The anomalous production of multi-leptons and its impact on the measurement of Wh production at the LHC

Yesenia Hernández Jiménez

Institute for Collider Particle Physics and School of Physics - U. Witwatersrand

HEPP Conference. 29-31 January - University of Venda

Institute for Collider Particle Physics

UNIVERSITY OF THE WITWATERSRAND

Introduction

arXiv:1912.00699

ICPP-030

The anomalous production of multi-leptons and its impact on the measurement of Wh production at the LHC

Yesenia Hernandez, $^{1,\,*}$ Alan S. Cornell, $^{2,\,\dagger}$ Mukesh Kumar, $^{1,\,\ddagger}$ Bruce Mellado, $^{1,\,3,\,\$}$ and Xifeng Ruan $^{1,\,\P}$

Discrepancies in several measurements for the associated production of the SM Higgs (h) with a W boson: Wh

(*) See also talks from B.Mellado and S. von Buddenbrock

- **Relation with Madala model (*)?**
- ATLAS, CMS, Run 1 and 2 results
- Consider results were pT(h) > m(h) is not required for combination
- Investigate each analysis selection
- Compare Vh kinematics with model: H→S[150]h[125] m(H)=250,260,270GeV

Cover $h \rightarrow WW$, tautau, yy decay channels

arXiv:1506.06641

$h \rightarrow WW: Run 1 ATLAS$

Statistically limited analysis but... Several channels present excesses located at ~ region as the Higgs

	Signal significance Z_0			Observed signal strength μ						
Category	Exp.	Obs.	Obs.	μ	Tot	err.	Syst	.err.	μ	
	Z_0	Z_0	Z_0		+	-	+	-		
4ℓ	0.41	1.9		4.9	4.6	3.1	1.1	0.40		
2SFOS	0.19	0		-5.9	6.8	4.1	0.33	0.72		
1SFOS	0.36	2.5		9.6	8.1	5.4	2.1	0.64		
3ℓ	0.79	0.66	-	0.72	1.3	1.1	0.40	0.29	+	
1SFOS and 3SF	0.41	0		-2.9	2.7	2.1	1.2	0.92		
0SFOS	0.68	1.2		1.7	1.9	1.4	0.51	0.29		
2ℓ	0.59	2.1		3.7	1.9	1.5	1.1	1.1	+	
DFOS	0.54	1.2	—	2.2	2.0	1.9	1.0	1.1		
SS2jet	0.17	1.4		7.6	6.0	5.4	3.2	3.2		
SS1jet	0.27	2.3	—	8.4	4.3	3.8	2.3	2.0		
			0 1 2	3				-10 -	8 -6 -4 -2 0 2 4 6 8 10 12 14 16	

All channels show signal strength > 1 **Exception: 3L 1SFOS/3SF** uses mll of SS leptons as input BDT variable \rightarrow

Difference in shape btw Vh and H→Sh BDT discriminates BSM signal

arXiv:1903.10052

$h \rightarrow WW: Run 2 ATLAS$

Only 3leptons (BDT) and 4leptons (cut-based) channels are analyzed for the 2015+2016 results

Process	WI	H	Z	H
	Z-dominated	Z-depleted	1-SFOS	2-SFOS
WH	11 ±6	5.8 ± 2.8	-	_
ZH	1.1 ± 0.6	0.61 ± 0.34	3.3 ± 1.7	1.8 ± 0.9
$WZ/W\gamma^*$	40.1 ± 2.8	1.7 ± 0.5	_	_
ZZ^*	2.4 ± 1.1	0.27 ± 0.09	0.14 ± 0.14	1.2 ± 0.3
VVV	1.5 ± 0.1	0.71 ± 0.11	0.32 ± 0.05	0.20 ± 0.03
$tV/t\bar{t}V$	0.14 ± 0.03	0.13 ± 0.03	0.04 ± 0.02	0.03 ± 0.01
Other top-quark	8.4 ± 2.6	1.9 ± 0.8	-	_
Other Higgs	0.31 ± 0.03	0.06 ± 0.01	<0.01	0.04 ± 0.01
Misid. leptons	9.7 ± 3.4	<0.1	0.19 ± 0.08	0.36 ± 0.12
Total background	62 ± 5	4.7 ± 1.0	0.65 ± 0.17	1.8 ± 0.3
Observed	76	10	5	2

$$\mu_{WH} = 2.3^{+1.1}_{-0.9}(\text{stat.})^{+0.41}_{-0.33}(\text{theo syst.})^{+0.49}_{-0.36}(\text{exp syst.}) = 2.3^{+1.2}_{-1.0}$$

Post-fit results: signal yields weighted by the observed mu!

1SFOS/3SF category still uses mll in the BDT However the signal strength result uses both WH channels so **this will be included in the combination**

$h \rightarrow WW$: Run 1 and Run 2 CMS

W/Zh: 2leptons (OS) + 2jets mjj [65, 105] GeV, $|\Delta \eta(jj)|$ < 1.5, mT[60, 125] GeV, mll < 200 GeV and $|\Delta R(II)|$ < 2.5 → Fit mll in 9 bins

Wh: 3leptons + 3v Split in OSSF and SSSF events min-MET > 40(30) GeV OS(SS), ImII - mZI > 25 GeV, mII < 100 GeV, $|\Delta R(II)| < 2$ → Fit DeltaR(II)

Similar selection in both analyses **Run 1**: μ (Wh) < 1 negative fluctuation -left-**Run 2**: μ (Wh) > 1 in both

channels -right-Both results will be included

in the combination

Excess of data at low mll for both Run 1 and Run 2

$h \rightarrow \tau \tau$

Strategy: Split in tau decay modes

 $h \rightarrow \tau_{had} + \tau_{had}$ $h \rightarrow \tau_{had} + \ell$

W always decaying leptonically: $W \rightarrow \ell \nu$

Two subcategories with 1 or 2 ℓ (e,mu): 1) $\ell + \tau_{had} + \tau_{had}$ 2) $\ell + \ell + \tau_{had}$ arXiv:1511.08352 arXiv:1401.5041

 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$

$h \rightarrow \tau \tau$: Run 1 ATLAS and CMS

Different analysis selection:

- ATLAS: Cut&Based
- CMS: BDT + LT split

ATLAS: Bigger excesses ($\mu > 1$) in channels with h $\rightarrow \tau_{had} + \overline{\tau}_{had}$

Results from ATLAS included in the combination CMS results are discarded

ATLAS > 80 GeV

100 120 140 160 180 200 220 240

 $p_{-}^{l_{1}} + p_{-}^{l_{2}} + p_{-}^{\tau}$ [GeV]

arbitrary units

0.15

0.1

0.05

60 80

100

150

200

250

CMS results discarded

-6-5-4-3-2-10 1 2 3 4 5 6 7 8

Signal Strength (μ) at $m_{\mu} = 125 \text{ GeV}$

BDT discriminates

H→Sh signal

ATLAS

4.6±3.2

1.0±3.5

1.8±3.1

1.3±2.8

2.3±1.6

 $Z(\rightarrow II) H(\rightarrow \tau_{\rm h}\tau_{\rm h})$

 $Z(\rightarrow II) H(\rightarrow \tau_{1}\tau_{b})$

 $W(\rightarrow l\nu) H(\rightarrow \tau_{\rm b}\tau_{\rm b})$

 $W(\rightarrow l\nu) H(\rightarrow \tau_{l}\tau_{b})$

Combination

- Split: stat. fit on the SM Vh will concentrate in high region

arXiv:1809.03590

$h \rightarrow \tau \tau$: Run 2 CMS

New approach for Run 2 CMS closer to ATLAS: cut&based analysis!

Unfortunately no ATLAS Run 2 results delivered yet

Fit on visible mass of the taus: $\mu(Wh) = 3.39(+1.68)(-1.54)$

$h \rightarrow \gamma \gamma$

$h \rightarrow \gamma \gamma$: ATLAS and CMS

11

$h \rightarrow \gamma \gamma$: Run 2 CMS

Excesses observed in both: Wh leptonic and Vh Hadronic

Results will be included in the combination

CMS Run 2 Strategy Vh Hadronic: No requirement on pt(γγ) / m(γγ) Vh Leptonic: No use of pT(ℓ+ETmiss)

Combination

arXiv:1912.00699

Results and Summary

Combined signal strength: mu_Vh = 2.5 ± 0.43

Deviation from SM: 3.5 σ

Larger Wh production than expected by SM

- Excesses observed in very different final states depending on the SM Higgs decay

- Compatible with multi-lepton discrepancies observed at the LHC

- Supports the possible existence of new physics at the LHC: consistent with Madala model

Only partial Run 2 dataset (36.1fb-1) analysed so far.

Much more ATLAS and CMS results to come 😄

Keep posted!

Higgs	Ref.	Experiment	\sqrt{s},\mathcal{L}	Final	Category	μ	Used in	Comments INSTITUTE FOR			
decay		•	TeV, fb^{-1}	state		,	$\operatorname{combination}$	COLLIDER BARTICLE			
					DFOS 2j	$2.2^{+2.0}_{-1.9}$	\checkmark	PHYSICS	to		
				2ℓ	SS 1j	$8.4^{+4.3}_{-3.8}$	\checkmark	$2\ell \ { m combination} \ \mu = 3.7^{+1.9}_{ m UNIVERSITY}$ of the With	WATE		
	[17]	ATLAS	7, 4.5		SS 2j	$7.6\substack{+6.0 \\ -5.4}$	\checkmark				
			8, 20.3		1SFOS	$-2.9^{+2.7}_{-2.1}$	x	$m_{\ell_0\ell_2}$ used as input			
				3ℓ				BDT discriminating variable			
					0SFOS	$1.7^{+1.9}_{-1.4}$	✓				
WW	[18]	ATLAS	13, 36.1	3ℓ	1SFOS	FOS $2.3^{+1.2}_{-1.0}$	1	1SFOS channel uses $m_{\ell_0\ell_2}$ in the			
					0SFOS			BDT but excess driven by 0SFOS			
	[19]	CMS	7, 4.9	2ℓ	DFOS 2j	$0.39^{+1.97}_{-1.87}$	 	Discrepancy at low $m_{\ell\ell}$			
			8, 19.4	3ℓ	0+1SFO	$0.56^{+1.27}_{-0.95}$	✓				
	[20]	CMS	CMS	13, 35.9	2ℓ	DFOS 2j	$3.92^{+1.32}_{-1.17}$	 	Discrepancy at low $m_{\ell\ell}$		
				3ℓ	0+1SFOS	$2.23^{+1.76}_{-1.53}$	 ✓ 				
	[21]	ATLAS	ATLAS	ATLAS	8 20 3	1ℓ	$\ell + au_{ m h} au_{ m h}$	1.8 ± 3.1	 ✓ 		
	[21]	ALDAD	0, 20.0	2\ell	$e^{\pm}\mu^{\pm}+ au_{ m h}$	1.3 ± 2.8	√				
	[99]	CMS	7, 4.9	1ℓ	$\ell + au_{ m h} au_{ m h}$	-0.33 ± 1.02	x	BDT based on $p_{\mathrm{T}}^{ au_{\mathrm{T}}} + p_{\mathrm{T}}^{ au_{\mathrm{T}}}$			
	[22]	OMD	8, 19.7	2ℓ	$e^\pm \mu^\pm + \tau_{\rm h}$	-0.00 ± 1.02	x	Split $p_{\rm T}^{\ell_1} + p_{\rm T}^{\ell_2} + p_{\rm T}^{\tau}$ at 130 GeV			
	[23]	CMS	13 35 9	1ℓ	$\ell + au_{ m h} au_{ m h}$	3 30+1.68	5				
	[20]	0.110	10, 00.0	2ℓ	$e^{\pm}\mu^{\pm}+ au_{ m h}$	0.00-1.54					
		ATLAS	7 5 4	ℓv	one-lepton						
	[24]		0.00.2	$\ell \nu, \nu \nu$	$E_{\mathrm{T}}^{\mathrm{miss}}$	1.0 ± 1.6	x	$E_{\rm T}^{\rm miss} > 70-100~{\rm GeV}$			
			8, 20.3	jj	Hadronic			$p_{ m Tt}^{\gamma\gamma} > 70~{ m GeV}$			
			7 5 1	$\ell \nu$	one-lepton			Split $E_{\mathrm{T}}^{\mathrm{miss}}$ at 45 GeV			
	[25]	CMS	7, 0.1 8, 10, 7	$l \nu, \nu \nu$	$E_{\mathrm{T}}^{\mathrm{miss}}$	$-0.16\substack{+1.16\\-0.79}$	x	$E_{\mathrm{T}}^{\mathrm{miss}} > 70~\mathrm{GeV}$			
			0, 19.7	jj	Hadronic			$p_{ m T}^{\gamma\gamma} > 13 m_{\gamma\gamma}/12$			
				Q.,	ana lentan			$p_{\mathrm{T}}^{\ell+E_{\mathrm{T}}^{\mathrm{miss}}} > 150~\mathrm{GeV}$			
				εv	one-lepton			$p_{\mathrm{T}}^{\ell+E_{\mathrm{T}}^{\mathrm{miss}}} < 150~\mathrm{GeV}$			
$\gamma\gamma$	[96]	ATT AC	19 96 1	<i>b</i>	Timiss	0 7+0.9		$150 < E_{\rm T}^{\rm miss} < 250~{\rm GeV}$			
	[20]	AILAS	15, 30.1	<i>μ</i> ν, <i>νν</i>	E_{T}	$0.7_{-0.8}$	x	$80 < E_{\rm T}^{\rm miss} < 150~{\rm GeV}$			
••				jj	Hadronic			BDT used based on m_{jj} and $p_{\mathrm{Tt}}^{\gamma\gamma}$			
				ℓv	one-lepton		✓	Split $E_{\mathrm{T}}^{\mathrm{miss}}$ at 45 GeV $(\mu = 3.0^{+1.5}_{-1.3})$			
	[27]	CMS	13, 35.6	$\not \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$E_{ m T}^{ m miss}$	$2.4^{+1.1}_{-1.0}$	x	$E_{\mathrm{T}}^{\mathrm{miss}} > 85~\mathrm{GeV}$			
				jj	Hadronic		\checkmark	$p_{\mathrm{T}}^{\gamma\gamma}/m_{\gamma\gamma}$ not used $(\mu = 5.1^{+2.5}_{-2.3})$			

Thank you!

Backup Slides

Summary

ATLAS

Run 1

- o H→ WW <u>https://arxiv.org/pdf/1506.06641.pdf</u> mu_VH = 3.0 + 1.3(+1.0) - 1.1(-0.7) stat(syst); mu_WH= 2.1 + 1.5(+1.2) - 1.3(-0.8)mu_ZH = 5.1 + 3.8(+1.9) - 3.0(-0.9)
- o H→ tautau <u>https://arxiv.org/pdf/1511.08352.pdf</u> mu_VH = 2.3 +/- 1.6

Run 2 o H→ WW <u>https://arxiv.org/pdf/1903.10052.pdf</u> mu_VH = 2.5 +0.9 -0.8; mu_WH = 2.3 +1.2 -1.0, mu_ZH= 2.9 +1.9 -1.3 o H→ tautau <u>https://arxiv.org/pdf/1811.08856.pdf</u> Inclusive mu = 1.09 +0.18(+0.26) -0.17(-0.22) stat(sys) o H→ yy <u>https://arxiv.org/pdf/1802.04146.pdf</u> mu_VH = 0.7 +0.9 -0.8

CMS

Run 1 o H→ WW <u>https://arxiv.org/pdf/1312.1129.pdf</u> mu_VH_2I = 0.39 +1.97 -1.87, mu_WH = 0.56 +1.27 -0.95, mu_ZH = 6.41 +7.43 -6.38 o H→ tautau <u>https://arxiv.org/pdf/1401.5041.pdf</u> mu_VH_tag = -0.33 +/- 1.02 o H→ yy <u>https://arxiv.org/pdf/1407.0558.pdf</u> mu_VH = -0.16 +/- 0.97

Run 2 o H→ WW https://www.sciencedirect.com/science/article/pii/ S0370269319301169 mu_WH = 3.27 +1.88 -1.70, mu_ZH = 1.00 +1.57 -1.00 o H→ tautau https://arxiv.org/pdf/1809.03590.pdf mu_VH = 2.5 +1.4 -1.0 mu_WH = 3.39 +1.62 -1.35, mu_ZH = 1.23 +1.62 -1.35 o H → W/ https://arxiv.org/pdf/1804.02716 pdf

o H→ yy <u>https://arxiv.org/pdf/1804.02716.pdf</u> mu_VH = 2.4 +1.1 -1.0

$H \rightarrow WW: Run 1 ATLAS$

Channel	4		3ℓ		2ℓ				
Category	2SFOS	1SFOS	3SF	1SFOS	0SFOS	DFOS	SS2jet	SS1jet	
Trigger	single-lept	on triggers	sing	single-lepton triggers			single-lepton & dilepton triggers		
Num. of leptons	4	4	3	3	3	2	2	2	
$p_{\mathrm{T,leptons}}$ [GeV]	> 25, 20, 15	> 25, 20, 15	> 15	> 15	> 15	> 22, 15	> 22, 15	> 22, 15	
Total lepton charge	0	0	±1	± 1	± 1	0	± 2	± 2	
Num. of SFOS pairs	2	1	2	1	0	0	0	0	
Num. of jets	≤ 1	≤ 1	≤ 1	≤ 1	≤ 1	≥ 2	2	1	
$p_{\mathrm{T,jets}}$ [GeV]	> 25 (30)	> 25 (30)	> 25 (30)	> 25 (30)	> 25 (30)	> 25 (30)	> 25 (30)	> 25 (30)	
Num. of b -tagged jets	0	0	0	0	0	0	0	0	
$E_{\rm T}^{\rm miss}$ [GeV]	> 20	> 20	> 30	> 30	_	> 20	> 50	> 45	
$p_{\mathrm{T}}^{\mathrm{miss}}~[\mathrm{GeV}]$	> 15	> 15	> 20	> 20	_	_	—	—	
$ m_{\ell\ell} - m_Z $ [GeV]	$< 10 \ (m_{\ell_2 \ell_3})$	$< 10 \ (m_{\ell_2 \ell_3})$	> 25	> 25	_	_	> 15	> 15	
Min. $m_{\ell\ell}$ [GeV]	$> 10 \ (m_{\ell_0 \ell_1})$	$> 10 \ (m_{\ell_0 \ell_1})$	> 12	> 12	> 6	> 10	$> 12~(ee, \mu\mu)$	$> 12 \ (ee, \mu\mu)$	
							> 10 (eµ)	$> 10 \ (e\mu)$	
Max. $m_{\ell\ell}$ [GeV]	$< 65 \ (m_{\ell_0 \ell_1})$	$< 65 \ (m_{\ell_0 \ell_1})$	< 200	< 200	< 200	< 50	_	—	
$m_{4\ell} [{ m GeV}]$	> 140	_	_	_	_	_	—	_	
$p_{\mathrm{T},4\ell}~[\mathrm{GeV}]$	> 30	—	_	_	_	_	_	—	
$m_{ au au}$ [GeV]	_	—	_	_	_	$<(m_Z - 25)$	—	—	
$\Delta R_{\ell_0\ell_1}$	_	—	< 2.0	< 2.0	_	_	_	_	
$\Delta \phi_{\ell_0 \ell_1}$ [rad]	$< 2.5 \ (\Delta \phi_{\ell_0 \ell_1}^{\mathrm{boost}})$	$< 2.5 \ (\Delta \phi_{\ell_0 \ell_1}^{\mathrm{boost}})$	_	—	_	< 1.8	—	—	
$m_{ m T}~[{ m GeV}]$	_	_	_	—	_	< 125	_	$> 105 \ (m_{\mathrm{T}}^{\mathrm{lead}})$	
Min. $m_{\ell_i j(j)}$ [GeV]	_	_	_	_		_	< 115	< 70	
Min. $\phi_{\ell_i j}$ [rad]	_	_	_			_	< 1.5	< 1.5	
Δy_{jj}	_	—	_			< 1.2		—	
$ m_{jj}-85 $ [GeV]	_	_	_	_	_	< 15	_	_	

arXiv:1506.06641

$H \rightarrow WW: Run 1 ATLAS$

Process	4ℓ			3ℓ			2ℓ	
Category	2SFOS	1SFOS	3SF	1SFOS	0SFOS	DFOS	SS2jet	SS1jet
Higgs boson								
$VH \ (H \to WW^*)$	$0.203{\pm}0.030$	$0.228{\pm}0.034$	$0.73 {\pm} 0.10$	$1.61{\pm}0.18$	$1.43{\pm}0.16$	$2.15{\pm}0.30$	$1.04{\pm}0.18$	$2.04{\pm}0.30$
$VH \ (H \to \tau \tau)$	$0.0084{\pm}0.0032$	$0.012{\pm}0.004$	$0.057{\pm}0.011$	$0.152{\pm}0.023$	$0.248 {\pm} 0.035$	—	$0.036{\pm}0.008$	$0.27{\pm}0.04$
ggF		_	$0.076 {\pm} 0.015$	$0.085{\pm}0.018$		$2.4{\pm}0.5$		
VBF		—		—		$0.180{\pm}0.025$	_	—
ttH		—		—				—
Background								
V		—	$0.22{\pm}0.16$	$1.9{\pm}0.6$	$0.37{\pm}0.15$	14 ± 4	8 ± 4	15 ± 5
VV	$1.17{\pm}0.20$	$0.31{\pm}0.06$	19 ± 3	$28{\pm}4$	$4.7{\pm}0.6$	$10.1{\pm}1.6$	11.2 ± 2.1	26 ± 4
VVV	$0.12{\pm}0.04$	$0.10{\pm}0.04$	$0.8{\pm}0.3$	$2.2{\pm}0.7$	$2.93{\pm}0.29$			$0.47{\pm}0.05$
Top	$0.014{\pm}0.011$	_	$0.91{\pm}0.26$	$2.4{\pm}0.6$	$3.7{\pm}0.9$	$24{\pm}4$	$0.75{\pm}0.19$	$1.3{\pm}0.5$
Others				_	_	$2.3{\pm}0.9$	0.71 ± 0.30	0.60 ± 0.24
Total	$1.30{\pm}0.23$	$0.41{\pm}0.09$	22 ± 4	$34{\pm}6$	11.7 ± 1.8	50 ± 5	21 ± 5	44 ± 6
Observed events	0	3	22	38	14	63	25	62

$H \rightarrow WW: Run 1 ATLAS$

20

$H \rightarrow WW: Run 2 CMS$

			Category	Subcategory	Requirements
Category	Subcategory	Requirements	Preselection	-	$p_{T1} > 25$ GeV, $p_{T2} > 20$ GeV, $p_{T3} > 15$ GeV
Preselection	-	$m_{\ell\ell}>$ 12 GeV, $p_{T1}>$ 25 GeV, $p_{T2}>$ 13 (10) GeV for e (μ) $p_T^{miss}>$ 20 GeV, $p_T^{\ell\ell}>$ 30 GeV			no additional leptons with $p_T > 10$ GeV min- $m_{\ell^+\ell^-} > 12$ GeV, total lepton charge sum ± 1
		no additional leptons with $p_{\rm T} > 10 {\rm GeV}$ electron and muon with opposite charges	3-lepton WH-tagged	OSSF	no jets with $p_T > 30$ GeV no b-tagged jets with $p_T > 20$ GeV
2-jet VH-tagged	e μ	at least two jets with $p_T > 30$ GeV two leading jets with $ \eta < 2.5$ $60 < m_T < 125$ GeV and $\Delta R_{\ell\ell} < 2$			$p_{\rm T}^{\rm miss} > 50$ GeV, min- $m_{\ell+\ell^-} < 100$ GeV Z boson veto: $ m_{\ell\ell} - m_Z > 25$ GeV $\Delta \phi (\ell \ell \ell, \vec{p}_{\rm T}^{\rm miss}) > 2.2$
		no b-tagged jets with $p_T > 20$ GeV 65 < m_{jj} < 105 GeV and $ \Delta \eta_{jj} $ < 3.5		SSSF	no jets with $p_T > 30$ GeV no b-tagged jets with $p_T > 20$ GeV $\Delta \phi (\ell \ell \ell, \vec{p}_T^{miss}) > 2.5$

Category	Subcategory	Requirements
Preselection	-	four tight and isolated leptons, with zero total charge $p_T > 25$ GeV for the leading lepton $p_T > 15$ GeV for the second leading lepton $p_T > 10$ GeV for the remaining two leptons no additional leptons with $p_T > 10$ GeV Z dilepton mass > 4 GeV X dilepton mass > 4 GeV no b-tagged jets with $p_T > 20$ GeV
4-lepton ZH-tagged	XSF	$ m_{\ell\ell} - m_Z < 15$ GeV $10 < m_X < 50$ GeV $35 < p_T^{miss} < 100$ GeV four-lepton invariant mass > 140 GeV
	XDF	$ m_{\ell\ell} - m_Z < 15 \text{ GeV}$ $10 < m_X < 70 \text{ GeV}$ $p_T^{miss} > 20 \text{ GeV}$

Fig. 6. Postfit $\Delta R_{\ell\ell}$ distribution for events in the three-lepton WH-tagged category, split into the OSSF (left) and SSSF (right) subcategories.

$H \rightarrow WW: Run 1 ATLAS$

<u>3 leptons:</u> 1SFOS and 3SF → BDT INPUT VARIABLES

BDT input discriminating variables which provide the best separation between signal and background are the $p_{\rm T}$ of each lepton, the magnitude of their vector sum, the invariant masses of the two opposite-sign lepton pairs $(m_{\ell_0\ell_1}, m_{\ell_0\ell_2})$, $\Delta R_{\ell_0\ell_1}, E_{\rm T}^{\rm miss}$, and $p_{\rm T}^{\rm miss}$. In the fit, the shape of the distribution of the "BDT Score", divided into six bins, is used to extract the number of observed events in the 3ℓ -3SF and 3ℓ -1SFOS SRs, while the shape of the distribution of $\Delta R_{\ell_0\ell_1}$, divided into four bins, is used to extract the number of observed events in the 3ℓ -0SFOS SR. In the other channels only the event yield in each signal and control region is used without shape information.

BDT,

channels were analyzed for the 2015+2016 results

BDT_{WZ}

$H \rightarrow WW: Run 2 ATLAS$

3 leptons: BDT input variables

Lepton nomenclature (I0I1 assumed from H decay -see slide 4-)

- IO: lepton with different charge
- I1: lepton closest to lepton I0
- I2: remaining lepton

Input variable	Z-dominated	Z-dep	leted
		BDT_{WZ}	$BDT_{t\bar{t}}$
$ \Sigma \mathbf{p}_{\mathrm{T}}^{\ell_{\mathrm{i}}} $	x		
$m_{\ell_0\ell_1}$	x	х	х
m _{eee}	x		
$\Delta R_{\ell_0 \ell_1}$	x		х
$E_{ m T}^{ m miss}$	x	х	
$\Delta\eta_{\ell_1\ell_2}$	x	х	x
m_{T}^W	x		
$p_{\mathrm{T}}^{\ell_0}$		х	
$p_{\mathrm{T}}^{\ell_1}$		х	
$p_{\mathrm{T}}^{\ell_2}$		x	
$m_{\ell_0\ell_1}^{\mathrm{T}}$		х	
m _{ee}		х	
$ d_{0,\mathrm{sig},\mathrm{min}} $		х	
$ d_{0,\mathrm{sig,mid}} $		х	
F_{α}		х	
$\mathrm{BDT}_{\mathrm{HFL}}$ output for ℓ_{HFL}			х
$p_{\mathrm{T}}^{\ell_{\mathrm{HFL}}}$			х
$m_{\ell_{ m HFL}}\ell_{ m cloc}$			х
N _{jet}			х
$p_{\mathrm{T}}^{j_{\mathrm{lead}}}$			х
$m_{\ell_1\ell_2}$			x

Table 7: Input variables of the three BDT disciminants used in the 3ℓ channel.

arXiv:1312.1129

$H \rightarrow WW: Run 1 CMS$

W/ZH: 2leptons + 2jets

mjj [65, 105] GeV, IDeltaEtajjl < 1.5, mT [60, 125] GeV, mll < 200 GeV and DeltaR < 2.5 \rightarrow Fit mll in 9 bins

WH: 3leptons + 3v

Split in OSSF and SSSF events min-MET > 40(30) GeV OS(SS), ImII - mZI > 25 GeV, mII < 100 GeV, DeltaRII < 2

→ Fit DeltaR(II)

Accumulation of data at low mll but limited statistics with Run 1

arXiv:1312.1129

<i>m</i> _H [GeV] g	gH	VBF+VH	Data	All b	kg.	WW	WZ + Z $+Z/\gamma^* - Z$	Z tī-	+ tW	W + jets
		8 TeV	$Ve\mu$ final	state, 2	2-jets ca	tegory, VH t	tag			
125 (shape) 2.86	± 0.92	2.30 ± 0.18	136	129 -	± 15	28.3 ± 6.2	8.2±1	.3 67	′±13	23.9 ± 4.8
Selection stage		$\begin{array}{c} WH \\ H \rightarrow \tau \tau \end{array}$	$\begin{array}{c} WH \\ H \rightarrow V \end{array}$	I VW	Data	All bl	kg.	WZ]	Non-prompt
			8 Te	V SSS	F final	state, WI	$H \rightarrow 3\ell 3\iota$	/ categor	y	
3 lepton requirem	ent (0.72 ± 0.08	1.64 \pm	0.21	71	$83.7 \pm$	3.0 7	7.88 ± 0.3	0	66.8 ± 2.9
Min-MET > 30G	GeV (0.41 ± 0.06	1.21 \pm	0.18	43	$60.2 \pm$	2.5 5	5.16 ± 0.2	4	48.4 ± 2.5
Z removal	(0.41 ± 0.06	1.21 \pm	0.18	43	$60.2 \pm$	2.5 5	5.16 ± 0.2	.4	48.4 ± 2.5
Top-quark veto	o (0.29 ± 0.05	1.02 \pm	0.17	7	10.41 \pm	0.97 2	2.84 ± 0.1	.8	6.60 ± 0.95
$\Delta R_{\ell^+\ell^-}$ & $m_{\ell\ell}$	(0.23 ± 0.05	1.00 \pm	0.20	6	$6.9 \pm$	2.0 1	71 ± 0.1	.6	4.6 ± 2.0
			8 Ie	v OSS	F fina	i state, vvi	$1 \rightarrow 3\ell 31$	v categor	у	
3 lepton requirem	ient 1	1.95 ± 0.12	$6.08 \pm$	0.41	4340	4224 ±	21 2	042.7 ± 4	.8	1369.0 ± 13
Min-MET > 40G	GeV (0.91 ± 0.09	$3.47 \pm$	0.30	1137	1140.9 =	± 6.0 9	00.0 ± 3.0	.2	149.9 ± 4.9
Z removal	(0.56 ± 0.07	$2.69~\pm$	0.27	153	155.3 \pm	3.4	59.1 ± 0.8	8	$\textbf{79.9} \pm \textbf{3.3}$
Top-quark veto	o _(0.35 ± 0.05	$2.14~\pm$	0.23	45	$47.7 \pm$	1.3	34.9 ± 0.0	6	9.6 ± 1.2
$\Delta R_{\ell^+\ell^-}$ & $m_{\ell\ell}$	(0.30 ± 0.06	$2.10~\pm$	0.34	33	$33.2\pm$	3.4	24.0 ± 1.4	4	7.2 ± 3.1

H→ tautau: Run 1 ATLAS

Channel	Selections	-
$W \rightarrow \mu \nu / e \nu, \ H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	Exactly one isolated electron and one isolated muon	-
1	Exactly one τ_{had} passing medium BDT ID	
	$p_{\rm T}(\tau_{\rm had}) > 25 {\rm ~GeV}$	
	Same-charge e and μ , oppositely charged τ_{had}	w
	Events containing <i>b</i> -tagged jets with $p_{\rm T} > 30$ GeV are vetoed	``
	$ p_{\rm T}(\tau_{\rm had}) + p_{\rm T}(\mu) + p_{\rm T}(e) > 80 \text{ GeV}$	
	$\Delta R(\tau_{\rm had}, \tau_{\rm lep}) < 3.2$	
$W \rightarrow \mu \nu / e \nu, \ H \rightarrow \tau_{\rm had} \tau_{\rm had}$	Exactly one isolated electron or one isolated muon	-
	Exactly two τ_{had} passing medium BDT ID of opposite charge	
	$p_{\rm T}(\tau_{\rm had}) > 20 { m GeV}$	
	$ p_{\rm T}(\tau_{\rm had}^1) + p_{\rm T}(\tau_{\rm had}^2) > 100 {\rm GeV}$	
	$m_{\rm T}(\ell, E_{\rm T}^{\rm miss}) > 20 {\rm GeV}$	
	$0.8 < \Delta \hat{R}(\tau_{had}^1, \tau_{had}^2) < 2.8$	TT 1 1 5
	Events containing <i>b</i> -tagged jets with $p_{\rm T} > 30$ GeV are vetoed	Table 5:
$Z \rightarrow \mu \mu / ee, \ H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	Exactly three electrons or muons,	region f
-	One opposite-charge and same-flavor lepton pair	uncertai
	with invariant mass $80 < m_{\ell\ell} < 100 \text{ GeV}$	01
	Exactly one τ_{had} passing medium BDT ID, with opposite charge	Channe
	to the lepton assigned to the Higgs boson	$W \rightarrow \mu$
	$p_{\rm T}(\tau_{\rm had}) > 20 { m GeV}$	$W \rightarrow \mu$
	$ p_{\rm T}(\tau_{\rm had}) + p_{\rm T}(\tau_{\rm lep}) > 60 {\rm ~GeV}$	$Z \rightarrow \mu_{l}$
$Z \rightarrow \mu \mu / ee, \ H \rightarrow \tau_{had} \tau_{had}$	Exactly two electrons or two muons of opposite charge	$Z \rightarrow \mu_{l}$
	Exactly two τ_{had} passing medium BDT ID of opposite charge	
	$p_{\rm T}(\tau_{\rm had}) > 20 { m ~GeV}$	
	$60 < m_{\ell\ell} < 120 \text{ GeV}$	
	$ p_{\rm T}(\tau_{\rm had}^1) + p_{\rm T}(\tau_{\rm had}^2) > 88 {\rm GeV}$	

Strategy: Split in tau decay modes

 $H \rightarrow tau_had + tau_had$ $H \rightarrow tau_had + tau_lep$

while V always decaying leptonically: $W \rightarrow Iv / Z \rightarrow II$

Two subcategories in each channel WH: 1 or 2 leptons (e,mu) ZH: 2 or 3 leptons

Table 5: The yields for the observed and expected background and signal for a 125 GeV Higgs boson in the signal region for each individual channel. The "other" column consists primarily of background from $t\bar{t}$ events. The uncertainties quoted are statistical only.

•	Channel	Obs.	Signal	Σ Background	Fake Factor	Diboson	Other
	$W \rightarrow \mu \nu / e \nu, \ H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	35	1.95 ± 0.05	32.4 ± 1.9	13.1 ± 1.3	13.54 ± 0.35	5.7 ± 1.4
	$W \to \mu \nu / e \nu, \ H \to \tau_{\rm had} \tau_{\rm had}$	33	1.84 ± 0.04	35.5 ± 2.7	28.1 ± 2.4	7.4 ± 1.2	-
	$Z \rightarrow \mu \mu / ee, \ H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	24	1.14 ± 0.03	24.6 ± 1.5	17.1 ± 1.5	7.28 ± 0.16	0.20 ± 0.01
-	$Z \rightarrow \mu \mu / ee, \ H \rightarrow \tau_{had} \tau_{had}$	7	0.64 ± 0.02	6.8 ± 1.2	4.7 ± 1.2	2.09 ± 0.09	0.012 ± 0.003

Fit to the MMC (M2T) shape in ZH (WH)

 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}$

• Data — WH (125 GeV) Fake Factor BG

 $W(\rightarrow l\nu) H(\rightarrow \tau_{\rm b}\tau_{\rm b})$

Diboson

syst. + stat.

Others

Events / 20 GeV

18

16

12

10 F

ATLAS

• Data — WH (125 GeV) Fake Factor BG

WZ

Others ZZ

syst. + stat.

100 120

• Data — ZH (125 GeV) Fake Factor BG

ZZ Others

200

syst. + stat.

140 160

M_{2T} [GeV]

ATLAS

250

M_{MMC} [GeV]

300

 $Z(\rightarrow II) H(\rightarrow \tau_i \tau_h)$

 $W(\rightarrow l\nu) H(\rightarrow \tau_l \tau_h)$

18F

16F

 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$

40 60 80

$H \rightarrow$ tautau: Run 1 ATLAS

Bigger excesses in channels with $H \rightarrow tau_had + tau_had$ $mu \ge 1$ for all cases

Unfortunately, no ATLAS Run-2 analysis (yet) → Only ggf+VBF in Run-2 https://arxiv.org/pdf/1811.08856.pdf

0

50

100

150

H→ tautau: Run 1 CMS

o WH: I + L tau_had o ZH: II + LL' where I = e,mu and L = I or tau_had

- → I + I' tau_had channel
 - II' are SS to reduce Z and tt
 - Split in LT <(>) 130 GeV
- → || + LL'
 - II are OSSF
 - Split in LT(LL') = pT(L) + pT(L') > 25 - 70 GeV depending on the lepton flavour

H→ tautau: Run 1 CMS

In the $\ell + \tau_h \tau_h$ channels, the background from QCD multijet, W + jets, and Z + jets production is suppressed using a BDT discriminant based on the E_T^{miss} and on kinematic variables related to the $\tau_h \tau_h$ system. With $\tau_{h,1}$ and $\tau_{h,2}$ denoting the τ_h with highest and second-highest p_T , respectively, these variables are $p_T^{\tau_{h,1}}$, $p_T^{\tau_{h,2}}$, $\Delta R(\tau_{h,1}, \tau_{h,2})$, and $p_T^{\tau_{h,1},\tau_{h,2}}/(p_T^{\tau_{h,1}} + p_T^{\tau_{h,2}})$. For the chosen threshold on the BDT score, the signal efficiency is ~60% whereas the efficiency for the reducible background components is ~13%.

In the $\ell + \ell' \tau_h$ channels, the large background from Z and t \bar{t} production is strongly reduced by requiring the ℓ and ℓ' leptons to have the same charge. For the 7 TeV dataset, the requirement $L_T \equiv p_T^{\ell} + p_T^{\ell'} + p_T^{\tau_h} > 80$ GeV is imposed to further suppress the reducible background components. For the 8 TeV dataset, the L_T variable is instead used to divide the data into two event categories, one with high L_T (≥ 130 GeV) and one with low L_T (< 130 GeV). The Z + jets

H→ tautau: Run 2 CMS

31

$H \rightarrow yy: Run 2 ATLAS$

				+
Category	Selection			
VH dilep	$N_{\text{lep}} \ge 2,70 \text{GeV} \le m_{\ell\ell} \le 110 \text{GeV}$			- Stat
VH lep High	$N_{\text{lep}} = 1, m_{e\gamma} - 89 \text{GeV} > 5 \text{GeV}, p_{\text{T}}^{\ell + E_{\text{T}}^{\text{miss}}} > 150 \text{GeV}$		$\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$	' Siai.
VH lep Low	$N_{\text{lep}} = 1, m_{e\gamma} - 89 \text{GeV} > 5 \text{GeV}, p_{\text{T}}^{\ell + L_{\text{T}}^{\text{mass}}} < 150 \text{GeV}, E_{\text{T}}^{\text{miss}} \text{ significance} > 1$		$\Pi \rightarrow \gamma \gamma$, $\Pi_H = 125.09 \text{ GeV}$ Total Stat. Exp.	Theo.
VH MET High VH MET Low	$\begin{array}{l} 150 \ \mathrm{GeV} < E_{\mathrm{T}}^{\mathrm{miss}} < 250 \ \mathrm{GeV}, E_{\mathrm{T}}^{\mathrm{miss}} \ \mathrm{significance} > 9 \ \mathrm{or} \ E_{\mathrm{T}}^{\mathrm{miss}} > 250 \ \mathrm{GeV} \\ 80 \ \mathrm{GeV} < E_{\mathrm{T}}^{\mathrm{miss}} < 150 \ \mathrm{GeV}, E_{\mathrm{T}}^{\mathrm{miss}} \ \mathrm{significance} > 8 \end{array}$	μ_{top}	$\mu_{top} = 0.5 \begin{array}{c} +0.6 \\ -0.6 \end{array} \begin{bmatrix} +0.6 \\ -0.5 \end{array} \begin{array}{c} +0.1 \\ -0.5 \end{array}$	+ 0.1 - 0.0
VH had tight VH had loose	$60 \text{ GeV} < m_{jj} < 120 \text{ GeV}, \text{BDT}_{\text{VH}} > 0.78$ $60 \text{ GeV} < m_{jj} < 120 \text{ GeV}, 0.35 < \text{BDT}_{\text{VH}} < 0.78$	μ _{VH}	$\mu_{VH} = 0.7 \begin{array}{c} +0.9 \\ -0.8 \end{array} \begin{bmatrix} +0.8 \\ -0.8 \end{array} \begin{array}{c} +0.2 \\ -0.8 \end{array}$	+ 0.2 - 0.1
	— VH O.18 ATLASVH	μ_{VBF}	$H \to H \mu_{VBF} = 2.0 + 0.6 \begin{bmatrix} +0.5 & +0.3 \\ -0.5 & -0.5 \end{bmatrix}$	+ 0.3 - 0.2
$\begin{array}{c} \mathbf{s}_{H} = \mathbf{s}_{H} s$	$ \begin{array}{c} & & & & \\ \hline & & & $	$^{\mu}_{~ggH}$	$\mu_{ggH} = 0.81 {}^{+0.19}_{-0.18} \begin{bmatrix} {}^{+0.16}_{-0.00} \\ {}^{-0.16}_{-0.00} \end{bmatrix}$	+ 0.07 - 0.05
	A Data, sidebands - 5 0.1 + A Data, sidebands - 5 0.1 + A Data, sidebands - 4 - 5 0.1 + A Data, sidebands - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	μ_{Run-2}	$\mu_{\text{Run-2}} = 0.99 \begin{array}{c} +0.15 \\ -0.14 \end{array} \begin{bmatrix} +0.12 \\ -0.12 \\ -0.12 \end{bmatrix} = 0.99$	6 + 0.07 5 - 0.05
		μ Run-1	$\mu_{\text{Run-1}} = 1.17 \stackrel{+0.28}{_{-0.26}} \begin{bmatrix} +0.23 & +0.11 \\ -0.26 & -0.23 & -0.01 \end{bmatrix}$) + 0.12 3 - 0.08
			0 1 2 3 4 5 6	7
Q ^L	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Signal s	trength

https://arxiv.org/pdf/1804.02716.pdf

5 categories exploiting the presence of leptons, MET and jets

"Each event is classified exclusively by applying the category selections in order and choosing the highest-priority category satisfied by the event."

$H \rightarrow yy: Run \ 2 \ CMS$

- leptonic Z decays (ZH Leptonic):
 - leading photon $p_{\rm T} > 3m_{\gamma\gamma}/8$, subleading photon $p_{\rm T} > m_{\gamma\gamma}/4$;
 - diphoton classifier BDT score greater than 0.11;
 - two same-flavour leptons within the fiducial region, $p_T > 20$ GeV; electrons and muons are required to satisfy the same identification criteria as for the ttH Leptonic category;
 - dilepton invariant mass $m_{\ell\ell}$ in the range $70 < m_{\ell\ell} < 110 \text{ GeV}$;
 - $R(\gamma, e) > 1.0$, $R(\gamma, \mu) > 0.5$, for each of the leptons;
 - in addition, a conversion veto is applied to the electrons to reduce the number of electrons originating from photon conversions, by requiring that, when an electron and a photon candidate share a supercluster, the electron track is well separated from the centre of the supercluster: *R*(supercluster, e-track) > 0.4.
- leptonic W decays (WH Leptonic):
 - leading photon $p_{\rm T} > 3m_{\gamma\gamma}/8$, subleading photon $p_{\rm T} > m_{\gamma\gamma}/4$;
 - diphoton classifier BDT score greater than 0.28;
 - at least one lepton with p_T > 20 GeV; electrons and muons are required to satisfy the same identification criteria as for the ZH Leptonic category;
 - *R*(γ , ℓ) > 1.0 and conversion veto as in the ZH Leptonic category;
 - missing transverse momentum $p_{\rm T}^{\rm miss} > 45 \,{\rm GeV}$;
 - up to two jets each satisfying $p_{\mathrm{T}} > 20\,\mathrm{GeV},\, |\eta| < 2.4,\, R(\mathrm{jet},\ell) > 0.4,$ and

5 categories → SELECTION

 $R(\text{jet}, \gamma) > 0.4;$

- W or Z leptonic decays, relaxed selection (VH LeptonicLoose):
 - as for WH Leptonic with the requirement on the missing transverse momentum to be p_T^{miss} < 45 GeV;
- W or Z leptonic decays, with at least one missing lepton (VH MET):
 - leading photon $p_{\rm T} > 3m_{\gamma\gamma}/8$, subleading photon $p_{\rm T} > m_{\gamma\gamma}/4$;
 - diphoton classifier BDT score greater than 0.79;
 - missing transverse momentum $p_{\rm T}^{\rm miss} > 85 \,{\rm GeV}$;
 - angle in the transverse plane between the direction of the diphoton and the $\vec{p}_{T}^{\text{miss}} \Delta \phi(\gamma \gamma, \vec{p}_{T}^{\text{miss}}) > 2.4;$
- hadronic decays of W and Z (VH Hadronic):
 - leading photon $p_{\rm T} > m_{\gamma\gamma}/2$, subleading photon $p_{\rm T} > m_{\gamma\gamma}/4$;
 - diphoton classifier BDT score greater than 0.79;
 - at least two jets, each with $p_{\rm T}$ > 40 GeV and $|\eta|$ < 2.4, $R({\rm jet}, \gamma)$ > 0.4;
 - dijet invariant mass in the range $60 < m_{jj} < 120 \text{ GeV}$;
 - $|\cos \theta^*| < 0.5$, where θ^* is the angle that the diphoton system makes, in the diphoton-dijet centre-of-mass frame, with respect to the direction of motion of the diphoton-dijet system in the lab frame. The distribution of this variable is rather uniform for VH events, while it is strongly peaked at 1 for background and events from ggH production.