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Disclaimer(s)

e There is no such thing as SM
measurement.

e My main interest is analysing ATLAS

data, focussing on jet substructure
(DW) and unusual topologies (LCD,
MMEF, SS).

e However, this talk will focus on some
of the other fun things I have been
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Why Measurement?

Jet (sub)structure is mostly dependent
o [camon on Parton Shower models

p‘:‘Ck > 0.5 GeV
|niTe‘| <21

¢ Data (with stat. uncertainty)

Non negligible differences from data
[ s osmuan are observed in MC predictions

—— Herwig++ 2.7.1 EE5 CTEQ6LA

—— Pythia 8.175 AU2 CT10

- - - - Pythia 8.186 A14 NNPDF2.3
Pythia 8.186 Monash NNPDF2.3
Pythia 6.428 P2012 CTEQ6L1

P stz (Unfortunately) Grooming to get rid of
uncorrelated radiation also throws
away the soft part we wish to tune to!

“Your garbage I1s my treasure”

Attributed to Stefan Prestel

Data/Model
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https://link.springer.com/article/10.1140/epjc/s10052-016-4126-5

Why Measurement?

Sensitive to both perturbative and non-
perturbative QCD (“precision substructure”)

Input to tune/improvement models and analytic
calculations

Helps in tagging algorithm development.


https://link.springer.com/article/10.1140/epjc/s10052-016-4126-5
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Most comprehensive
jet substructure
measurement at the LHC
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Uncertainty for JSS
measurements

ATLAS 1 o eenany Leading experimental uncertainty
from calorimeter cell-cluster

\§= 13 TeV, 329 fb-1 Data statistical error
- QCD Modeling

energy, resolution, efficiency etc.

—— Cluster angular resolution

anti-kt R=0.8, plead > 600 GeV - — = = Cluster energy scale shift
T ——r—ia Cluster energy scale smearing

T e Cluster energy scale and resolution
uncertainties estimated by track to
cluster E/p ratio, angular resolution

uncertainty by relative position shift

o
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oft drop, p =0, z = 0.1

Relative Uncertainty
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| Reconstruction efficiency from
PrvTLL 0854 Golm e unmatched tracks to clusters




ATLAS Data
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PRIMARY LUND PLANE
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ATLAS-CONF-2019-035

Lund Plane

ATLAS Preliminary Vs = 13 TeV, 139 fb’’
Probing

emmaission
inside a
jet

Regions of the
UE/MPI Lund jet plane

PN ~ FGR
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collinear

Measured for the first time:
9 highlight of Boost2019



Smearing

e Delphes only smears JES, so a larger-R jet pr and
and mass smearing(s) are realistic, but not any
substructure variables, which show no difference.

e Whereas just as an example, if we construct JSS
observables only with charged particles, and apply
the typical charged particle pr and angular
smearing, we see significant effect, which is more
inline with experimental results.
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Smearing
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arXiv:1910.01637 [hep-ph]

JSS Smearing in Rivet
(with Andy Buckley and Karl Nordstrom)
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e Smeared pr and n of the clusters, constructed by adding
individual constituents.

e Tuned the smearing to the ATLAS reco/gen ratios as shown.

e James Monk Why are you smearing Rivet? It's great, | won't have

eDs
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- Reply - 10w



If you have a measurement, can it do
more for you?

More specifically, if we expect a certain
measurement to be performed at the LHC,
what precision of it can exclude certain
parameter space of a specific BSM model

13



Detour: Precision vs
Accuracy

At the LHC,
almost always
we are shooting
for precision ...

Realistic but
conservative
systemastic
uncertainties*




Les Houches 2020 Project

(with Louie Corpe)
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ATLAS Collaboration, M. Aaboud et al., Constraints on mediator-based dark matter and scalar
dark energy models using \/s = 13 TeV pp collision data collected by the ATLAS detector, JHEP 05
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Our Toy Study
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—4— Pseudodata (25% unc)
— 4 — Pseudodata (50% unc)
— Signal1
— Signal2
— Signalj

Pseudodata
(semilep ttbar)
with 5% and 50%
uncertainties

Use CONTUR!
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Signal2: 98%, 84%
Signal3: 64%, 45%
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Proof of principle demonstration ...
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Finally, concluding thoughts
on Machine L.earning

e Machine Learning is a tool. We need to
know where we should be using the
tool, how it is being used, and why we
need to use it.

e BDT is around for 20 years (if not
more!)

e How do you propatage systematic
uncertainties

17
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Test case: Anomaly Detection

e ATLAS and CMS have developed boosted
top/W taggers by throwing many (jss)
variables into the NNs

e Can simulation describe the data*

e What if the new physics resides at a
different place than where we are
looking for?

19



Test case: Anomaly Detection

e ATLAS and CMS have developed boosted
top/W taggers by throwing many (jss)
variables into the NNs

e Can simulation describe the data? @

e What if the new physics resides at a
different place than where we are
looking for?




Way Out?

e Unsupervised learning on data (not
easy, how do you define your CR?)

e Mass-decorrelate the tagger, use QCD
background for training...

Based on:

Tuhin S Roy and Aravind H Vyjay. A robust anomaly finder based on autoencoder.

arXiv preprind arXiv:1903.02032, 2019,

el
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