Cosmic-Ray Physics with NA61/SHINE – Status and Plans

M. Unger (KIT) for the NA61/SHINE Collaboration

Previous NA61/SHINE Results for Cosmic-Ray Physics

- propagation in the Galaxy
 - p
 production in p + p □

ultrahigh-energy air showers

- π^{\pm} -production in π^{-} + C \cong and p + C \cong
- ρ^0 -production in π^- + C [4]
- $\bar{\mathbf{p}}$ -production in $\pi^- + \mathbf{C}$

[1] Eur.Phys.J. C77 (2017) no.10, 671; [2] PoS(ICRC2017) 315, arXiv:1909.06294; [3] Phys.Rev. C84 (2011) 034604, Eur.Phys.J. C76 (2016) 84;

Nuclear Fragmentation with SPS and NA61/SHINE

2018 Pilot Run on Nuclear Fragmentation

composition of secondary ion beam measured during data taking:

- primary Pb beam on Be target, rigidity selection in H2 beam line
- special H2 beamline optics (simulation and operation by N.Charitonidis)
- three days of data taking at 27 GV
- 1.1 $\times 10^6$ beam trigger on $Z^2 = 36$
- offline selection: 3.6 $\times 10^5$ 12 C beam particles
- 20k (${}^{12}C+CH_2$) and 17k (${}^{12}C+{}^{12}C$) interactions

2018 Pilot Run on Nuclear Fragmentation

Identification of Isotopes Produced in Target (MTPC)

B-selection indicated by red arrows

Direct ¹⁰**B** + ¹¹**B Production** (NA61/SHINE preliminary at ICRC19)

$$\begin{split} \sigma(^{12}\mathsf{C}+\mathsf{p}\rightarrow^{10}\mathsf{B}+X) + \sigma(^{12}\mathsf{C}+\mathsf{p}\rightarrow^{11}\mathsf{B}+\mathsf{X}) = \\ \mathsf{47.7}\ \pm 3.0\ (\mathsf{stat.})\ \pm \mathsf{2.3}\ (\mathsf{syst.})\ \mathsf{mb} \end{split}$$

F. Sutter, Masters Thesis KIT 2019; NA61/SHINE PoS(ICRC2019)446, arXiv:1909.07136 Fit: Evoli+19, Data: Korejwo+02, Korejwo+99, Webber+98, Webber90, Olson+83, Fontes+77

Summary 2018 Pilot Run on Nuclear Fragmentation:

CERN-SPSC-2017-035

Addendum to the NA61/SHINE Proposal SPSC-P-330

Feasibility Study for the Measurement of Nuclear Fragmentation Cross Sections with NA61/SHINE at the CERN SPS

The NA61/SHINE Collaboration

- demonstrated unique capabilities of NA61/SHINE + SPS for nuclear fragmentation measurements
- preliminary results presented at ICRC2019
- test data already useful to constrain asymptotic $\sigma(^{12}C + p \rightarrow B + X)$

Future Plans:

CERN-SPSC-2018-008

Addendum to the NA61/SHINE Proposal SPSC-P-330

Study of Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS Early Post-LS2 Measurements and Future Plans

The NA61/SHINE Collaboration and the CERN team

• precise reaction data base for Galactic cosmic-ray studies

Many thanks to the CERN PH, BE and EN Departments for the strong support of NA61/SHINE!

Additional Material

Charge-Changing C+C and C+CH₂ Cross Section ${}^{12}C+{}^{12}C \rightarrow (Z<6) + X$ ${}^{12}C+CH_2 \rightarrow (Z<6) + X$

adapted from L. Shiver et al, Adv. Space Research 49 (2012) 812

Reaction	σ [mb]	stat. [mb]	sys. [mb]
$C + CH_2 \rightarrow (Z < 6) + X$	1179	± 24	± 1
$C + C \rightarrow (Z < 6) + X$	755	± 16	± 3
$C + p \rightarrow (Z < 6) + X$	217	± 9	± 2

f(tot) = 0.0076

f(B) = 0.0007

 $f(^{13}C) = 0.0018$

 $f(^{14}C) = 0.0000$

Corrections and Systematics Corrections (B)

- beam impurity
- B reinteraction in target
- B reinteraction in detector
- MTPC B cut
- ¹²C interaction in detector

Systematics (B)

- target thickness
- beam impurity
- B reinteraction in target
- B reinteraction in detector
- MTPC B cut
- ¹¹B/¹⁰B reinter difference
- underdetermined measurement equation

 $< 0.01 \text{ mb}^{\perp}$ +1.4 mb^{1,2} +3.9 mb¹ +0.08 mb¹ -0.2 mb¹ ¹ from data, ² model 0.2 mb 0.01 mb 0.3 mb

- 1.4 mb
- 0.08 mb
- 0.03 mb
- 1.8 mb

Measured Interaction Probabilities

Target	$\mathbf{N}_{\mathrm{beam}}$	N_{12C}	\mathbf{N}_{B}	$\mathbf{P}_{C ightarrow (Z < 6)}$	$\mathbf{P}_{C\toB}$
CH_2	171399	151871	2259	0.1139 ± 0.0008	0.0132 ± 0.0003
С	147692	131172	1530	0.1119 ± 0.0008	0.0104 ± 0.0003
OUT	37926	36111	174	0.0479 ± 0.0011	0.0046 ± 0.0004

Interactions in Detector Volume

Interactions in Detector Volume Cut on G/VTPC dE/dx:

