow is always trivial.

• In this parametrization, possible “regular” axion flows can appear only if
Φ → ±∞.

• The function Y (Φ) must properly diverge so that the flow is regular (à
la Gubser).

• The black D4 Witten solution describing a non-susy YM on R4 × S1 is a
good guiding principle

17-



• In this 5d YM theory the analogue f the instanton term is

Sinst =
∫

d4x
∫

dτ A ∧ Tr[F ∧ F ]

where A is the RR one-form of type II string theory.

• Upon dimensional reduction to 4d

SCP−odd,D4
∼
∫

dτ Aτ

∫
d5x Tr[F ∧ F ] , θYM ∼

∫
dτ Aτ = 2πRτAτ

• Therefore Aτ plays here the role of the axion, and it is protected by the

gauge symmetry of the RR one-form.

• The radius of the cigar geometry becomes the scalar Φ in our 5d bulk

description. The tip of the cigar corresponds to Φ → ∞.

• The correct boundary (regularity) condition for Aτ at the tip of the cigar

is Aτ → 0.

• With this boundary condition Witten has found the correct solution for

the running of the θ angle.

17-



• The solution looks singular in 5 bulk dimensions as Φ → ∞. But in 6d the
solution is regular, and the singularity is an artifact of the KK reduction.

• The lesson for the general case we discuss is that in the case of non-trivial
flows that correct IR regularity condition is

a(uIR) = 0 , Φ(uIR) = ±∞

• This implies the axion solution

a(u) = Q
∫ u

uIR

du

Y edA
, aUV = Q

∫ uUV

uIR

du

Y edA
.

• This is as it should: given aUV , the IR condition fixes the vev Q as a
function of aUV .

Axions, Elias Kiritsis
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The first order formalism

• We may rewrite the gravitational-dilaton-axion equations as

Ȧ = −
W (Φ)

2(d− 1)
, Φ̇ = S(Φ) , ȧ = sign(Q)

√
T

Y
.

where

T (Φ) ≡
Q2

e2dA
.

and

S2 −W ′S +
T

Y
= 0 ,

T ′

T
=

d

d− 1

W

S

d

4(d− 1)
W2 −

S2

2
−

T

2Y
+ V = 0 .

• S and T can be solved algebraically and W satisfies a second order

non-linear differential equation.

• The two integration constants are interpreted as the vevs of Φ and a.

Axions, Elias Kiritsis
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The general IR boundary condition

• In the IR we parametrize

V ∼ ebΦ , b ≤
√

2d

d− 1
, Y ∼ eγΦ

• We find two types of IR solutions.

♠ The first back-reacts to leading order to the Φ flow and fixes completely

the integration constant Q in terms of other parameters.

• Such a solution is holographically unacceptable.

♠ The second solution is subleading to the Φ and Q is a free parameter as

it should.

• Therefore the IR regular solution is unique.
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• The analogue of the Gubser bound for γ is

γ ≥
2d

(d− 1)b
− b,

• Therefore, the correct axion solution is subleading, both in the UV and
the IR.

• For small Q (and therefore small θ) it can be found perturbatively around
the Φ flow.

19-



19-



Plot of aUV as a function of the constant D that is related to the vev of the dual instanton density, for

b = 1, γ = 2,2.2,2.5 (left) and b = 1.3, γ = 1,1.5,2 ( right). The dashed and solid lines correspond to the

probe and backreacted solutions, respectively. It is apparent from the backreacted results that as D → ∞,

aUV saturates, and the range of possible aUV values is compact.
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• The compactness of the range of aUV can be shown analytically:

|aUV | ≤
∫ ∞

0

dΦ√
Y

→ finite ,

• Since

aUV =
θUV +2πk

Nc
, k ∈ Z

we deduce that the number of distinct (saddle-point) solutions with the

same θUV is equal to the number of possible values the integer k can take.

• This number is

Z ∋ n =

⌊
Nc amax

UV

2π

⌋

• For large Nc this is a large number, that should be compared to a similar

number emerging from the chiral Lagrangian.
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The on-shell effective action

• The expression of the regularized on-shell action is the same as in the

case of Φ only flows

Son−shell = Md−1
p Vd

[
edAW

]
UV

.

but W (Φ) and eA(Φ) are affected by the axion flow.

• After renormalizing the result and then taking the cutoff to infinity we

obtain

Sren
on-shell = (Mpℓ)

d−1 Vd |Φ−|
d

∆−
(
C(q)− Cct

)
.

• For relevant Φ (like in YM) |Φ−|
d

∆− → Λ4
YM and

Sk ∼ Λ4
YMC̃

(
θUV +2πk

Nc

)
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Plot of C as a function of logD for b = 1 and γ = 2,2.2 (left) and b = 1.3 and γ = 1,1.5 (right).
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The instanton density two-point function

• The Euclidean two-point function of the instanton density in any positive
theory is negative definite.

C(x) ≡ ⟨O(x)O(0)⟩ , O = Tr[F ∧ F ]

• Despite this, it is known that the topological susceptibility in YM is
positive.

χ ∼
∫

d4x C(x) > 0

• The lattice says so, and when mq = 0 it is required from m2
η′ > 0.

• These statements are compatible because the correlator contains non-
trivial contact terms.

• Moreover, the Fourier-space correlator is ill-defined and requires renor-
malization.

• All of the above, plus the independence of the correlator and contact
terms on the UV cutoff can be obtained from the holographic description
advanced before.

Axions, Elias Kiritsis
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Conclusions and Outlook

• Axions may arise from strongly-coupled gauge theories as composite in-

stanton densities.

♠ Their properties in theories with a semiclassical limit (large Nc) can be

studied, and the properties of the composite axions determined.

♠ Such axions can couple to the SM once the hidden QFT that generates

is coupled to the SM in the UV.

♠ Both composite and holographic axions can play several phenomenolog-

ical roles: QCD axion, dark matter and dark energy axions, inflatons, or

just heavy ALPs.

♠ The non-perturbative dynamics of instanton densities (holographic ax-

ions) can be studied in enough generality using a theory of a few scalars

and pseudoscalars without potential.
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♠ The non-trivial axions solutions exist only when solutions for the scalars

run to the boundary of their space

♠ There is a unique regularity condition that gives sensible holographic

results.

♠ The space of axion sources is always finite.

♠ The on-shell action has the form expected from general gauge theory

principles.

• All of this can be used to obtain a holographic theory that at the same

time self-tunes the cosmological constant and provides small Higgs masses

solving in this way the hierarchy problem.
Charmousis+Kiritsis+Nitti, Hamada+Kiritsis+Nitti+Witkowski
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THANK YOU
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