TOP TAGGING USING SPATIAL DISTRIBUTION OF SUBJETS

DANIELLE WILSON Supervisor: Professor Deepak Kar

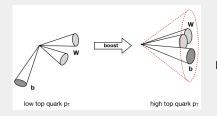
UNIVERSITY OF THE WITWATERSRAND

HIGH ENERGY PARTICLE PHYSICS (HEPP) WORKSHOP 2020

JANUARY 29, 2020

UNIVERSITY OF THE WITWATERSRAND, Johannesburg

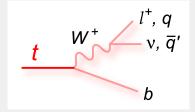
OUTLINE


Introduction

- Jets
- Boosted Objects
- Top Jets
- QCD Jets
- Classifying Events Spatially
 - Notation
 - Identifying Configurations of Subjets
 - Probabilities of Configurations
- Creating the Tagger
 - Combining Probabilities
 - ► How did it perform?
 - Shortcomings of the Tagger

INTRODUCTION

- Quarks and gluons do not occur freely in nature
 - Immediately after production, they fragment and hadronise
 ⇒ collimated shower of energetic hadrons which is referred to as a jet
- Can identify original "parton" by measuring jet energy and direction
 - Concept of "parton" is ambiguous
 - \implies Jets must be well defined
 - Jets defined by algorithm used to assemble them and a radius parameter
 - No single universal definition
- Majority of events at the LHC contain jets


BOOSTED OBJECTS

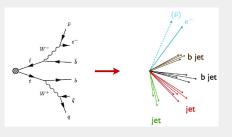


Figure: Illustration of the decay of a boosted top quark. *Ref: arXiv:1712.01391*

- If heavy particles are produced with large transverse momentum
 decay products collimated into a single large-radius jet
 Large-radius jets contain intricate
 - Large-radius jets contain intricate substructure
 - Observables are constructed to characterise this substructure
- Using one or more of these observables to identify boosted objects is referred to as tagging

TOP JETS

- Top quarks decay mainly via t → Wb
 - $W
 ightarrow q\hat{q}$ occurs 67% of the time
 - $W \rightarrow l\nu$ has a branching ratio of 11% for each lepton flavor
 - Pairs of top quarks : 45% hadronic, 35% semileptonic, rest are dileptonic and hadronic tau decays

- Standard methods to identify Top Quarks:
 - B-tagging
 - Identifying W boson
 - Invariant mass of 3 jets is comparable to the top mass
- Highly boosted top quarks
 - \implies Standard methods are hindered
 - \implies Jet substructure analysis is the natural next step

- Efficient top taggers discriminate features unique to top quarks from those of the background
- QCD jets describe the background
 - ► They orginate from high *p*_T light quarks or gluons that shower into many soft and collinear particles
 - \implies Not easily resolved

CLASSIFYING EVENTS SPATIALLY

NOTATION

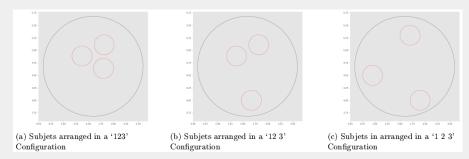
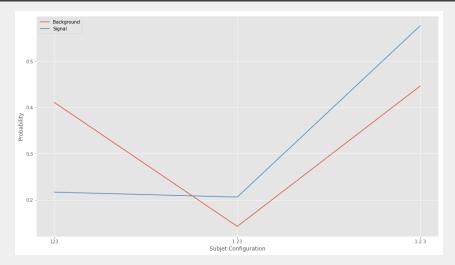


Figure: Illustration of the notation used in this investigation

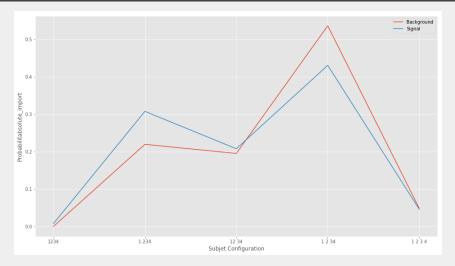
- Plots in the eta-phi plane
- Large radius jets have a radius of 1, whilst the subjets had radius 0.2.
- Only events with more than 2 subjets were considered.

IDENTIFYING CONFIGURATIONS OF SUBJETS


- In order to consistently classify configurations of subjets, a clustering algorithm was implemented
- **K-means clustering algorithm** was chosen for this analysis
 - Separates data into K pre-defined clusters
 - Clusters do not overlap
 - Aims to maximize similarity between cluster points and the distance between clusters.
 - It is easy to implement

IDENTIFYING CONFIGURATIONS OF SUBJETS

Problem : pre-defining number of clusters


- \implies Silhouette Analysis applied
 - It determines optimal number of clusters separation between clusters
 - ► Silhouette score ∈ [-1, 1] assigned to measure degree of separability
 - \blacktriangleright 1 \implies very good clustering
 - -1 \implies very bad clustering
- Problem : Not possible to define 1 cluster or for clusters to have single data points
 - \implies distance cuts applied

PROBABILITIES OF CONFIGURATIONS

Figure: Plot comparing the probabilities of different spatial configurations for an event containing 3 subjets

PROBABILITIES OF CONFIGURATIONS

Figure: Plot comparing the probabilities of different spatial configurations for an event containing 4 subjets

CREATING THE TAGGER

- Two variables from events used to create final tagger:
 - Number of Subjets
 - Spatial configuration of Subjets
- Is the event more likely to be signal or background?
 - \implies Implementation of Naive Bayes Classifier
 - It combines probabilities of the two variables from event data and previously determined probabilities from "training" data

HOW DID IT PERFORM?

Not well..

- Signal Efficiency : $\epsilon_S = 47.1\%$
- **Background Rejection** : $1 \epsilon_B = 50.6\%$
- BUT creating a super efficient tagger was not the purpose of the project
- Analysis was too simple to obtain viable results
- Important qualitative results
 - QCD Jets : subjets tended to be closer together
 - 3 Subjets : '123'
 - Top Jets : subjets tended to be more distinct
 - 3 Subjets: '123'

SHORTCOMINGS OF THE TAGGER

- K-means algorithm works best clustering large amounts of data
 - This investigation dealt mainly with only 3 6 subjets
- K -means initially assigns clusters at random
 - \implies clustering is not unique
 - Number of events was small
 - \implies significantly different results obtained each run of the program
- The sample of events analysed had unrealistic proportions of Signal to Background events.
- The "training" and "testing" data had different proportions of Signal to Background events
 - \implies Naive Bayes classifier was compromised

THANK YOU FOR **LISTENING**!