

New physics simulations at colliders

Benjamin Fuks

LPTHE / Sorbonne Université

HEPP 2020

University of Venda / 30-31 January 2020

New physics simulations at colliders

Benjamin Fuks - 30.01.2020 - |

Outline

Monte Carlo simulations for new physics

+ Path towards the characterisation of new physics

- Fitting and interpreting deviations
- Predictions of associated signatures/signals

Characterisation of new physics at the LHC

✤ Accurate measurements ⊕ precision predictions

Monte Carlo simulations for new physics

BSM simulations: where are we?

New physics simulations - a challenge

- No sign of new physics
- SM-like measurements
 - \rightarrow no leading candidate theory
- Plethora of models to consider
 - \rightarrow many implementations in tools

BSM simulations: where are we?

From Lagrangians to events

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

From Lagrangians to events

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

♦ Why a chain of several tools? ♦ Phenomena at colliders occur at different scales → factorisation

Monte Carlo simulations for proton collisions

Multi-scale problem → factorisation
 TeV scale: hard scattering (new physics?)
 Down to Λ_{QCD}: QCD environment
 Down to sub-MeV: interactions with a detector

Tools and methods for each step

 Image: series of the series

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

✦ Tools connecting an idea to simulated collisions

New physics simulations at colliders

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

Tools connecting an idea to simulated collisions

- Hard scattering
 - ★ Feynman diagram / amplitude generation
 - \star Monte Carlo integration
 - ★ Events

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

Tools connecting an idea to simulated collisions

- Hard scattering
 - ★ Feynman diagram / amplitude generation
 - \star Monte Carlo integration
 - ★ Events
- QCD environment
 - \star Parton showering
 - \star Hadronisation
 - \star Underlying event

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

Tools connecting an idea to simulated collisions

- Hard scattering
 - ★ Feynman diagram / amplitude generation
 - \star Monte Carlo integration
 - ★ Events
- QCD environment
 - \star Parton showering
 - ★ Hadronisation
 - ★ Underlying event
- Detector simulation
 - \star Simulation of the detector response
 - ★ Object reconstruction

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

Tools connecting an idea to simulated collisions

- Hard scattering
 - ★ Feynman diagram / amplitude generation
 - \star Monte Carlo integration
 - ★ Events
- QCD environment
 - \star Parton showering
 - ★ Hadronisation
 - ★ Underlying event
- Detector simulation
 - \star Simulation of the detector response
 - ★ Object reconstruction
- Event analysis
 - ★ Signal/background analysis
 - \star LHC recasting

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

New physics simulations: the 'how-to'

Implementing new physics in Monte Carlo programs
 Definition: particles, parameters & vertices (
 Lagrangian)

 translated in some programming language

New physics simulations: the 'how-to'

New physics simulations: the 'how-to'

Systematisation / automation

Highly redundant (each tool, each model)
No-brainer tasks (from Feynman rules to code)

The FEYNRULES platform (since 2009) From Lagrangians to files in a programming language Few limitations (spin, colour representation, EFT) Renormalisation in the on-shell scheme

[Christensen & Duhr (CPC '09); Alloul, Christensen, Degrande, Duhr & BF (CPC'14)] [Degrande (CPC`15); Frixione, BF, Hirschi, Mawatari, Shao, Sunder & Zaro (JHEP`19)]

The FEYNRULES platform (since 2009) From Lagrangians to files in a programming language Few limitations (spin, colour representation, EFT)

★ Renormalisation in the on-shell scheme

[Christensen & Duhr (CPC '09); Alloul, Christensen, Degrande, Duhr & BF (CPC'14)] [Degrande (CPC`15); Frixione, BF, Hirschi, Mawatari, Shao, Sunder & Zaro (JHEP`19)]

Automation

- Working environment: MATHEMATICA
 - ★ Flexibility, symbolic manipulations, design of new methods
 - ★ Many built-in methods (superspace, spectrum, decays, NLO)

Automation

Working environment: MATHEMATICA

★ Flexibility, symbolic manipulations, design of new methods

* Many built-in methods (superspace, spectrum, decays, NLO)

Interfaced to many tools

CALCHEP, FEYNARTS, WHIZARD (more previously)
 UFO (HERWIG++, MG5AMC, SHERPA, WHIZARD, ...)

Automation

Working environment: MATHEMATICA

★ Flexibility, symbolic manipulations, design of new methods

★ Many built-in methods (superspace, spectrum, decays, NLO)

Interfaced to many tools

CALCHEP, FEYNARTS, WHIZARD (more previously)
 UFO (HERWIG++, MG5AMC, SHERPA, WHIZARD, ...)

SARAH and LANHEP pursue a similar goal

No NLO, different built-in methods, ...

More about interfaces

Each interface dedicated to a given too	is specific
 Removal of vertices not compliant with Colour structures Lorentz structures 	the tool
Translation to a specific format and programming language	
 → not efficient → a unique translation and the tools parse it 	
*	

More about interfaces

The Universal Feynman Output

The UFO in a nutshell

[Degrande, Duhr, BF, Grellscheid, Mattelaer, Reiter (CPC '12)] [Degrande, Duhr, BF, Hirschi, Mattelaer, Shao (in prep.)]

◆UFO = Universal FEYNRULES output → Universal Feynman Output ★Universal as not tied to any specific Monte Carlo program

Set of **PYTHON files** to be linked to any code

- This module contains all the model information
 - ★ All colour/Lorentz structures
 - **★** NLO ingredients (optional: need for FEYNRULES)

The Universal Feynman Output

Interactions: the key strategy

Interactions: the key strategy

\bullet Decomposition in a spin x colour basis (coupling strengths = coordinates) Example: the quartic gluon vertex $ig_s^2 f^{a_1 a_2 b} f^{b a_3 a_4} \left(\eta^{\mu_1 \mu_4} \eta^{\mu_2 \mu_3} - \eta^{\mu_1 \mu_3} \eta^{\mu_2 \mu_4} \right)$ $+ ig_s^2 f^{a_1 a_3 b} f^{b a_2 a_4} \left(\eta^{\mu_1 \mu_4} \eta^{\mu_2 \mu_3} - \eta^{\mu_1 \mu_2} \eta^{\mu_3 \mu_4} \right)$ $+ ig_s^2 f^{a_1a_4b} f^{ba_2a_3} (\eta^{\mu_1\mu_3}\eta^{\mu_2\mu_4} - \eta^{\mu_1\mu_2}\eta^{\mu_3\mu_4})$ UFO version $(f^{a_1a_2b}f^{ba_3a_4}, f^{a_1a_3b}f^{ba_2a_4}, f^{a_1a_4b}f^{ba_2a_3})$ $\times \begin{pmatrix} ig_s^2 & 0 & 0\\ 0 & ig_s^2 & 0\\ 0 & 0 & ig_s^2 \end{pmatrix} \begin{pmatrix} \eta^{\mu_1\mu_4}\eta^{\mu_2\mu_3} - \eta^{\mu_1\mu_3}\eta^{\mu_2\mu_4} \\ \eta^{\mu_1\mu_4}\eta^{\mu_2\mu_3} - \eta^{\mu_1\mu_2}\eta^{\mu_3\mu_4} \\ \eta^{\mu_1\mu_3}\eta^{\mu_2\mu_4} - \eta^{\mu_1\mu_2}\eta^{\mu_3\mu_4} \end{pmatrix}$ \star 3 elements for the colour basis \star 3 elements for the spin (Lorentz structure) basis ★ 9 coordinates (6 are zero)

Interactions: the key strategy

NLO cross sections

Contributions to an NLO result in QCD

Three ingredients: the Born, virtual loop and real emission contributions

NLO cross sections

Contributions to an NLO result in QCD

Three ingredients: the Born, virtual loop and real emission contributions

Dimensional regularisation: calculations in $d = 4 - 2\varepsilon$

* Divergences explicit $(1/\varepsilon^2, 1/\varepsilon)$

Automated NLO simulations

Outline

Back to the simulation chain

✦ Tools connecting an idea to simulated collisions

Hard scattering process

- ★ Feynman diagram / amplitude generation
- ★ Monte Carlo integration
- \star Event generation

QCD 101: predictions at the LHC

\blacklozenge Distribution of an observable ω : the QCD factorisation theorem

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\omega} = \sum_{ab} \int \mathrm{d}x_a \,\mathrm{d}x_b \,\mathbf{f}_{a/\mathbf{p}_1}(x_a;\mu_F) \,\mathbf{f}_{b/\mathbf{p}_2}(x_b;\mu_F) \,\frac{\mathrm{d}\sigma_{ab}}{\mathrm{d}\omega}(\dots,\mu_F)$$

- Long distance physics: the parton densities
- * Short distance physics: the differential parton cross section $d\sigma_{ab}$
- Separation of both regimes \rightarrow the factorisation scale μ_F
 - **\star** Choice of the scale \rightarrow theoretical uncertainties

QCD 101: predictions at the LHC

\blacklozenge Distribution of an observable ω : the QCD factorisation theorem

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\omega} = \sum_{ab} \int \mathrm{d}x_a \,\mathrm{d}x_b \,\mathbf{f}_{a/\mathbf{p}_1}(x_a;\mu_F) \,\mathbf{f}_{b/\mathbf{p}_2}(x_b;\mu_F) \,\frac{\mathrm{d}\sigma_{ab}}{\mathrm{d}\omega}(\dots,\mu_F)$$

Long distance physics: the parton densities

* Short distance physics: the differential parton cross section $d\sigma_{ab}$

• Separation of both regimes \rightarrow the factorisation scale μ_F

\star Choice of the scale \rightarrow theoretical uncertainties

◆ Short distance physics: the partonic cross section
 ◆ Order by order in perturbative QCD: dσ = dσ⁽⁰⁾ + α_s dσ⁽¹⁾ + ...
 ★ More orders → more precision
 ★ Truncation of the series and α_s → theoretical uncertainties
 Feynman diagrams (from UFOs)

Parton densities

Parton densities

100

Parton densities

- Depend on the momentum fraction x of the parton in the proton
- Depend on a scale Q
- Fitted from experimental data
 [in some kinematical regimes (x,Q)]
- Evolution driven by QCD (DGLAP/BFKL)

Direct squared matrix element computations

$$i\mathcal{M} = ig_s^2 \left[\bar{v}_2 \gamma^\mu u_1 \right] \frac{\eta_{\mu\nu}}{s} \left[\bar{u}_3 \gamma^\nu v_4 \right] T^a_{c_2c_1} T^a_{c_3c_4}$$

Direct squared matrix element computations

$$i\mathcal{M} = ig_s^2 \left[\bar{v}_2 \gamma^{\mu} u_1 \right] \frac{\eta_{\mu\nu}}{s} \left[\bar{u}_3 \gamma^{\nu} v_4 \right] T^a_{c_2c_1} T^a_{c_3c_4}$$

Direct squared matrix element computations

$$i\mathcal{M} = ig_s^2 \left[\bar{v}_2 \gamma^{\mu} u_1 \right] \frac{\eta_{\mu\nu}}{s} \left[\bar{u}_3 \gamma^{\nu} v_4 \right] T^a_{c_2c_1} T^a_{c_3c_4}$$

Direct squared matrix element computations

$$i\mathcal{M} = ig_s^2 \left[\bar{v}_2 \gamma^{\mu} u_1 \right] \frac{\eta_{\mu\nu}}{s} \left[\bar{u}_3 \gamma^{\nu} v_4 \right] T^a_{c_2c_1} T^a_{c_3c_4}$$

Direct squared matrix element computations
 Extraction of the amplitude from the Feynman rules

$$i\mathcal{M} = ig_s^2 \left[\bar{v}_2 \gamma^{\mu} u_1 \right] \frac{\eta_{\mu\nu}}{s} \left[\bar{u}_3 \gamma^{\nu} v_4 \right] T^a_{c_2 c_1} T^a_{c_3 c_4}$$

- Squaring with the conjugate amplitude
- Algebraic calculation (colour and Lorentz structures)
- Sum/average over the external states

$$\overline{\left|\mathcal{M}\right|^{2}} = \frac{1}{36} \frac{2g_{s}^{4}}{s^{2}} \operatorname{Tr}\left[\not\!\!p_{1}\gamma^{\mu}\not\!\!p_{2}\gamma^{\nu}\right] \left[\not\!\!p_{3}\gamma_{\mu}\not\!\!p_{4}\gamma_{\nu}\right]$$
$$= \frac{16g_{s}^{4}}{9s^{2}} \left[(p_{1}\cdot p_{3})(p_{2}\cdot p_{4}) + (p_{1}\cdot p_{4})(p_{2}\cdot p_{3}) \right]$$

Direct squared matrix element computations Propagator Extraction of the amplitude from the Feynman rules $i\mathcal{M} = ig_s^2 \left[\bar{v}_2 \gamma^{\mu} u_1 \right] \frac{\eta_{\mu\nu}}{s} \left[\bar{u}_3 \gamma^{\nu} v_4 \right] T^a_{c_2c_1} T^a_{c_3c_4}$ 00000 Interactions Squaring with the conjugate amplitude Algebraic calculation (colour and Lorentz structures) Sum/average over the external states **Particles** $\left|\mathcal{M}\right|^{2} = \frac{1}{36} \frac{2g_{s}^{4}}{s^{2}} \operatorname{Tr}\left[\not\!\!p_{1}\gamma^{\mu}\not\!\!p_{2}\gamma^{\nu}\right] \left[\not\!\!p_{3}\gamma_{\mu}\not\!\!p_{4}\gamma_{\nu}\right]$ $= \frac{16g_s^4}{0c^2} \left[(p_1 \cdot p_3)(p_2 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) \right]$ The number of diagrams increases with the number of final-state particles The complexity rises as N² > Helicity amplitudes

Any calculation beyond 2-to-3 becomes a problem

Principle

- Evaluation of the amplitude for fixed external helicities
- Add all amplitudes (we get complex numbers)
- Squaring
- Sum/average over the external states

Practical example

- I. External incoming particles (numbers) ★ For fixed helicity and momentum
- 2. Wave function of the gluon propagator
- 3. External outgoing particles
- 4. Full amplitude (complex number)

HELAS

The building blocks of the amplitude are the so-called HELAS functions

- HELAS = HELicity Amplitude Subroutine
- One specific routine for each Lorentz structure (Γ_i)
- Not generic for any model
 - ★ SM [Murayama, Watanabe & Hagiwara (KEK-91-11)]
 - ★ MSSM [Cho, Hagiwara, Kanzaki, Plehn, Rainwater & Stelzer (PRD`06)]
 - ★ HEFT [Frederix (2007)]
 - ★ Spin 2 [Hagiwara, Kanzaki, Li & Mawatari (EPJC`08)]
 - * Spin 3/2 [Mawatari & Takaesu (EPJC`II)]

Sufficient for many models

HELAS

The building blocks of the amplitude are the so-called HELAS functions

- HELAS = HELicity Amplitude Subroutine
- * One specific routine for each Lorentz structure (Γ_i)
- Not generic for any model
 - ★ SM [Murayama, Watanabe & Hagiwara (KEK-91-11)]
 - ★ MSSM [Cho, Hagiwara, Kanzaki, Plehn, Rainwater & Stelzer (PRD`06)]
 - ★ HEFT [Frederix (2007)]
 - ★ Spin 2 [Hagiwara, Kanzaki, Li & Mawatari (EPJC`08)]
 - * Spin 3/2 [Mawatari & Takaesu (EPJC`II)]

Sufficient for many models

Generalisation: ALOHA

[de Aquino, Link, Maltoni, Mattelaer & Stelzer (CPC`I2)]

Translation of any vertex present in a UFO into a HELAS subroutine
 Any model supported in MG5_aMC@NLO

HELAS

The building blocks of the amplitude are the so-called HELAS functions

- HELAS = HELicity Amplitude Subroutine
- * One specific routine for each Lorentz structure (Γ_i)
- Not generic for any model
 - ★ SM [Murayama, Watanabe & Hagiwara (KEK-91-11)]
 - ★ MSSM [Cho, Hagiwara, Kanzaki, Plehn, Rainwater & Stelzer (PRD`06)]
 - \star HEFT [Frederix (2007)]
 - ★ Spin 2 [Hagiwara, Kanzaki, Li & Mawatari (EPJC`08)]
 - * Spin 3/2 [Mawatari & Takaesu (EPJC`II)]

Sufficient for many models

Generalisation: ALOHA

[de Aquino, Link, Maltoni, Mattelaer & Stelzer (CPC`I2)]

- Translation of any vertex present in a UFO into a HELAS subroutine
- Any model supported in MG5_aMC@NLO

Recycling: reusing pieces across diagrams
 Gain in computing time

Comparison

	For <i>M</i> diags	For <i>N</i> particles	2 →6 example
Analytical	M2	(N!)²	10 ⁹
Helicity	М	N! 2 ^N	107
Recycling	М	(N-1)! 2 ^{N-1}	5x10 ⁵

Back to the simulation chain

✦ Tools connecting an idea to simulated collisions

Hard scattering process

- ★ Feynman diagram / amplitude generation
- ★ <u>Monte Carlo integration</u>
- \star Event generation

Observable calculations

The QCD factorisation theorem $\frac{d\sigma}{d\omega} = \sum_{a,b} \int dx_a dx_b d\Phi_n \mathbf{f_{a/p_1}}(x_a, \mu_F) \mathbf{f_{b/p_2}}(x_b, \mu_F) \left| \mathcal{M} \right|^2 \mathcal{O}_{\omega}(\Phi_n)$ The evaluation of any observable requires the integral calculation

The QCD factorisation theorem

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\omega} = \sum_{a,b} \int \mathrm{d}x_a \mathrm{d}x_b \mathrm{d}\Phi_n \mathbf{f}_{\mathbf{a}/\mathbf{p}_1}(x_a,\mu_F) \, \mathbf{f}_{\mathbf{b}/\mathbf{p}_2}(x_b,\mu_F) \, \left|\mathcal{M}\right|^2 \mathcal{O}_{\omega}(\Phi_n)$$

The evaluation of any observable requires the integral calculation

The phase space → highly-dimensional integral (3n-2 integrals = n-body final state)
 The phase space structure → analytical calculations hopeless

.....

The integrand is a very peaked function (propagators)

The QCD factorisation theorem

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\omega} = \sum_{a,b} \int \mathrm{d}x_a \mathrm{d}x_b \mathrm{d}\Phi_n \mathbf{f}_{\mathbf{a}/\mathbf{p}_1}(x_a,\mu_F) \, \mathbf{f}_{\mathbf{b}/\mathbf{p}_2}(x_b,\mu_F) \, \left|\mathcal{M}\right|^2 \mathcal{O}_{\omega}(\Phi_n)$$

The evaluation of any observable requires the integral calculation

- The phase space → highly-dimensional integral (3n-2 integrals = n-body final state)
 The phase space structure → analytical calculations hopeless
- The integrand is a very peaked function (propagators)

General and flexible numerical methods

Monte Carlo integration: the method

Monte Carlo integration: the method

Monte Carlo integration: the method

Monte Carlo integration: the method

\bullet The ID example: evaluate the integral I

$$I = \int_{a}^{b} \mathrm{d}x \ f(x)$$

- I. Determine $f_{max} > f(x) \forall x \in [a,b]$
- 2. At a given step *i*,
 ★ pick a random point *x_i* ∈ [*a*,*b*]
 ★ pick a random number *y_i* < *f_{max}*
- 3. Compare with $f(x_i)$ \star If $y_i > f(x_i)$: reject the point \star If $y_i < f(x_i)$: accept the point

Monte Carlo integration: the method

The ID example: evaluate the integral I

$$I = \int_{a}^{b} \mathrm{d}x \ f(x)$$

- I. Determine $f_{max} > f(x) \forall x \in [a,b]$
- 2. At a given step *i*,
 ★ pick a random point *x_i* ∈ [*a*,*b*]
 ★ pick a random number *y_i* < *f_{max}*
- 3. Compare with $f(x_i)$ \star If $y_i > f(x_i)$: reject the point \star If $y_i < f(x_i)$: accept the point
- 4. Evaluate the integral

$$I_N = \frac{N_{\rm accepted}}{N_{\rm total}} \ \mathcal{V}$$

Monte Carlo integration: the error

The mean value theorem

• If f(x) is continuous:

$$\exists \xi \in [a,b] : I = \int_{a}^{b} \mathrm{d}x \ f(x) = (b-a)f(\xi) = (b-a)\langle f \rangle$$

Monte Carlo integration: the error

The mean value theorem

• If f(x) is continuous:

$$\exists \xi \in [a,b] : I = \int_{a}^{b} \mathrm{d}x \ f(x) = (b-a)f(\xi) = (b-a)\langle f \rangle$$

 $\label{eq:sum}$ We can approximate $\langle f \rangle$ by an averaged sum, so that:

$$I = \int_{a}^{b} \mathrm{d}x \ f(x) \ \approx I_{N} = \frac{b-a}{N} \sum_{n=1}^{N} f(x_{n})$$

 \bigstar $\langle f \rangle$ is calculated by sampling the integrand at random points

Monte Carlo integration: the error

The mean value theorem

• If f(x) is continuous:

$$\exists \xi \in [a,b] : I = \int_{a}^{b} \mathrm{d}x \ f(x) = (b-a)f(\xi) = (b-a)\langle f \rangle$$

 \clubsuit We can approximate $\langle f \rangle$ by an averaged sum, so that:

$$I = \int_{a}^{b} \mathrm{d}x \ f(x) \ \approx I_{N} = \frac{b-a}{N} \sum_{n=1}^{N} f(x_{n})$$

 $\bigstar \langle f \rangle$ is calculated by sampling the integrand at random points

 \bullet The error is given by the variance (that can be calculated)

$$V = (b-a) \int_{a}^{b} dx \ f^{2}(x) - I^{2} \ \approx V_{N} = \frac{(b-a)^{2}}{N} \sum_{n=1}^{N} f^{2}(x_{n}) - I_{N}^{2}$$

Independent from the number of dimensions

Discretising an integral

Integrals are evaluated as averaged sums over randomly chosen points

$$I = \int_{a}^{b} \mathrm{d}x \ f(x) \ \approx I_{N} = \frac{b-a}{N} \sum_{n=1}^{N} f(x_{n})$$

Discretising an integral

Integrals are evaluated as averaged sums over randomly chosen points $I = \int_{a}^{b} dx \ f(x) \approx I_{N} = \frac{b-a}{N} \sum_{n=1}^{N} f(x_{n})$ The error is connected to the variance $V = (b-a) \int_{a}^{b} dx \ f^{2}(x) - I^{2} \approx V_{N} = \frac{(b-a)^{2}}{N} \sum_{n=1}^{N} f^{2}(x_{n}) - I_{N}^{2}$

Discretising an integral

Integrals are evaluated as averaged sums over randomly chosen points $I = \int_{a}^{b} \mathrm{d}x \ f(x) \ \approx I_{N} = \frac{b-a}{N} \sum_{n}^{N} f(x_{n})$ The error is connected to the variance $V = (b-a) \int_{a}^{b} dx \ f^{2}(x) - I^{2} \ \approx V_{N} = \frac{(b-a)^{2}}{N} \sum_{n=1}^{N} f^{2}(x_{n}) - I_{N}^{2}$ Result The error can easily be estimated $I = I_N \pm \sqrt{\frac{V_N}{N}}$ The error is independent from the number of dimensions * Improvement possible by minimising V_N

- Ideal case: $f(x) = cst \quad (V=V_N=0)$
 - ★ Change of variables to flatten the integrand

Problem of a peaked integrand

QCD factorisation theorem

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\omega} = \sum_{a,b} \int \mathrm{d}x_a \mathrm{d}x_b \mathrm{d}\Phi_n \mathbf{f}_{\mathbf{a}/\mathbf{p}_1}(x_a,\mu_F) \, \mathbf{f}_{\mathbf{b}/\mathbf{p}_2}(x_b,\mu_F) \, \left|\mathcal{M}\right|^2 \mathcal{O}_{\omega}(\Phi_n)$$

For each point, we have a weight given by $\mathbf{f}_{a/p_1}(x_a, \mu_F) \mathbf{f}_{b/p_2}(x_b, \mu_F) |\mathcal{M}|^2$

Interpretation: each momentum configuration yields a weight

Problem of a peaked integrand

QCD factorisation theorem

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\omega} = \sum_{a,b} \int \mathrm{d}x_a \mathrm{d}x_b \mathrm{d}\Phi_n \mathbf{f}_{\mathbf{a}/\mathbf{p}_1}(x_a,\mu_F) \, \mathbf{f}_{\mathbf{b}/\mathbf{p}_2}(x_b,\mu_F) \, \left|\mathcal{M}\right|^2 \mathcal{O}_{\omega}(\Phi_n)$$

For each point, we have a weight given by $\mathbf{f}_{a/p_1}(x_a, \mu_F) \mathbf{f}_{b/p_2}(x_b, \mu_F) |\mathcal{M}|^2$

Interpretation: each momentum configuration yields a weight

Problem: the integral is peaked (~ propagators)

Random phase space points: very little chance to contribute
 Few points carry the bulk of the integral

* Flattening the integrand \rightarrow change of variables (importance sampling)

 \star Need for some knowledge about the integrand

Problem of a peaked integrand

QCD factorisation theorem

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\omega} = \sum_{a,b} \int \mathrm{d}x_a \mathrm{d}x_b \mathrm{d}\Phi_n \mathbf{f}_{\mathbf{a}/\mathbf{p}_1}(x_a,\mu_F) \, \mathbf{f}_{\mathbf{b}/\mathbf{p}_2}(x_b,\mu_F) \, \left|\mathcal{M}\right|^2 \mathcal{O}_{\omega}(\Phi_n)$$

For each point, we have a weight given by $\mathbf{f}_{a/p_1}(x_a, \mu_F) \mathbf{f}_{b/p_2}(x_b, \mu_F) |\mathcal{M}|^2$

Interpretation: each momentum configuration yields a weight

Problem: the integral is peaked (→ propagators)	
Random phase space points: very little chance to contribute Few points carry the bulk of the integral	
•Flattening the integrand \rightarrow change of variables (importance sampling)	
× Need for some knowledge about the integrand	
A Need for some knowledge about the integrand	
Construction of an approximative function of the integrand	
 Construction of an approximative function of the integrand Division of the integration domain in sub-domains (variable bin-size) 	
 Construction of an approximative function of the integrand Division of the integration domain in sub-domains (variable bin-size) Adjustment: identical variance in each bin 	
 Construction of an approximative function of the integrand Construction of the integration domain in sub-domains (variable bin-size) Adjustment: identical variance in each bin Minimisation of the overall variance 	
 Construction of an approximative function of the integrand Division of the integration domain in sub-domains (variable bin-size) Adjustment: identical variance in each bin Minimisation of the overall variance More bins where the integrand fluctuates more 	

Multi-channel integration

Multi-channel integration: an example

Multi-channel integration: an example

$$I = \int d\Phi_2 \left| \mathcal{A}_s + \mathcal{A}_t + \mathcal{A}_u \right|^2 = \sum_{i=s,t,u} \int d\Phi_2 \frac{\left| \mathcal{A}_i \right|^2}{\left| \mathcal{A}_s \right|^2 + \left| \mathcal{A}_t \right|^2 + \left| \mathcal{A}_u \right|^2} \frac{\left| \mathcal{A}_s + \mathcal{A}_t + \mathcal{A}_u \right|^2}{f(\Phi)}$$

 \star f(Φ) / g(Φ) \simeq 1

 \star The integration of one single diagram is easy (the pole structure is known)

★ Multi-channeling on the basis of the different diagrams

Back to the simulation chain

✦ Tools connecting an idea to simulated collisions

Hard scattering process

- ★ Feynman diagram / amplitude generation
- \star Monte Carlo integration

★ Event generation

New physics simulations at colliders

Benjamin Fuks - 30.01.2020 - 37

Unweighted events in practice

Unweighted events in practice

Summary so far

LHC collision...

New physics simulations at colliders

The simulation chain - step 3

✦ Tools connecting an idea to simulated collisions

- QCD environment
 - ★ Parton showering
 - \star Hadronisation
 - ★ Underlying event

Accelerated charges radiate	' • • •
Large momentum transfers = lot of radiation	

 Accelerated charges radiate Large momentum transfers = lot of radiation 	,
 QED Electrically-charged particles radiate photons Photons can split into a (charged) fermion-antifermion pair 	^

Accelerated charges radiate

Large momentum transfers = lot of radiation

Electrically-charged particles radiate photons

Photons can split into a (charged) fermion-antifermion pair

QCD is similar, but from the colour charge standpoint

- Quarks can radiate gluons
- Gluons can split into a quark-antiquark or a gluon pair (QCD is non-Abelian)

Accelerated charges radiate Large momentum transfers = lot of radiation	••••••
 QED Electrically-charged particles radiate photons Photons can split into a (charged) fermion-antifermion pair 	
 QCD is similar, but from the colour charge standpoint Quarks can radiate gluons Gluons can split into a quark-antiquark or a gluon pair (QCD is non-/ 	Abelian)
Highly energetic coloured particles radiate	、
 Each parton is dressed with an arbitrary number of partons (multiple > Radiated partons also radiate One ends up with a cascade of radiations > parton showers 	radiation)

Generalisation: factorisation formula

·	
In the collinear limit, QCD emission factorises and is universal	
Small angle emission unresolved (long time scales)	
• It does not change the hard process configuration \rightarrow factorisation	

Generalisation: factorisation formula

In the collinear limit, QCD emission factorises and is universal

- Small angle emission unresolved (long time scales)
- * It does not change the hard process configuration \rightarrow factorisation

Generalisation: factorisation formula

In the collinear limit, QCD emission factorises and is universal

- Small angle emission unresolved (long time scales)
- * It does not change the hard process configuration \rightarrow factorisation

* The strong coupling is evaluated at the scale t

 $\star t$ is the evolution variable (hardness of the branching, vanishes in the collinear limit) $\star t$ controls the collinear behaviour

 $P_{ab}(z)$ consists in the QCD splitting kernels

- $\star z$ controls the soft behaviour
- \star Universal resummation of their higher-order corrections

Further generalisation: multiple emission

Further generalisation: multiple emission

Further generalisation: multiple emission

Iterative sequence of ordered emissions

The *n*+1 emission independent of the history \rightarrow Markov chain (no interferences) Leading contribution to the (n+k)-emission configuration: $\theta_1 \gg \theta_2 \gg \theta_3 \gg ...$

No-emission probability

Parton showers: building a radiation history	``````````````````````````````````````
A parton branches at t	
\rightarrow It did no do it before	
No-branching probability (Sudakov form factor)	

•

No-emission probability

Parton showers: building a radiation history	
A parton branches at t	
→ It did no do it before	
No-branching probability (Sudakov form factor)	

Based on the conservation of probability

Derivation of the Sudakov form factor

$$1 = P_{\text{no emission}}(t + dt) + P_{\text{emission}}(t + dt)$$
$$= P_{\text{no emission}}(t + dt) + \frac{dt}{t} \sum \int dz \frac{\alpha_s(t)}{2\pi} P_{ab}(z)$$

No-emission probability

Parton showers: building a radiation history	· · · · · · · · · · · · · · · · · · ·
A parton branches at t	
\rightarrow It did no do it before	
No-branching probability (Sudakov form factor)	

Derivation of the Sudakov form factor

Based on the conservation of probability

$$1 = P_{\text{no emission}}(t + dt) + P_{\text{emission}}(t + dt)$$
$$= P_{\text{no emission}}(t + dt) + \frac{dt}{t} \sum \int dz \frac{\alpha_s(t)}{2\pi} P_{ab}(z)$$

Solution (probability a parton does not radiate between t_1 and t_2):

$$\Delta_a(t_1, t_2) \equiv P_{\text{no emission}}(t_1, t_2) = \exp\left[-\int_{t_1}^{t_2} \frac{\mathrm{d}t}{t} \sum_b \int \mathrm{d}z \frac{\alpha_s(t)}{2\pi} P_{ab}(z)\right]$$

Parton showers: the algorithm

♦ Splitting kernels and the Sudakov yield an evolution equation $\phi_a(t, t_0) = \Delta_a(t, t_0) + \sum_b \int_{t_0}^t \frac{\mathrm{d}t'}{t'} \mathrm{d}z \ \Delta(t, t') \frac{\alpha_s(t')}{2\pi} P_{ab}(z) \ \phi_b(t', zt_0) \phi_c(t', (1-z)t_0)$

Parton showers: the algorithm

Splitting kernels and the Sudakov yield an evolution equation

$$\phi_a(t,t_0) = \Delta_a(t,t_0) + \sum_b \int_{t_0}^t \frac{\mathrm{d}t'}{t'} \mathrm{d}z \ \Delta(t,t') \frac{\alpha_s(t')}{2\pi} P_{ab}(z) \ \phi_b(t',zt_0)\phi_c(t',(1-z)t_0)$$

★ The parton shower algorithm
★ Start: a parton *a* at a scale *t*₀
★ We generate an emission scale *t*₁ according to the Sudakov probability $\Delta_a(t_0, t_1)$ ★ If *t*₁ < *t*_{cut}, the algorithm stops (*t*_{cut} = breaking down of perturbative QCD)
★ If *t*₁ > *t*_{cut}, we generate *z*₁ according to *P*_{ab}(*z*) → one extra final-state parton
♦ Iteration until stops for all partons

Limitations / improvements

- Parton showers = collinear approximation of the leading corrections
 - \star Matching with the hard-scattering matrix elements
 - \star Multiparton matrix element merging

Limitations and improvements

Limitations / improvements

- Parton showers = collinear approximation of the leading corrections
 - \star Matching with the hard-scattering matrix elements
 - ★ Multiparton matrix element merging

Parton showers = collinear approximation of the leading corrections

- ★ Matrix exponentiation = resummation (improved Sudakov)
- ★ Higher-order corrections (not trivial)

Limitations and improvements

Limitations / improvements

- Parton showers = collinear approximation of the leading corrections
 - ★ Matching with the hard-scattering matrix elements
 - ★ Multiparton matrix element merging

Parton showers = collinear approximation of the leading corrections

- ★ Matrix exponentiation = resummation (improved Sudakov)
- ★ Higher-order corrections (not trivial)

Matrix elements

- Fixed-order calculations
- Full treatment of spin and colour
- Technical limit on the multiplicity
- Valid for hard and well-separated partons

Matrix elements

- Fixed-order calculations
- Full treatment of spin and colour
- Technical limit on the multiplicity
- Valid for hard and well-separated partons

Parton showers

- Resummation calculations
- Approximate handling of spin and colour
- High final-state multiplicity
- Valid for soft and/or collinear partons

Matrix elements

- Fixed-order calculations
- Full treatment of spin and colour
- Technical limit on the multiplicity
- Valid for hard and well-separated partons

Parton showers

- Resummation calculations
- Approximate handling of spin and colour
- High final-state multiplicity
- Valid for soft and/or collinear partons

Matching prescription: the best of both worlds

- The matrix elements control hard radiation
- Parton showers control soft radiation

Matrix elements

- Fixed-order calculations
- Full treatment of spin and colour
- Technical limit on the multiplicity
- Valid for hard and well-separated partons

Parton showers

- Resummation calculations
- Approximate handling of spin and colour
- High final-state multiplicity
- Valid for soft and/or collinear partons

Matching prescription: the best of both worlds

- The matrix elements control hard radiation
- Parton showers control soft radiation

Multipartonic matrix element merging (prescription)

- Matrix elements containing 0, 1, 2, … N extra partons
- Parton showering of each event
- Removal of any double counting

Matching / merging at work

Matching / merging at work

The simulation chain - step 4

Tools connecting an idea to simulated collisions

QCD environment

- \star Parton showering
- ★ <u>Hadronisation (and hadron decays)</u>
- ★ Underlying event

Hadronisation

Generalities Perturbative QCD breaks down at scales around I GeV Non-perturbative models: from partons to hadrons Cannot be computed from first principles

Hadronisation

Hadronisation

 Generalities Perturbative QCD breaks down at scales around I GeV Non-perturbative models: from partons to hadrons Cannot be computed from first principles
 Two main hadronisation models The Lund string model [Andersson, Gustafson, Ingelmanm & Sjöstrand (PR'83)] The cluster model [Webber (NPB'84)]
 Hadron decays Thousands of different channels Based on form factors Large uncertainties (the sum of the branching fractions may not be 1) Significant impact on the event shape

The Lund string model

The Lund string model

The cluster model

The cluster model

The simulation chain - step 5

✦ Tools connecting an idea to simulated collisions

QCD environment

- \star Parton showering
- ★ Hadronisation (and hadron decays)
- ★ <u>Underlying event</u>

.*	····································
í	Conoralities: n independent secondary interactions
Ļ	V Generalities. Il independent secondary interactions
•	··································

Summary

