
International Summer School series on  

“Intelligent Signal Processing for Frontier Research and Industry”  

UAM, August 27, 2021
7/1/2015 W3-S-Chair of "Theoretical Particle  development of theories beyond the Standard Model" - Department of Human Resources and Development

http://www.personalabteilung.hu-berlin.de/stellenausschreibungen/w3-s-professur-fuer-theoretische-teilchenphysik-2500-entwicklung-von-theorien-jenseits-des-… 1/2

W3-S-Chair  of  "Theoretical  Particle  ─  development  of  theories  beyond  the
Standard  Model"
Faculty  of  Mathematics  and  Natural  Sciences,  Department  of  Physics,  under  a  joint

appointment  with  the  German  Electron  Synchrotron  (DESY)

Code  number

PR  /  012/15

Category  (s)

Professorships

Number  of  points

1

Of  use

Faculty  of  Mathematics  and  Natural  Sciences,  Department  of  Physics,  under  a  joint
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Text:

At  the  Faculty  of  Mathematics  and  Natural  Sciences,  Department  of  Physics,  is  a  joint

appointment  with  the  German  Electron  Synchrotron  (DESY)  a

W3-S-Chair  of  "Theoretical  Particle  ─  development  of  theories  beyond  the

Standard  Model"

to  be  filled  as  soon  as  possible.

DESY  is  one  of  the  leading  centers  for  Astroparticle  and  Particle  Physics.  The  research

program  of  particle  physics  includes  a  strong  involvement  in  the  LHC  experiments  and

basic  research  in  the  field  of  theoretical  particle  in  the  Standard  Model  and  possible

extensions.  The  Institute  of  Physics,  Humboldt  University  is  also  involved  with  two

professorships  at  the  LHC  experiment  ATLAS.  The  research  interests  of  the  working  groups

in  the  field  of  theoretical  particle  physics  ranging  from  mathematical  physics  on  the

phenomenology  of  particle  physics  to  lattice  gauge  theory.

Candidates  /  students  should  be  expelled  through  excellence  with  international  recognition

in  the  field  of  theoretical  particle  physics  with  a  focus  on  the  development  of  models

beyond  the  Standard  Model.  Is  expected  to  close  cooperation  with  the  resident  at  the

Humboldt  University  workgroups.  In  addition  to  the  development  of  possible  standard

model  extensions  and  phenomenological  studies  of  experimental  verification  to  be  carried

out.  Place  special  emphasis  send  the  Higgs  physics.  It  is  expected  that  he  /  she  maintains

the  scientific  contacts  between  DESY  and  the  HU  and  active  in  the  DFG  Research  Training

Group  GK1504  "Mass,  Spectrum,  Symmetry:  Particle  Physics  in  the  Era  of  the  Large

Hadron  Collider"  cooperates.  He  /  she  should  be  at  all  levels  of  teaching  in  physics  at  the

HU  participate  (2  LVS)  and  will  have  the  opportunity  to  acquire  outside  of  a  creative

research  program.

Applicants  /  inside  must  meet  the  requirements  for  appointment  as  a  professor  /  to

professor  in  accordance  with  §  100  of  the  Berlin  Higher  Education  Act.

DESY  and  HU  aim  to  increase  the  proportion  of  women  in  research  and  teaching  and  calling

for  qualified  scientists  urgently  to  apply.  Severely  disabled  applicants  /  will  be  given

( christophe.grojean@desy.de )

Christophe GrojeanChristophe Grojean
DESY (Hamburg) 

Humboldt University (Berlin)

    6th edition of International Summer School series, INFIERI 
                On INtelligent Signal Processing for FrontIEr Research & Industry, 
                          to be held at the Autonoma in Madrid, 23/8 to 4/9, 2021 

 

Subject: Invitation                                                                              July 12th 2021 

Dear Professor Grojean 

After Oxford, Paris, Hamburg, Sao Paulo and HUST in Wuhan, the 6th edition of the INFIERI 
International Summer School series on "Intelligent Signal Processing for Frontier Research 
and Industry" will be held this year at the University Autonoma in Madrid (UAM), from 
August 23 to September 4, 2021. This cross-disciplinary School (flyer here attached) gathers 
the fundamental research with the high tech and engineering worlds with as common goal: 
building intelligent instruments for exploring the Universe or the Human Body or the ultimate 
structure of Matter.  

This international School will attract 80 to100 students (mainly PhDs and young postdocs, 
many from the fundamental research area (Astrophysics/ Cosmology and High Energy Physics) 
and some of applied field (e.g. Medical Physics/Medicine) as well as from the related 
Engineering domains, but with strong Physics basis. 

The school scheduled on July last year was postponed for obvious reasons to 2021. This year 
we take the challenge have the school in-person and thus to restore the so essential direct and 
vivid exchanges between students and Professors. This challenge is without forgetting to 
guarantee the needed safety conditions with a strict organization and rules.  

The School program and organization are in http://infieri2020.ft.uam.es/ciaff/, and an overview 
in “UAM-Prog_at_glance-2021.pdf” (here attached). 

For the first time in the INFIERI School series, the introductory vision lectures on the two 
fundamental research fields of the School e.g. Particle Physics and Astrophysics/Cosmology, 
will be given by Theoreticians. Indeed, this school edition will pursue and even strengthen the 
essential and bijective links between Theory-Experiment-High-Technology, which are at the 
core of this school series.  

Moreover, and also for the first time, “hands-on Labs” organized as dedicated theory 
masterclasses will be set-up thanks to the strong support of the IFT-UAM, on both the HEP and 
Astrophysics/Cosmology topics covered by the School. 

Because of your renowned research and academic accomplishments in the fundamental field 
we are inviting you to give the introductory vision lecture (1h45 min) on Particle Physics, on 
August 24, at 11 am, with as tentative tittle (to be modified at your convenience): “Higgs and 
beyond, what will we learn at the future accelerators?”. 

Christophe Grojean Higgs Physics Ibarra, March. 10-12, 2o1513
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LHC Status After ~10 years

The Higgs exists… and nothing else Beyond the Standard Model 
showed up! 

But we have learnt a lot (the biggest discovery is that 
supersymmetry was not discovered) and the spectrum of physics 
emerged from the LHC is far richer than expected ! 

The future is bright and promising. 

M. Mangano, CERN Courier ‘20

https://arxiv.org/abs/2003.05976
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*energy	consump.on	per	integrated	luminosity	(and	Higgs	produced)	is	lower	at	circular	colliders	but	the	energy	consump.on	per	
GeV	is	lower	at	linear	colliders;	cross-over	at	~	365	GeV(running	costs:	255	EUR/Higgs	at	FCC-ee240,	>7’000	EUR/Higgs	at	ILC250)	

Leptons
 S/B ~ 1 ➾ measurement?

 polarized beams 
        (handle to chose the dominant process)

 limited (direct) mass reach

 identifiable final states 

 ➾ EW couplings  

 higher luminosity + same tunnel for ee/hh 
 several interaction points
“greener”*: less power consumption at low E

 precise E-beam measurement
  ( O(0.1MeV) via resonant (transverse) depolarization) 

 √s limited by synchroton radiation

Circular Linear
 easier to upgrade in energy 

 easier to polarize beams

“greener”*: less power consumption at high E

 large beamsthralung 

 one IP only

 large mass reach ➾ exploration?
 S/B ~ 10-10 (w/o trigger)
 S/B ~ 0.1 (w/ trigger)
 requires multiple detectors 

                (w/ optimised design) 

 only pdf access to √š
 ➾ couplings to quarks and gluons

Hadrons

Which Machine(s)?
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Future of HEP
ECFA Higgs study group ‘19
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This article presents the results of the Standard Model (SM) Higgs boson studies performed by the Higgs@FutureColliders28

group based on the input submitted to the Update of the European Strategy by the various proponents of new high-luminosity29

energy-frontier particle accelerator projects beyond the High Luminosity LHC (HL-LHC). This report fulfils part of the30

mandate given to this group by the restricted ECFA (REFCA) committee, see Appendix A. The exploration of the Higgs boson31

through direct searches and precision measurements at future colliders is among the most important aspects of their scientific32

programmes.33

The colliders considered for this document are High-Energy LHC (HE-LHC), Future Circular Colliders (FCCee,eh,hh) [1],34

the Circular Electron-Positron Collider (CEPC) [2], the International Linear Collider (ILC) [3], the Compact Linear Collider35

(CLIC) [4], and the Large Hadron electron Collider [5] (LHeC or HE-LHeC 1 ). The physics results that are expected by the36

completion of HL-LHC are assumed to represent the scenario from where these future colliders would start. Furthermore,37

a muon collider is also briefly illustrated, but given the less advanced stage, it is not part of the default analyses performed.38

The potential of a gg collider (based on an e+e� collider and laser beams) for Higgs boson physics has been studied a while39

ago [6, 7] and more recently again in context of plasma-wakefield driven accelerators [8] but is not addressed further in this40

report. Plasma-wakefield driven accelerators also offer promise to provide multi-TeV e+e� colliders (e.g. [8]) but are not41

addressed further here.42

A table of the colliders and their parameters (type,
p

s, polarisation P , integrated luminosity L , the run time) is given in43

Table 1. A graphical display of the time line and luminosity values is shown in Fig. 1. The parameters used are taken from44

the references also given in that Table. For the purpose of this study, only inputs as provided by the various collaborations45

are used, and there is no attempt to make any judgement on the validity of the assumptions made in estimating the projected46

measurement uncertainties (see also mandate in Appendix A).47

Figure 1. Time line of various collider projects starting at time T0. Given are the luminosity values and energies, also shown
in Table 1. For the clarification of the meaning of a year of running, see the caption to Table 1.

For the following sections the tables and plots are labelled using the acronyms given in Table 1. The energy subscript48

indicates the highest energy stage of the given collider, and the results always assume that it is combined with results from the49

lower energy stages.50

At the heart of the Higgs physics programme is the question of how the Higgs boson couples to Standard Model elementary51

particles. Within the SM itself, all these couplings are uniquely determined. But new physics beyond the SM (BSM) can modify52

these couplings in many different ways. The structure of these deformations is in general model-dependent. One important goal53

of the Higgs programme at the future colliders is certainly to identify, or least constrain, these deformations mostly from the54

measurements the Higgs production cross section (s ) times decay branching ratio (BR)2. Ultimately, these studies will be used55

1For HE-LHeC no analysis was performed here, but it is expected that the relative improvements w.r.t. LHeC are expected to be similar as from HL-LHC to
HE-LHC

2The Higgs couplings could be constrained less directly from processes with no Higgs in the final state or without even a non-resonant Higgs. But the main

2/53
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Future of HEP
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Subject to large uncertainty
1) need a scientific consensus

2) political approval 

ECFA Higgs study group ‘19

Hi!s-mantics

Divination "r#gh Hi!s
Friday, January 27, 2012

Introduction26

[ANv1: authors: BEATE - reviewers: Maria + Christophe ] [BHv2: Ready for review: 06.05]27

This article presents the results of the Standard Model (SM) Higgs boson studies performed by the Higgs@FutureColliders28

group based on the input submitted to the Update of the European Strategy by the various proponents of new high-luminosity29

energy-frontier particle accelerator projects beyond the High Luminosity LHC (HL-LHC). This report fulfils part of the30

mandate given to this group by the restricted ECFA (REFCA) committee, see Appendix A. The exploration of the Higgs boson31

through direct searches and precision measurements at future colliders is among the most important aspects of their scientific32

programmes.33

The colliders considered for this document are High-Energy LHC (HE-LHC), Future Circular Colliders (FCCee,eh,hh) [1],34

the Circular Electron-Positron Collider (CEPC) [2], the International Linear Collider (ILC) [3], the Compact Linear Collider35

(CLIC) [4], and the Large Hadron electron Collider [5] (LHeC or HE-LHeC 1 ). The physics results that are expected by the36

completion of HL-LHC are assumed to represent the scenario from where these future colliders would start. Furthermore,37

a muon collider is also briefly illustrated, but given the less advanced stage, it is not part of the default analyses performed.38

The potential of a gg collider (based on an e+e� collider and laser beams) for Higgs boson physics has been studied a while39

ago [6, 7] and more recently again in context of plasma-wakefield driven accelerators [8] but is not addressed further in this40

report. Plasma-wakefield driven accelerators also offer promise to provide multi-TeV e+e� colliders (e.g. [8]) but are not41

addressed further here.42

A table of the colliders and their parameters (type,
p

s, polarisation P , integrated luminosity L , the run time) is given in43

Table 1. A graphical display of the time line and luminosity values is shown in Fig. 1. The parameters used are taken from44

the references also given in that Table. For the purpose of this study, only inputs as provided by the various collaborations45

are used, and there is no attempt to make any judgement on the validity of the assumptions made in estimating the projected46

measurement uncertainties (see also mandate in Appendix A).47

Figure 1. Time line of various collider projects starting at time T0. Given are the luminosity values and energies, also shown
in Table 1. For the clarification of the meaning of a year of running, see the caption to Table 1.

For the following sections the tables and plots are labelled using the acronyms given in Table 1. The energy subscript48

indicates the highest energy stage of the given collider, and the results always assume that it is combined with results from the49

lower energy stages.50

At the heart of the Higgs physics programme is the question of how the Higgs boson couples to Standard Model elementary51

particles. Within the SM itself, all these couplings are uniquely determined. But new physics beyond the SM (BSM) can modify52

these couplings in many different ways. The structure of these deformations is in general model-dependent. One important goal53

of the Higgs programme at the future colliders is certainly to identify, or least constrain, these deformations mostly from the54

measurements the Higgs production cross section (s ) times decay branching ratio (BR)2. Ultimately, these studies will be used55

1For HE-LHeC no analysis was performed here, but it is expected that the relative improvements w.r.t. LHeC are expected to be similar as from HL-LHC to
HE-LHC

2The Higgs couplings could be constrained less directly from processes with no Higgs in the final state or without even a non-resonant Higgs. But the main

2/53



Christophe Grojean INFIERI-UAM,  August 20215

What is the scale of New Physics?

small FCNC:

tiny neutrino masses:

slow proton decay:

High Scale Wishes
gFµ⌫ ̄H�

µ⌫
 

M
2
NP

(LH)2

MNP

UUDE

M2
NP

— Simplicity —



Christophe Grojean INFIERI-UAM,  August 2021

QM+SR basic rules
are such that models with heavy scale 

cannot accommodate 
a light Higgs boson nor a small vacuum energy.

Need to have additional structures/selection rules
for it to happen

5

What is the scale of New Physics?

small FCNC:

tiny neutrino masses:

slow proton decay:

High Scale Wishes
gFµ⌫ ̄H�

µ⌫
 

M
2
NP

(LH)2

MNP

UUDE

M2
NP

— Simplicity —



Christophe Grojean INFIERI-UAM,  August 20215

What is the scale of New Physics?

small FCNC:

tiny neutrino masses:

slow proton decay:

High Scale Wishes
gFµ⌫ ̄H�

µ⌫
 

M
2
NP

(LH)2

MNP

UUDE

M2
NP

— Simplicity —
Low Scale Wishes

⤿ light susy?

small EDMs:

tiny vacuum energy:

light Higgs boson:

argdetY  10�10

m2
H

⇡ M2
NP � (125GeV)2

⇤ ⇡ M4
NP �

�
10�3eV

�4
⤿ axion?

⤿ ?

— Complexity —



Christophe Grojean INFIERI-UAM,  August 20215

What is the scale of New Physics?

small FCNC:

tiny neutrino masses:

slow proton decay:

High Scale Wishes
gFµ⌫ ̄H�

µ⌫
 

M
2
NP

(LH)2

MNP

UUDE

M2
NP

Where is everyone?

— Simplicity —
Low Scale Wishes

⤿ light susy?

small EDMs:

tiny vacuum energy:

light Higgs boson:

argdetY  10�10

m2
H

⇡ M2
NP � (125GeV)2

⇤ ⇡ M4
NP �

�
10�3eV

�4
⤿ axion?

⤿ ?

— Complexity —



Christophe Grojean INFIERI-UAM,  August 2021

even new physics at few hundreds of GeV might be difficult to see and could escape our detection

 compressed spectra 

 displaced vertices

 no MET, soft decay products, long decay chains

 uncoloured new physics

    

  

  

 R-susy

 Neutral naturalness 
     (twin Higgs, folded susy)   

 Relaxion
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What is the scale of New Physics?

small FCNC:

tiny neutrino masses:

slow proton decay:

High Scale Wishes
gFµ⌫ ̄H�
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Where is everyone?

need for a versatile machine 
capable to adjust to very different new physics scenario

(i) guaranteed deliverables
(ii) exploration potential

— Simplicity —
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(i) Guaranteed Deliverables

— Exploration of the Higgs Sector —
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SM: Once-Now

Many thanks to J. De Blas et al. (HEPfit)  
for the analysis of current data   

and to A. Paul for plotting the results

EW Higgs

TGC

EW known at 0.1%
TGC known at 1%

Higgs known at 10%
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Higgs programme at Future Colliders

๏ better measurements of Higgs properties: mass, width
๏ precision measurements of Higgs couplings
๏ access to rare decay modes
๏ access at rare production modes/kinematical distributions
๏ discovery of extended Higgs sectors

more energy  + more luminosity = more Higgses

More Higgs physics at hadron collider 

 [TeV]s
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 WH (NNLO QCD)
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 ZH (NNLO QCD)

App 

H (NLO QCD)

t tA
pp 

 = 125 GeVHM
MSTW2008

100 TeV > 2 billion

33 TeV > 500 million

14 TeV > 150 million

# of Higgses in 3 ab-1

In comparison,  O(million) 
Higgs at Higgs factories

Can look for very rare and distinct Higgs signal.

gHXY FCC-ee
ZZ 0.16%

WW 0.85%
γ γ 1.7%
Zγ
tt
bb 0.88%
τ τ 0.94%
cc 1.0%
ss H→Vγ, in progr.

μμ 6.4%
uu,dd H→Vγ, in progr.

ee e+e–→H, in progr.

HH
BRexo 0.48%

Guessed projections

FCC-hh

<1% ?
1% ?
1% ?

2% ?

5% ?
< 10–6 ?

FCC-hh ambitious but 
possible targets?

→ from ttH/ttZ

→ extrapolation from HL-LHC estimates

→ from HH → bb γγ
→ for specific channels, like H→eμ, ...

→ extrapolation from HL-LHC estimates

gg→H 740 pb 7.4 G

VBF 82 pb 0.8 G

WH 16 pb 160 M

ZH 11 pb 110 M

ttH 38 pb 380 M

gg→HH 1.4 pb 14 M

N / 10ab–1σ

→ from γ γ/ ZZ and ZZ from FCC-ee

@ 100 TeV

M. Mangano, HXSWG ’15

N100 N100 /N8 N100 /N14

gg→H 16 G 4.2 × 104 110

VBF 1.6 G 5.1 × 104 120

WH 320 M 2.3 × 104 66

ZH 220 M 2.8 × 104 84

ttH 760 M 29 × 104 420

gg→HH 28 M 280

Rate comparisons at 8, 14, 100 TeV

N100 = σ100 TeV × 20 ab–1

N8 = σ8 TeV × 20 fb–1

N14 = σ14 TeV × 3 ab–1

Statistical precision:
- O(100 - 500) better w.r.t Run 1
- O(10 - 20) better w.r.t HL-LHC

http://indico.cern.ch/event/350628/contribution/3/attachments/1128006/1611304/Mangano-HXSWG.pdf
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Rare H production modes

P.Torrielli, MadGraph5-aMC@NLO

Which opportunities for new 
measurements and probes of Higgs 

properties are made possible by 
these new channels ?

HH

HHjj HHtt
1000 fb
100 fb

100 fb

Rare H production modes

P.Torrielli, MadGraph5-aMC@NLO

Which opportunities for new 
measurements and probes of Higgs 

properties are made possible by 
these new channels ?

HH

HHjj HHtt
1000 fb
100 fb

100 fb

x 40
x 100-1000

FCC-hh = H+X factory

(Plots from P. Torrielli and MLM, CERN’14)

Patrick Janot 

Higgs%Physics%with%(V)HECLHC%
!  What’s%new%at%higher%energy%?%

◆  The%Higgs%cross%sections%increase%substantially%

●  HECLHC%would%do%like%1%ab-1 of%HLCLHC%for%HVV,%Hbb,%Hγγ,%Hgg%and%Hbb%
➨  But%about%the%same%as%HLCLHC%on%Htt%and%HHH%

●  VHECLHC%would%do%like%6%ab-1 of%HLCLHC%for%HVV,%Hbb,%Hγγ,%Hgg%and%Hbb%
➨  But%much%better%on%Htt%(2%)%and%HHH%(10%)%

◆  Possibly%a%whole%lot%of%new%physics%becomes%accessible%
●  The%larger%the%energy,%the%better%

14 Nov 2012 
HF2012 : Higgs beyond LHC (Experiments) 

31 

[18] 
H production @ FCC-hh

relative importance of 
production modes 
modified in favor of 
VBF and ttH

https://indico.cern.ch/event/304759/contribution/35/material/slides/0.pdf


Christophe Grojean INFIERI-UAM,  August 2021

Higgs multiplicty 

Single h Double h Triple H 

Je
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h 
h+j 
h+jj 

hh 
hh+j 
hh+jj 

hhh 

How to organize? 

The entire Higgs business is all about extracting the Higgs 
properties as precise as possible 

- also roughly indicates possible initial states/related kinematics 
- Jet  multiplicity  might  be  replaced  with  V=W,Z,  top,  etc… 

∼ 44  ab  ∼ 50  pb  ∼ 34  fb  

∼ 2  fb  ∼ 15  pb  

∼ 2  fb ( )  

(adapted from M. Son@Planck2014)

~	2	pb

~	4.2	pb

10

Producing one Higgs is good. Producing H+X is better

@	14	TeV

Higgs Programme at Future Colliders

http://indico.cern.ch/event/272860/session/12/contribution/178/material/slides/0.pdf
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Rare Higgs production/decay

FCC-hh = H+X factoryFCC-hh =  
probe extreme kinematic regimes

8

Why Higgs physics at a 100 TeV pp collider

2. FCC-hh is an energy frontier experiment

- discovery of extended Higgs sectors 

- physics studies in extreme kinematic regimes

Fig. 40: Integrated Higgs transverse momentum rates, for various production channels, with 20 ab�1. The light-
dotted horizontal lines in the left (right) panel correspond to the production of 105 (10) events with a Higgs decay
to the indicated final states.

emerges as the most abundant source of large-pT Higgses. Moving to yet larger pT , even VBF and
eventually associated V H production come to be more important than gg � H . The key reason for this
is the form-factor-like suppression of the ggH vertex at large virtuality, when the finite-mtop effects are
properly accounted for.

This observation has important implications for the measurements. For example, while dedicated
cuts are needed to extract the VBF Higgs-production signal from the inclusive gg � H + X Higgs
sample, at large pT the dominant source of irreducible background is top production. The separation of
tt̄H from VBF when pT (H) > 1 TeV can rely on kinematic and event-shape discriminators, which are
likely more powerful and efficient than the usual VBF cuts. This may also have important implications on
the detector, since optimal acceptance to VBF cuts requires instrumentation in the very difficult forward
⇥ region.

Large Higgs pT values, furthermore, make it possible to consider using the otherwise disfavoured
H � bb̄ decay mode, thanks to the higher and higher discrimination power of jet-structure techniques.
The ability to use this high-BR decay, extends considerably the accessible pT (H) range. Lower-BR final
states, such as H � ��, ZZ⇥, Z� or µ+µ�, remain nevertheless usable for precision measurements (i.e.
event rates in excess of 104), over a broad range of pT .

In this Section we shall elaborate in some more detail on these ideas. One could organize the
discussion according to final state (e.g. addressing the issue of how to best measure a given BR from a
global fit of several production channels), or according to production channel (e.g. to compare different
decays in the same channel, in order to remove possible production systematics from the precise determi-
nation of BR ratios). We shall adopt a mixed approach and, as emphasized above, we shall not analyze in
quantitative terms all sources of theoretical and experimental uncertainties. Several of the studies shown
here were done including only the leading relevant order of pertubation theory. We include the dominant
sources of backgrounds, and make crude, and typically optimistic, assumptions about the relevant de-
tector performance issues. The key purpose is to show what is in principle possible, and postpone more
rigorous studies to future work.
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Rare modes
• At 100 TeV, production cross-sections for very rare modes become 

non-negligible

• Huge increase for pp→Htj: 250x 8 TeV (no cuts)

• Could use HVV to constrain possible anomalous Higgs couplings to 

vector-boson (and fermion) pairs?,

• perturbative unitarity at high energy

• anomalous triple-vector-boson vertices 

11

1.7 Rare production modes
The first section of table 19 [106], obtained with the code [102], reports the rate
for associated production of a SM Higgs boson with a single top. The cross section is in excess of 5
picobarns at 100 TeV, and displays a considerable increase with collider energy.

This remarkable growth, together with the sensitivity of this process to the sign of the top Yukawa
coupling yt [107], makes this reaction a golden channel for a precise measurement of the latter. It has
been shown [108] that already at the 14-TeV LHC it is possible to put loose bounds on the sign of yt,
mainly with a semileptonically decaying top quark, and in the H ! bb̄ and H ! �� decay channels.
At 100 TeV the situation will improve considerably: the NLO cross section for the main irreducible
background to tH(! ��)j production, namely t��j QCD production, has a growth ⇢ comparable to
that of the signal, hence the significance of the signal, in comparison with the LHC, is expected to scale
at least with the square root of the number of events. Moreover, the sensitivity of the signal to yt is only
slightly reduced at 100 TeV with respect to 8 TeV, as shown explicitly in the left panel of figure 39.

The second part of table 19 and the right panel of figure 39 [106] detail the cross section for a
Higgs in association with a pair of gauge bosons (see also [109] for a recent analysis). Rates for these
channels are smaller than for single top, of the order of a few tens of femtobarns at 100 TeV, but still
accessible. Theoretical systematics are typically below 10%, and the rate growth with energy is mild,
compatibly with the fact that these processes are qq̄-driven.

These rare channels are interesting as they can add some power to constrain possible anomalous
Higgs couplings to vector-boson (and fermion) pairs, which in turn has implications on the analysis of
perturbative unitarity at high energy and strong links with the study of anomalous triple-vector-boson
vertices [110, 111]. In particular the pp ! HW+W� process, the one with the largest cross section in
this category, has been shown [112] to be promising in this respect already at the high-luminosity LHC,
and will considerably benefit from the rate increase of a factor of roughly forty at 100 TeV.

Process �NLO(8 TeV) [fb] �NLO(100 TeV) [fb] ⇢

pp ! Htj 2.07 · 10
1 +2%
�1%

+2%
�2% 5.21 · 10

3 +3%
�5%

+1%
�1% 252

pp ! HW+W�
(4FS) 4.62 · 10

0 +3%
�2%

+2%
�2% 1.68 · 10

2 +5%
�6%

+2%
�1% 36

pp ! HZW±
2.17 · 10

0 +4%
�4%

+2%
�2% 9.94 · 10

1 +6%
�7%

+2%
�1% 46

pp ! HW±� 2.36 · 10
0 +3%
�3%

+2%
�2% 7.75 · 10

1 +7%
�8%

+2%
�1% 33

pp ! HZ� 1.54 · 10
0 +3%
�2%

+2%
�2% 4.29 · 10

1 +5%
�7%

+2%
�2% 28

pp ! HZZ 1.10 · 10
0 +2%
�2%

+2%
�2% 4.20 · 10

1 +4%
�6%

+2%
�1% 38

Table 19: Production of a Higgs boson at 8 and 100 TeV. The rightmost column reports the ratio ⇢ of the 100-
TeV to the 8-TeV cross sections [106]. Theoretical uncertainties are due to scale and PDF variations, respectively.
Processes pp! Htj does not feature any jet cuts.
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FCC-hh wiki

100 TeV/8 TeV

Exotic Higgs Decays
• Can expect HL-HLC to 

determine Higgs couplings 
to ~<10% precision

• Br(H→invisible) only 

constrained to 10%

• Room for exotic Higgs 

decays with 10% BR

• Well-motivated 

theoretically

• Can probe Higgs mixing via 

the exotic decay H→ZDZD

• with 3 ab-1, get 10-8 

sensitivity

• Direct searches beat EWPT

19
D. Curtin

Naive Reach Estimates

E
(Tev)

lumi
(/fb)

Nhiggs

(all)
Nhiggs

(clean)

Br sensitivity for 
very 

conspicuous 
decays 

Br sensitivity for 
very 

difficult 
decays

LHC run 1 7,8 25 500k 0 10-4 O(1) or worse

LHC run 2 14 300 10 million 0 10-5 O(0.1) - O(1)

HL-LHC 14 3000 100 million 0 10-6 ?

ILC 0.25 - 1 7000 1 million 40k 10-4 - 10-5 10-2

TLEP 0.25ish 10000 3 million 300k 10-5 10-3

100 TeV 100 3000 few billion 0 10-7 - 10-8 10-2 ????

e.g. 
h → ZDZD → 4l

e.g. 
h → 2a → 4b
or even h → jets

100 TeV collider is an intensity frontier 
experiment to study the Higgs!

3

Probing Higgs Mixing
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The only* way to probe higgs mixing 
is via the exotic Higgs decay

h→ ZD ZD .

At 100 TeV, get expected ~ 10-8 Br 
sensitivity for a conspicuous decay.

Probe couplings smaller than 10-5.

Lumi = 3/ab

7

Lesson: Hierarchy of production channels 
changes at large pT(H):

• σ(ttH) > σ(gg→H) above 800 GeV

• σ(VBF) > σ(gg→H) above 1800 GeV

H at large pT

29

Fig H-40

two important handles to access rare/exotic channels
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Why going beyond inclusive Higgs processes?
So far the LHC has mostly produced Higgses on-shell 

in processes with a characteristic scale μ ≈ mH 
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Why going beyond inclusive Higgs processes?
So far the LHC has mostly produced Higgses on-shell 

in processes with a characteristic scale μ ≈ mH 

access to Higgs couplings @ mH 

κV  κF Contours (1) 
All vector and fermion couplings are scaled by!κV and!κF 

All results in agreement with SM (κV = κf = 1) within 1� 

22 

κV  κF Contours (2) 
Allow for negative κF (which changes the sign of t-W loop interference) 

Note: all physical quantities depend on a product of two κ’s ⇔ 
          other two quadrants are symmetric with respect to (0,0)  

•  Almost 5s exclusion  
    of kF < 0  !!! 
 
•  Some decays in least 

significant production 
channels pulled towards 
inverted interference 

27 
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1. off-shell gg → h* → ZZ → 4l

2. boosted Higgs: Higgs+ high-pT jet

3. double Higgs production

Examples of interesting channels to explore further:

12

Why going beyond inclusive Higgs processes?
So far the LHC has mostly produced Higgses on-shell 

in processes with a characteristic scale μ ≈ mH 

Producing a Higgs with boosted additional particle(s)
probe the Higgs couplings @ large energy

(important to check that the Higgs boson ensures perturbative unitarity)

access to Higgs couplings @ mH 
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Boosted Higgs

2 Analysis of pp ! h + jet

At the parton level, three subprocesses contribute to the pp ! h+jet cross section: these are

gg, qg, qq̄ ! h+ jet.5 The expressions of the SM matrix elements for gg ! hg and qq̄ ! hg,

mediated by quark loops, were first calculated at LO in QCD in Ref. [18] and shortly after

with a di↵erent notation in Ref. [19], which we used for our calculations. The matrix element

for the qg ! hq process is obtained from the one of qq̄ ! hg by crossing. Some of the

Feynman diagrams contributing to pp ! h+ jet are shown in Fig. 1. When the Lagrangian

in Eq. (1.3) is considered, the top contribution to the amplitudes is simply given by the SM

one rescaled by the modified coupling t.6 On the other hand, the contribution of heavy

g
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h

t

q q

g h
t

q

q̄

g

h

t

g
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Figure 1: Example Feynman diagrams for pp ! h+jet in the SM and with the contact term.

top partners in the loop is described by the e↵ective interaction parameterized by g, which

generates Feynman diagrams such as the lower-right one in Fig. 1. Roughly speaking, this

description is reliable as long as the mass of the heavy states is larger than the transverse

momentum cut applied, see Section 3 for a more precise assessment. The corresponding

matrix element is obtained from the SM one by sending to infinity the mass of the quark

running in the loop. Thus the matrix element squared for each partonic subprocess can be

written as

|M|
2
/ |t MIR(mt) + g MUV|

2 , (2.5)

5
For brevity, we denote the sum qg + q̄g by qg.

6
In the SM, the e↵ect of including the bottom quark contribution in addition to the dominant one due

to the top is only of a few percent, if the cut on the transverse momentum is larger than 50GeV [20]. Since

we are interested in larger Higgs transverse momenta, we consistently neglect the bottom in our calculation.

4

Feynman diagrams contributing to this process are shown in figure 1. When the Lagrangian

in Eq. (1.2) is considered, the top contribution to the amplitudes is simply given by the SM

one rescaled by the modified coupling t.6 On the other hand, the contribution of heavy
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Figure 1: Example Feynman diagrams for pp ! h+jet in the SM and with the contact term.

top partners in the loop is described by the e↵ective interaction parameterized by g, which

generates Feynman diagrams such as the lower-right one in Fig. 1. Roughly speaking, this

description is reliable as long as the mass of the heavy states is larger than the transverse

momentum cut applied, see Sec. 3 for a more precise assessment. The corresponding matrix

element is obtained from the SM one by sending to infinity the mass of the quark running in

the loop. Thus the matrix element squared for each partonic subprocess can be written as

|M|
2
/ |t MIR(mt) + g MUV|

2 (2.3)

where MIR denotes the amplitude mediated by top loops, and MUV the amplitude mediated

by the e↵ective point-like interaction. It follows that the hadronic cross section for pp ! hj

can be written as a quadratic polynomial in t and g . Given a transverse momentum cut

pmin
T

and summing over all partonic subprocesses, we can write

�p
min
T

(t,g)

�SM
p
min
T

= (t + g)
2 + � t g + ✏ 2

g
(2.4)

where � is the cross section for pp ! hj and the numerical coe�cients {� , ✏} depend on pmin
T

.

Their values are listed in Table 1 for an LHC center of mass energy of
p
s = 14TeV and

6
In the SM, the e↵ect of including the bottom quark contribution in addition to the dominant one due

to the top is only of a few percent, if the cut on the transverse momentum is larger than 50GeV [17]. Since

we are interested in larger Higgs transverse momenta, we consistently neglect the bottom in our calculation.

4

p
s [TeV] pmin

T
[GeV] �SM

p
min
T

[fb] � ✏ gg, qg [%]

14

100 2200 0.016 0.023 67, 31

150 830 0.069 0.13 66, 32

200 350 0.20 0.31 65, 34

250 160 0.39 0.56 63, 36

300 75 0.61 0.89 61, 38

350 38 0.86 1.3 58, 41

400 20 1.1 1.8 56, 43

450 11 1.4 2.3 54, 45

500 6.3 1.7 2.9 52, 47

550 3.7 2.0 3.6 50, 49

600 2.2 2.3 4.4 48, 51

650 1.4 2.6 5.2 46, 53

700 0.87 3.0 6.2 45, 54

750 0.56 3.3 7.2 43, 56

800 0.37 3.7 8.4 42, 57

100
500 970 1.8 3.1 72, 28

2000 1.0 14 78 56, 43

Table 1: Summary table of the cross sections for pp ! hj at proton-proton colliders with
p
s = 14TeV and

p
s = 100TeV. The third, fourth and fifth column show, for the given cut

on pT > pmin
T

, the parameters of the semi-numerical formula in Eq. (2.4). The last column

shows the fraction of the SM cross section coming from the partonic subprocesses gg and qg.

The contribution of the qq̄ channel is always smaller than 2%.
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large pT, small rates
need to focus on dominant decay modes

consider first the decay channels with the largest branching ratios, namely h ! bb̄,WW, ⌧⌧ .

Here we focus on the last mode, and we will comment briefly on other possibilities at the end

of this section. For a Higgs transverse momentum larger than 500GeV, the typical angular

separation between the two taus is �R ⇠ 2mh/pT . 0.5. As a consequence, when at least

one of the taus decays hadronically, the standard tau-tagging techniques will fail, due to the

non-isolation of the hadronic tau candidate(s). However, such ‘ditau-jets’ can be tagged by

adapting the usual tau-tagging algorithm, as suggested in Ref. [23], whose e�ciencies for

signal identification are assumed here.7 Including the Higgs and tau branching ratios, we

obtain the following estimate of the total e�ciency

✏tot = BR(h ! ⌧⌧)

 
X

i= ⌧`⌧`, ⌧`⌧h, ⌧h⌧h

BR(⌧⌧ ! i) ✏i

!
' 2⇥ 10�2 (2.6)

where we assumed the SM value for BR(h ! ⌧⌧) [24].

To break the degeneracy in the (t,g) plane that plagues inclusive Higgs production,

we need to combine the measurements of both the inclusive and boosted rates. On the one

hand, we take the inclusive Higgs production cross section normalized to its SM value

µincl(t,g) =
�incl(t,g)

�SM
incl

' (t + g)
2 . (2.7)

We assume the large-luminosity LHC scenario with 3 ab�1 of data at 14 TeV, and therefore

we assign to the measurement of µincl a 10% systematic uncertainty and negligible statistical

uncertainty. On the other hand, in order to reduce the theory uncertainty, we consider as

boosted observable the ratio

R(t,g) =
�650GeV(t,g)K650GeV

�150GeV(t,g)K150GeV
, (2.8)

where Kp
min
T

are the QCD K-factors for the SM, computed using MCFM (process 204).

The transverse momentum cuts of 650 and 150 GeV were chosen by means of a rough

optimization. The ratio R is stable under scale variations, as can be seen from Table 2. We

7
Ref. [23] applied ditau-tagging to the case of a Z 0

decaying to Zh. We make use of the e�ciencies reported

in their Table I for a 2TeV Z 0
, which gives a Higgs pT roughly similar to the case we are considering. We

assume e�ciencies that include in addition to the ditau-jet tagging also the reconstruction of the Higgs mass

peak, as it seems unavoidable that an experimental analysis would need to exploit that information.
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non-isolated “ditau-jets”
(separation between the 2 tau’s:                             )

consider first the decay channels with the largest branching ratios, namely h ! bb̄,WW, ⌧⌧ .

Here we focus on the last mode, and we will comment briefly on other possibilities at the end

of this section. For a Higgs transverse momentum larger than 500GeV, the typical angular

separation between the two taus is �R ⇠ 2mh/pT . 0.5. As a consequence, when at least

one of the taus decays hadronically, the standard tau-tagging techniques will fail, due to the

non-isolation of the hadronic tau candidate(s). However, such ‘ditau-jets’ can be tagged by

adapting the usual tau-tagging algorithm, as suggested in Ref. [23], whose e�ciencies for

signal identification are assumed here.7 Including the Higgs and tau branching ratios, we
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where we assumed the SM value for BR(h ! ⌧⌧) [24].
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uncertainty. On the other hand, in order to reduce the theory uncertainty, we consider as
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where Kp
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T

are the QCD K-factors for the SM, computed using MCFM (process 204).

The transverse momentum cuts of 650 and 150 GeV were chosen by means of a rough

optimization. The ratio R is stable under scale variations, as can be seen from Table 2. We

7
Ref. [23] applied ditau-tagging to the case of a Z 0

decaying to Zh. We make use of the e�ciencies reported

in their Table I for a 2TeV Z 0
, which gives a Higgs pT roughly similar to the case we are considering. We

assume e�ciencies that include in addition to the ditau-jet tagging also the reconstruction of the Higgs mass

peak, as it seems unavoidable that an experimental analysis would need to exploit that information.
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Figure 2: Figures (a)-(c) show the 95% CL contours obtained from the �2 in Eq. (2.11) for

di↵erent choices of the actual parameters 0
t
and 0

g
, or equivalently of µ0

incl and R
0. The

colors blue, red and black correspond to 0
t
= 0.8, 1.0 and 1.2, respectively, or equivalently to

the indicated values of R0 = R(0
t
,
p
µ0
incl � 0

t
). The gray band is obtained by considering

only the inclusive measurement. The SM point is indicated by the black star. Figure (d)

shows the variation of the 95% CL contours for di↵erent choices of the renormalization and

factorization scale µ. For all plots we assumed an integrated luminosity of
R
L dt = 3 ab�1

and
p
s = 14TeV.
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2 Analysis of pp ! h + jet

At the parton level, three subprocesses contribute to the pp ! h+jet cross section: these are

gg, qg, qq̄ ! h+ jet.5 The expressions of the SM matrix elements for gg ! hg and qq̄ ! hg,

mediated by quark loops, were first calculated at LO in QCD in Ref. [18] and shortly after

with a di↵erent notation in Ref. [19], which we used for our calculations. The matrix element

for the qg ! hq process is obtained from the one of qq̄ ! hg by crossing. Some of the

Feynman diagrams contributing to pp ! h+ jet are shown in Fig. 1. When the Lagrangian

in Eq. (1.3) is considered, the top contribution to the amplitudes is simply given by the SM

one rescaled by the modified coupling t.6 On the other hand, the contribution of heavy

g
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Figure 1: Example Feynman diagrams for pp ! h+jet in the SM and with the contact term.

top partners in the loop is described by the e↵ective interaction parameterized by g, which

generates Feynman diagrams such as the lower-right one in Fig. 1. Roughly speaking, this

description is reliable as long as the mass of the heavy states is larger than the transverse

momentum cut applied, see Section 3 for a more precise assessment. The corresponding

matrix element is obtained from the SM one by sending to infinity the mass of the quark

running in the loop. Thus the matrix element squared for each partonic subprocess can be

written as

|M|
2
/ |t MIR(mt) + g MUV|

2 , (2.5)

5
For brevity, we denote the sum qg + q̄g by qg.

6
In the SM, the e↵ect of including the bottom quark contribution in addition to the dominant one due

to the top is only of a few percent, if the cut on the transverse momentum is larger than 50GeV [20]. Since

we are interested in larger Higgs transverse momenta, we consistently neglect the bottom in our calculation.

4

2 Analysis of pp ! h + jet

At the parton level, three subprocesses contribute to the pp ! h+jet cross section: these are

gg, qg, qq̄ ! h+ jet.5 The expressions of the SM matrix elements for gg ! hg and qq̄ ! hg,

mediated by quark loops, were first calculated at LO in QCD in Ref. [18] and shortly after

with a di↵erent notation in Ref. [19], which we used for our calculations. The matrix element

for the qg ! hq process is obtained from the one of qq̄ ! hg by crossing. Some of the

Feynman diagrams contributing to pp ! h+ jet are shown in Fig. 1. When the Lagrangian

in Eq. (1.3) is considered, the top contribution to the amplitudes is simply given by the SM

one rescaled by the modified coupling t.6 On the other hand, the contribution of heavy

g

g

g

h

t

q q

g h
t

q

q̄

g

h

t

g

g

g

h

Figure 1: Example Feynman diagrams for pp ! h+jet in the SM and with the contact term.

top partners in the loop is described by the e↵ective interaction parameterized by g, which

generates Feynman diagrams such as the lower-right one in Fig. 1. Roughly speaking, this

description is reliable as long as the mass of the heavy states is larger than the transverse

momentum cut applied, see Section 3 for a more precise assessment. The corresponding

matrix element is obtained from the SM one by sending to infinity the mass of the quark

running in the loop. Thus the matrix element squared for each partonic subprocess can be

written as

|M|
2
/ |t MIR(mt) + g MUV|

2 , (2.5)

5
For brevity, we denote the sum qg + q̄g by qg.

6
In the SM, the e↵ect of including the bottom quark contribution in addition to the dominant one due

to the top is only of a few percent, if the cut on the transverse momentum is larger than 50GeV [20]. Since

we are interested in larger Higgs transverse momenta, we consistently neglect the bottom in our calculation.

4

http://arXiv.org/abs/13012.3317
http://arxiv.org/abs/arXiv:1405.4295
http://arXiv.org/abs/1309.5273
http://arXiv.org/abs/1309.5273


Christophe Grojean INFIERI-UAM,  August 202114

Boosted Higgs+jet

high pT tail discriminates 
short and long distance physics contribution to gg ➙ h

Are the NLOm QCD corrections (not known) going to destroy all the sensitivity?
Frontier priority: N3LO∞ for inclusive xs & NLOmt for pT spectrum?

competitive/complementary to htt channel 
for the measure the top-Higgs coupling

➾➾

G
ro

je
an

, S
al

vi
on

i, 
Sc

hl
af

fe
r,

 W
ei

le
r 

 ‘1
3

p
s = 14 TeV,

Z
dtL = 3ab�1, pT > 650 GeV

(partonic analysis in the boosted “ditau-jets” channel)

10-20% precision on κt

see Schlaffer et al ’14 for a more complete analysis 
including WW channel 

0.6 0.8 1.0 1.2 1.4
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

kt

k g

R.0= 2.19 ◊ 10-3

R.0= 1.23 ◊ 10-3

R.0= 0.692 ◊10-3

m0
incl=0.8 ± 20%

˜

(a) µ0
incl = 0.8

0.6 0.8 1.0 1.2 1.4
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

kt

k g

R.0= 2.71 ◊ 10-3

R.0= 1.69 ◊ 10-3

R.0= 0.985 ◊10-3

m0
incl=1.0 ± 20%

˜

(b) µ0
incl = 1.0

0.6 0.8 1.0 1.2 1.4
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

kt

k g

R.0= 3.14 ◊ 10-3

R.0= 2.10 ◊ 10-3

R.0= 1.31 ◊ 10-3

m0
incl=1.2 ± 20%

˜

(c) µ0
incl = 1.2

0.8 0.9 1.0 1.1 1.2 1.3

-0.2

-0.1

0.0

0.1

kt

k g

mren = 0.5 mT
mren = 1.0 mT
mren = 2.0 mT
m0

incl=1.0 ± 20%

˜

(d) Scale variation

Figure 2: Figures (a)-(c) show the 95% CL contours obtained from the �2 in Eq. (2.11) for

di↵erent choices of the actual parameters 0
t
and 0

g
, or equivalently of µ0
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0. The

colors blue, red and black correspond to 0
t
= 0.8, 1.0 and 1.2, respectively, or equivalently to

the indicated values of R0 = R(0
t
,
p
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). The gray band is obtained by considering

only the inclusive measurement. The SM point is indicated by the black star. Figure (d)

shows the variation of the 95% CL contours for di↵erent choices of the renormalization and

factorization scale µ. For all plots we assumed an integrated luminosity of
R
L dt = 3 ab�1

and
p
s = 14TeV.
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2 Analysis of pp ! h + jet

At the parton level, three subprocesses contribute to the pp ! h+jet cross section: these are

gg, qg, qq̄ ! h+ jet.5 The expressions of the SM matrix elements for gg ! hg and qq̄ ! hg,

mediated by quark loops, were first calculated at LO in QCD in Ref. [18] and shortly after

with a di↵erent notation in Ref. [19], which we used for our calculations. The matrix element

for the qg ! hq process is obtained from the one of qq̄ ! hg by crossing. Some of the

Feynman diagrams contributing to pp ! h+ jet are shown in Fig. 1. When the Lagrangian

in Eq. (1.3) is considered, the top contribution to the amplitudes is simply given by the SM

one rescaled by the modified coupling t.6 On the other hand, the contribution of heavy
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Figure 1: Example Feynman diagrams for pp ! h+jet in the SM and with the contact term.

top partners in the loop is described by the e↵ective interaction parameterized by g, which

generates Feynman diagrams such as the lower-right one in Fig. 1. Roughly speaking, this

description is reliable as long as the mass of the heavy states is larger than the transverse

momentum cut applied, see Section 3 for a more precise assessment. The corresponding

matrix element is obtained from the SM one by sending to infinity the mass of the quark

running in the loop. Thus the matrix element squared for each partonic subprocess can be

written as

|M|
2
/ |t MIR(mt) + g MUV|

2 , (2.5)

5
For brevity, we denote the sum qg + q̄g by qg.

6
In the SM, the e↵ect of including the bottom quark contribution in addition to the dominant one due

to the top is only of a few percent, if the cut on the transverse momentum is larger than 50GeV [20]. Since

we are interested in larger Higgs transverse momenta, we consistently neglect the bottom in our calculation.
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Further constraints on Xt and the stop masses can be obtained by examining the correc-

tions to the h ! �� and h $ gg rates:
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Present data (fitted in the context of the SM plus light stops) give [13]

�t = �0.04± 0.11 (5)

and do not yet imply a significant constraint, as it is clear from fig. 2 where we plot iso-curves

of �t after imposing the mh requirement. The situation will improve in the future. Note

that no deviations from the SM (�t ⇡ 0) are obtained for mt̃2
⇡ 6mt̃1

if we insist on having

X
2
t
⇡ 6.

A few comments are in order:

• An independent indication of a large splitting between mt̃2
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can be obtained if

we assume that At is not significantly larger than the trace of the stop mass matrix.
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Vacuum stability arguments imply a < 3 (assuming m
2
Hu

⌧ m
2
t̃2
), but this does not

allow us to deduce a significant constraint on r. However, if a ⇠< 1 (as naturally

expected from RG arguments, see next section) then we are forced to assume small

values of r in order to reach X
2
t
⇡ 6.

• Despite the large value of Xt, the mixing of the two stop eigenstates is suppressed in

the limit r ⌧ 1:
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So, in this limit, we can approximately identify the two mass eigenstates with the

electroweak eigenstates. As we will show in the next section, it is natural to identify

the lightest state with an almost right-handed stop. Note also that for r ⌧ 1 the

lightest stop mass is significantly lighter than the average stop mass in eq. (2): r ⇡ 1/6

corresponds to mt̃1
⇡ 200 GeV.
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Light stop searches from Higgs+jet
Natural susy calls for light stop(s) that can affect the Higgs physics

... or not if Δt≈0 ⇒ light stop window in the MSSM 
(stop right ~200-400GeV ~ neutralino w/ gluino < 1.5 TeV)

There are various arguments that favour this light stop region

One good example where large statistics opens up new search strategy
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So, in this limit, we can approximately identify the two mass eigenstates with the

electroweak eigenstates. As we will show in the next section, it is natural to identify

the lightest state with an almost right-handed stop. Note also that for r ⌧ 1 the

lightest stop mass is significantly lighter than the average stop mass in eq. (2): r ⇡ 1/6

corresponds to mt̃1
⇡ 200 GeV.
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Light stop searches from Higgs+jet
Natural susy calls for light stop(s) that can affect the Higgs physics

... or not if Δt≈0 ⇒ light stop window in the MSSM 
(stop right ~200-400GeV ~ neutralino w/ gluino < 1.5 TeV)

There are various arguments that favour this light stop region

One good example where large statistics opens up new search strategy
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Inclusive Higgs measurements cannot rule out light stop
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Present data (fitted in the context of the SM plus light stops) give [13]

�t = �0.04± 0.11 (5)

and do not yet imply a significant constraint, as it is clear from fig. 2 where we plot iso-curves

of �t after imposing the mh requirement. The situation will improve in the future. Note

that no deviations from the SM (�t ⇡ 0) are obtained for mt̃2
⇡ 6mt̃1

if we insist on having
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2
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A few comments are in order:
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can be obtained if
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Vacuum stability arguments imply a < 3 (assuming m
2
Hu
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), but this does not

allow us to deduce a significant constraint on r. However, if a ⇠< 1 (as naturally

expected from RG arguments, see next section) then we are forced to assume small
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So, in this limit, we can approximately identify the two mass eigenstates with the

electroweak eigenstates. As we will show in the next section, it is natural to identify

the lightest state with an almost right-handed stop. Note also that for r ⌧ 1 the

lightest stop mass is significantly lighter than the average stop mass in eq. (2): r ⇡ 1/6

corresponds to mt̃1
⇡ 200 GeV.
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So, in this limit, we can approximately identify the two mass eigenstates with the

electroweak eigenstates. As we will show in the next section, it is natural to identify
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Light stop searches from Higgs+jet
Natural susy calls for light stop(s) that can affect the Higgs physics

... or not if Δt≈0 ⇒ light stop window in the MSSM 
(stop right ~200-400GeV ~ neutralino w/ gluino < 1.5 TeV)

Grojean, Salvioni, Schlaffer, Weiler  ‘13

Light stop benchmark
that leaves no signal in inclusive rate

but predicts different tail in pT 
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One good example where large statistics opens up new search strategy
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of �t after imposing the mh requirement. The situation will improve in the future. Note
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allow us to deduce a significant constraint on r. However, if a ⇠< 1 (as naturally
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So, in this limit, we can approximately identify the two mass eigenstates with the

electroweak eigenstates. As we will show in the next section, it is natural to identify

the lightest state with an almost right-handed stop. Note also that for r ⌧ 1 the

lightest stop mass is significantly lighter than the average stop mass in eq. (2): r ⇡ 1/6

corresponds to mt̃1
⇡ 200 GeV.
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Present data (fitted in the context of the SM plus light stops) give [13]

�t = �0.04± 0.11 (5)

and do not yet imply a significant constraint, as it is clear from fig. 2 where we plot iso-curves
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allow us to deduce a significant constraint on r. However, if a ⇠< 1 (as naturally
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So, in this limit, we can approximately identify the two mass eigenstates with the

electroweak eigenstates. As we will show in the next section, it is natural to identify

the lightest state with an almost right-handed stop. Note also that for r ⌧ 1 the

lightest stop mass is significantly lighter than the average stop mass in eq. (2): r ⇡ 1/6

corresponds to mt̃1
⇡ 200 GeV.
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• Despite the large value of Xt, the mixing of the two stop eigenstates is suppressed in

the limit r ⌧ 1:

✓t =
1

2
arcsin

 
2mtmSXt

m2
t̃2
�m2

t̃1

!
r⌧1
'

rXtmt

mS

. (7)

So, in this limit, we can approximately identify the two mass eigenstates with the

electroweak eigenstates. As we will show in the next section, it is natural to identify

the lightest state with an almost right-handed stop. Note also that for r ⌧ 1 the

lightest stop mass is significantly lighter than the average stop mass in eq. (2): r ⇡ 1/6

corresponds to mt̃1
⇡ 200 GeV.
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Present data (fitted in the context of the SM plus light stops) give [13]

�t = �0.04± 0.11 (5)

and do not yet imply a significant constraint, as it is clear from fig. 2 where we plot iso-curves

of �t after imposing the mh requirement. The situation will improve in the future. Note
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), but this does not

allow us to deduce a significant constraint on r. However, if a ⇠< 1 (as naturally

expected from RG arguments, see next section) then we are forced to assume small

values of r in order to reach X
2
t
⇡ 6.

• Despite the large value of Xt, the mixing of the two stop eigenstates is suppressed in

the limit r ⌧ 1:
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So, in this limit, we can approximately identify the two mass eigenstates with the

electroweak eigenstates. As we will show in the next section, it is natural to identify

the lightest state with an almost right-handed stop. Note also that for r ⌧ 1 the

lightest stop mass is significantly lighter than the average stop mass in eq. (2): r ⇡ 1/6

corresponds to mt̃1
⇡ 200 GeV.

4

Low rate ⇔ large luminosity needed

http://arXiv.org/abs/13012.3317
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The Higgs self-coupling plays important roles
1) is tight to the Hierarchy problem, i.e. stress-test basic principles of QFT/EFT
2) dictates the dynamics of EW phase transition and potentially conditions the 
generation of a matter-antimatter asymmetry via EW baryogenesis 

16

The missing beast: Higgs self-coupling
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Does it need to be measured with high accuracy?
difficult to design new physics scenarios that dominantly affect the Higgs self-couplings 

and leave the other Higgs coupling deviations undetectable

15Double Higgs production in the SM
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Two diagram have very dependant energy dependence. In the high       limit
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The missing beast: Higgs self-coupling

Does it need to be measured with high accuracy?
difficult to design new physics scenarios that dominantly affect the Higgs self-couplings 

and leave the other Higgs coupling deviations undetectable

Under the assumption of heavy/decoupling new physics (i.e. analytic EFT Lagrangian)

deviation  of Higgs cubic self-coupling can be a priori large
3 ⌘ ghhh

gSMhhh
� 1 < 600 ⇠Perturbativity: where    is the typical deviation in single Higgs couplings ⇠

Stability of EW vacuum: 3 < 70 ⇠

O(1) sensitivity in Higgs self-coupling  is competitive to 5% sensitivity in single Higgs couplings

Relevant for particular models, e.g. Higgs DM-portal models, not for composite/susy

DiVita et al,: 1704.01953 Falkowski, Rattazzi: 1902.05936

https://arxiv.org/abs/1704.01953
http://arxiv.org/abs/arXiv:1902.05936
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HH@FCC-hhSignal:  double Higgs production via gluon fusion (             )gg!hh
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◆
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New analysis of HH production for the FCC report

• Goals: 1. improve on previous studies and 
get a commonly-agreed estimate

2. study dependence on efficiencies 
and systematics

R.C., C. Englert, G. Panico, A. Papaefstathiou, J. Ren, M. Selvaggi, M. Son, M. Spannowsky, W. Yao

Previous analyses:
W. Yao  arXiv:1308.6302 (Snowmass Summer Study 2013) 
Barr, Dolan, Englert, de Lima, Spannowsky  JHEP 1502 (2015) 016
Azatov, R.C., Panico, Son   PRD 92 (2015) 035001
H-J. He, J. Ren, W. Yao PRD 93 (2016) 015003
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Compared to the LHC, pair 
production cross section 
grows by a factor of 40.  Note 
that this is a much greater 
increase than in CM energy…

Huge increase in event 
numbers translates 
directly to a precise 
measurement of the 
nature of the Higgs 
potential!

The Higgs Potential…

From FCC Report
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The Higgs self-couplings plays important roles 
1) controls the stability of the EW vacuum 
2) dictates the dynamics of EW phase transition and potentially conditions 
the generation of a matter-antimatter asymmetry via EW baryogenesis 

Does it need to be measured with high accuracy?
difficult to design new physics scenarios that dominantly affect the Higgs 
self-couplings and leave the other Higgs coupling deviations undetectable
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HH@FCC-hh: probe of HE couplingsDouble Higgs production via gluon fusion
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v Di↵erent behaviour at high energy
p

ŝ = mhh

v Dependence on Higgs trilinear suppressed at high energy

I Events at threshold more sensitive to Higgs trilinear, events at large
mhh more important to determine the other operators

Reach in mhh and pT : Boosted events
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The highest accessible mhh and pT can be estimated by requiring
at least 5 events beyond the threshold
(we use L = 3 ab�1 and assume 10% e�ciency)

channel bbWW⇤ (24.9%) bb⌧+⌧� (7.35%) bb�� (0.264%)

Cross section > 0.067 fb > 0.227 fb > 6.31 fb

mhh [GeV] < 1280 (4170) < 1039 (3235) < 558 (1552)

pT [GeV] < 575 (2000) < 550 (1890) < 210 (664)

[numbers in parenthesis are for the 100 TeV collider]

Azatov, Contino, Panico, Son  ’15

http://arxiv.org/abs/arXiv:1502.00539


Christophe Grojean INFIERI-UAM,  August 2021

Precision on c3, c2t and c2g

The non-linear Higgs couplings c3, c2t, c2g can only be directly accessed
in double Higgs production
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• Higgs trilinear c3 can only be extracted at FCC (at LHC only O(1)

determination)

• good precision on c2t and c2g

19

see also Goertz, Papaefstathiou, Yang, Zurita ’14

Remarks:
• statistically limited @ HL-LHC, not at FCC-hh 

➾ access to distribution (mhh)
➾ discriminating power c3 vs. c2t vs cg

Azatov, Contino, Panico, Son  ’15

Constraining the dim.-6 operators: cu and c6

¯
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68% probability intervals on c6

LHC14 HL-LHC FCC100

[�1.2, 6.1] [�1.0, 1.8] [ [3.5, 5.1] [�0.33, 0.29]

‚ only O(1) determination possible at LHC

HH@FCC-hh: probe of HE couplings

http://arxiv.org/abs/arXiv:1410.3471
http://arxiv.org/abs/arXiv:1502.00539
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ECFA Higgs study group ‘19

50% sensitivity: establish that h3≠0 at 95%CL
20% sensitivity: 5σ discovery of the SM h3 coupling

5% sensitivity: getting sensitive to quantum corrections to Higgs potential

0 10 20 30 40 50
 [%]3κ68% CL bounds on 

CLIC

CEPC

ILC

FCC-ee

FCC-ee/eh/hh

HE-LHC

HL-LHC

under HH threshold

under HH threshold

di-Higgs single-Higgs

All future colliders combined with HL-LHC

50%
HL-LHC

50% (47%)
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[10-20]%
HE-LHC

50% (40%)
HE-LHC

5%
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25% (18%)
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-17+24%
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 24% (14%)
     4IP

365FCC-ee

 33% (19%)
     365FCC-ee

 49% (19%)
     240FCC-ee

10%
1000ILC

36% (25%)
1000ILC

27%
 500ILC

38% (27%)
 500ILC

 49% (29%)
 250ILC

 49% (17%)
CEPC

-7%+11%
3000CLIC

49% (35%)
3000CLIC

36%
1500CLIC

49% (41%)
1500CLIC

 50% (46%)
 380CLIC

Higgs@FC WG November 2019

Don’t need to reach HH threshold 
to have access to h3. 

Z-pole run is very important 
if the HH threshold cannot be reached

1

The determination of h3 at FCC-hh 
relies on HH channel, 

for which FCC-ee is of little direct help.
But the extraction of h3 

requires precise knowledge of yt.
1% yt ↔ 5% h3

2

Higgs Self-Coupling

Precision measurement of yt needs ee
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Higgs Fit (Future Collider Alone)
ECFA Higgs study group ‘19
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Important synergy 
HL-LHC — low energy lepton colliders

1. Top/Charm Yukawa
2. Statistically limited channels: γγ, mumu, Zγ
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Higgs Fit (HL-LHC+Future Collider)

With HL-LHC, 
yt doesn’t 

require tth threshold

https://arxiv.org/abs/1905.03764
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Synergy ee(MZ)-ee(MH)

Figure 12: Changes in correlations between couplings depending on the precision of EW
measurements assumed. The top row is for CEPC and the bottom two rows are for FCC-ee.
HL-LHC projections are included for all scenarios.

and FCC-ee .
The change in the correlations from one EW scenario to another for both CEPC and

FCC-ee can also be seen from figure 12. For both the colliders at 240 GeV, meshes of
significant correlations can be identified between the Higgs and the EW sectors. With the
inclusion of the Z-pole these two sectors get decoupled. While we see from table 1 that the
assumption of perfect EW measurements and the case for the inclusion of a Z-pole run give
numerically similar bounds for both the colliders, from figure 12 we see that the correlation
maps are di�erent. It can then be understand from these variations of the correlation map
why ”Ÿ“ is still a�ected by the EW assumptions made even after the inclusion of EW
measurements from a Z-pole run at the lepton colliders since the bound on it is diluted by
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inclusion of the Z-pole these two sectors get decoupled. While we see from table 1 that the
assumption of perfect EW measurements and the case for the inclusion of a Z-pole run give
numerically similar bounds for both the colliders, from figure 12 we see that the correlation
maps are di�erent. It can then be understand from these variations of the correlation map
why ”Ÿ“ is still a�ected by the EW assumptions made even after the inclusion of EW
measurements from a Z-pole run at the lepton colliders since the bound on it is diluted by
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w/o Z-pole run w/ Z-pole run

J. De Blas et al. 1907.04311

interplay of runs at different energies change the correlation pattern

minimising correlations essential to lift flat directions in coupling fit
e.g. Higgs coupling sensitivity improves by 50% with new Z pole data

https://arxiv.org/abs/1907.04311
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The Global Higgs fit at FCC-ee/eh/hh

�35

• Top Yukawa coupling not directly accessible at FCC-ee. Could be 
measured in single tH at FCC-eh 

• Can be measured at FCC-hh from σ(ttH)/σ(ttZ)  (boosted): 
• Similar production. Many uncertainties cancel.

• Requires precise knowledge of the normalization process ttZ.


• Robust determination by this method requires both FCC-hh & FCC-ee
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Figure 5: Reconstructed mbb of the Higgs and Z candidates in tt̄H and tt̄Z production with the default
BDRS tagger (left) and after using optimalR and the N -subjettiness cut ⌧2/⌧1 < 0.4 (right). In the
right panel we include the fitted Crystal Ball functions. The event numbers are scaled to L = 20 ab�1.

the expected value of �Rbb from a fit to Monte Carlo simulations,

�R
(calc)

bb
=

250 GeV

pT,filt

. (4)

This supports the choice of R = 1.2 for the C/A jet clustering for the Higgs Tagger requiring transverse
momenta of pT > 200 GeV. Unfortunately, for tt̄H production the relation between the expected and
the measured values of �Rbb does not significantly improve the analysis. However, the mass di↵erence

between the Higgs and the Z boson leads to a shifted peak in the �Rbb � �R
(calc)

bb
distribution for

tt̄Z. This shift allows for an additional reduction of tt̄Z if desired. In the final result shown in the
left panel of Fig. 6 we include a triple b-tag, the N -subjettiness variable ⌧2/⌧1, and a modified fat
jet radius for the Higgs candidate. Since the background region mbb 2 [160, 300] GeV is smooth and
untouched by any signal, we can use it to subtract the QCD continuum from the combined tt̄H and
tt̄Z signal. If the soft regime mbb 2 [0, 60] GeV can be useful in the same way needs to be checked by
a full experimental analysis.

For the signal region mbb 2 [104, 136] GeV we arrive at a signal-to-background ratio around
S/B ⇡ 1/3 and a Gaussian significance S/

p
B = 120, assuming an integrated luminosity of

L = 20 ab�1. The error on the number of nominally NS = 44700 signal events is given by two
terms. First, we assume that we can determine NS from the total number of events NS + NB using
a perfect determination of NB from the side bands. Second, the side band mbb 2 [160, 296] GeV
with altogether Nside = 135000 events and a relative uncertainty of 1/

p
Nside introduces a statistical

uncertainty �NB , altogether leading to

�NS =

⇣p
NS +NB

⌘2

+ (�NB)
2

�1/2

=

"⇣p
NS +NB

⌘2

+

✓
NB

p
Nside

◆2
#1/2

= 0.013NS . (5)

For the Yukawa coupling this translates into a relative error of around 1%. The first term alone would
give �NS = 0.010NS .

In the right panel of Fig. 6 we show a combined fit to the Z and Higgs peaks assuming a
perfect background subtraction. A combined analysis of both peaks (with known masses) serves as a
check of the jet substructure techniques [23, 6] and as a means to reduce systematic and theoretical
uncertainties, as discussed in Section 2. Given separate simulations for the Higgs and Z peaks, we
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Figure 3: Reconstructed mbb for the leading-J substructures in the fat Higgs jet. We require two
b-tags inside the fat Higgs jet (left) and an additional continuum b-tag (right). The event numbers are
scaled to L = 20 ab�1.

At the generator level we require pT,j,b,` > 10 GeV and �Rjj,bb,j` > 0.1. The tt̄+jets background
is generated as one hard jet with pT,j > 100 GeV at the hard matrix element level. We do not
consider merged samples since we found that the influence of tt̄+2j to our analysis is negligible. After
generator cuts we start with a signal cross section of 4.2 pb. Associated tt̄Z production yields 1.2 pb.
The continuum tt̄bb̄ background counts 121 pb and is at this stage dominated by tt̄+jets with 2750 pb.

Delphes3 provides isolated leptons as well as parton-level b-quarks needed for the tagging
procedure later-on. Leptons have to pass a minimum pT,` > 10 GeV. For their isolation we demand
a transverse momentum ratio (isolation variable) of I < 0.1 within �R < 0.3. Finally, we use the
energy flow objects for hadrons to cluster via the Cambridge/Aachen (C/A) jet algorithm [51]. The
jet clustering and the analysis are done with FastJet3 [52], a modified BDRS Higgs tagger [23, 6]
and the HEPTopTagger2 [22]. For all b-tags we require a parton-level b-quark within �R < 0.3.

First, we require one isolated lepton with |y`| < 2.5 and pT,` > 15 GeV. For the top tag [53, 54, 55],
we cluster the event into fat C/A jets with R = 1.8 and pT,j > 200 GeV. Provided we find at least

two fat jets we apply the HEPTopTagger2 with the kinematic requirement |y
(t)

j
| < 4. The recent

significant update of the HEPTopTagger2 relies on two additional pieces of information to achieve
a significant improvement [22]. One of them is N -subjettiness [56], which adds some sensitivity to the
color structure of the event. The other is the optimalR mode, which based on a constant fat jet mass
reduces the size of the fat jet [57] to the point where the fat jet stops containing all hard top decay
subjets. This minimal size can also be computed based on the transverse momentum of the fat jet.
Since the signal and all considered backgrounds include a hadronic top quark, changing the top tagging
parameters results only in an overall scaling factor. In this analysis we do not cut on the di↵erence
between the expected and the found optimal radius because the initial fat jet size is already chosen to
fit the expected transverse momenta. To have a handle on the QCD multi-jet background, we place a
mild cut on the filtered N -subjettiness ratio ⌧3/⌧2 < 0.8 which can be tightened at the cost of signal
e�ciency if desired. After identifying the boosted top we remove the associated hadronic activity and

apply a modified BDRS Higgs tagger to fat C/A jet(s) with R = 1.2, |y(H)

j
| < 2.5, and pT,j > 200 GeV.

Our decomposition of the fat jet into hard substructure includes a cuto↵ of msub > 40 GeV for the
relevant substructure and a mass drop threshold of 0.9. The hard substructures are then paired in all
possible ways and ordered by their modified Jade distance,

J = pT,1pT,2(�R12)
4
. (3)

The leading pairing we filter [23] including the three hardest substructures, to allow for hard gluon
radiation. For consistency we require a reconstructed transverse momentum above 200 GeV. Within

e.g. Fit and extract NH/NZ  
to 1% accuracy ⇒ δstat+th yt/yt ~ 1%

Assumes no NP in Ztt and  
BR(H→bb) known <<1% 

Both measurable at FCC-ee  
with required precision

M.L. Mangano et al., arXiv: 1507.08169 [hep-ph]M.L. Mangano et al., arXiv: 
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Figure 5: Reconstructed mbb of the Higgs and Z candidates in tt̄H and tt̄Z production with the default
BDRS tagger (left) and after using optimalR and the N -subjettiness cut ⌧2/⌧1 < 0.4 (right). In the
right panel we include the fitted Crystal Ball functions. The event numbers are scaled to L = 20 ab�1.

the expected value of �Rbb from a fit to Monte Carlo simulations,

�R
(calc)

bb
=

250 GeV

pT,filt

. (4)

This supports the choice of R = 1.2 for the C/A jet clustering for the Higgs Tagger requiring transverse
momenta of pT > 200 GeV. Unfortunately, for tt̄H production the relation between the expected and
the measured values of �Rbb does not significantly improve the analysis. However, the mass di↵erence

between the Higgs and the Z boson leads to a shifted peak in the �Rbb � �R
(calc)

bb
distribution for

tt̄Z. This shift allows for an additional reduction of tt̄Z if desired. In the final result shown in the
left panel of Fig. 6 we include a triple b-tag, the N -subjettiness variable ⌧2/⌧1, and a modified fat
jet radius for the Higgs candidate. Since the background region mbb 2 [160, 300] GeV is smooth and
untouched by any signal, we can use it to subtract the QCD continuum from the combined tt̄H and
tt̄Z signal. If the soft regime mbb 2 [0, 60] GeV can be useful in the same way needs to be checked by
a full experimental analysis.

For the signal region mbb 2 [104, 136] GeV we arrive at a signal-to-background ratio around
S/B ⇡ 1/3 and a Gaussian significance S/

p
B = 120, assuming an integrated luminosity of

L = 20 ab�1. The error on the number of nominally NS = 44700 signal events is given by two
terms. First, we assume that we can determine NS from the total number of events NS + NB using
a perfect determination of NB from the side bands. Second, the side band mbb 2 [160, 296] GeV
with altogether Nside = 135000 events and a relative uncertainty of 1/

p
Nside introduces a statistical

uncertainty �NB , altogether leading to

�NS =

⇣p
NS +NB

⌘2

+ (�NB)
2

�1/2

=

"⇣p
NS +NB

⌘2

+

✓
NB

p
Nside

◆2
#1/2

= 0.013NS . (5)

For the Yukawa coupling this translates into a relative error of around 1%. The first term alone would
give �NS = 0.010NS .

In the right panel of Fig. 6 we show a combined fit to the Z and Higgs peaks assuming a
perfect background subtraction. A combined analysis of both peaks (with known masses) serves as a
check of the jet substructure techniques [23, 6] and as a means to reduce systematic and theoretical
uncertainties, as discussed in Section 2. Given separate simulations for the Higgs and Z peaks, we
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Figure 3: Reconstructed mbb for the leading-J substructures in the fat Higgs jet. We require two
b-tags inside the fat Higgs jet (left) and an additional continuum b-tag (right). The event numbers are
scaled to L = 20 ab�1.

At the generator level we require pT,j,b,` > 10 GeV and �Rjj,bb,j` > 0.1. The tt̄+jets background
is generated as one hard jet with pT,j > 100 GeV at the hard matrix element level. We do not
consider merged samples since we found that the influence of tt̄+2j to our analysis is negligible. After
generator cuts we start with a signal cross section of 4.2 pb. Associated tt̄Z production yields 1.2 pb.
The continuum tt̄bb̄ background counts 121 pb and is at this stage dominated by tt̄+jets with 2750 pb.

Delphes3 provides isolated leptons as well as parton-level b-quarks needed for the tagging
procedure later-on. Leptons have to pass a minimum pT,` > 10 GeV. For their isolation we demand
a transverse momentum ratio (isolation variable) of I < 0.1 within �R < 0.3. Finally, we use the
energy flow objects for hadrons to cluster via the Cambridge/Aachen (C/A) jet algorithm [51]. The
jet clustering and the analysis are done with FastJet3 [52], a modified BDRS Higgs tagger [23, 6]
and the HEPTopTagger2 [22]. For all b-tags we require a parton-level b-quark within �R < 0.3.

First, we require one isolated lepton with |y`| < 2.5 and pT,` > 15 GeV. For the top tag [53, 54, 55],
we cluster the event into fat C/A jets with R = 1.8 and pT,j > 200 GeV. Provided we find at least

two fat jets we apply the HEPTopTagger2 with the kinematic requirement |y
(t)

j
| < 4. The recent

significant update of the HEPTopTagger2 relies on two additional pieces of information to achieve
a significant improvement [22]. One of them is N -subjettiness [56], which adds some sensitivity to the
color structure of the event. The other is the optimalR mode, which based on a constant fat jet mass
reduces the size of the fat jet [57] to the point where the fat jet stops containing all hard top decay
subjets. This minimal size can also be computed based on the transverse momentum of the fat jet.
Since the signal and all considered backgrounds include a hadronic top quark, changing the top tagging
parameters results only in an overall scaling factor. In this analysis we do not cut on the di↵erence
between the expected and the found optimal radius because the initial fat jet size is already chosen to
fit the expected transverse momenta. To have a handle on the QCD multi-jet background, we place a
mild cut on the filtered N -subjettiness ratio ⌧3/⌧2 < 0.8 which can be tightened at the cost of signal
e�ciency if desired. After identifying the boosted top we remove the associated hadronic activity and

apply a modified BDRS Higgs tagger to fat C/A jet(s) with R = 1.2, |y(H)

j
| < 2.5, and pT,j > 200 GeV.

Our decomposition of the fat jet into hard substructure includes a cuto↵ of msub > 40 GeV for the
relevant substructure and a mass drop threshold of 0.9. The hard substructures are then paired in all
possible ways and ordered by their modified Jade distance,

J = pT,1pT,2(�R12)
4
. (3)

The leading pairing we filter [23] including the three hardest substructures, to allow for hard gluon
radiation. For consistency we require a reconstructed transverse momentum above 200 GeV. Within

Toy fit: Impact of ttZ measurements
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FCC-hh is determining top Yukawa through ratio tth/ttZ
So extraction of top Yukawa relies on the knowledge of ttZ from FCC-ee

Measuring the Top Yukawa Coupling at 100 TeV 4

tt̄Z cross sections, performed in fiducial regions of acceptance that make them suitable for a realistic
experimental analysis. As we shall discuss here, the theoretical understanding of these processes,
including NLO QCD [31, 32, 33] and EW [34, 35] corrections, and including the current knowledge of
PDFs, allows already today to support an intrinsic overall theoretical accuracy at the percent level.
This precision will certainly be consolidated, and further improved, by future developments. Today,
this allows to start probing the experimental prospects of the 100 TeV collider, to put in perspective the
role of precision Higgs measurements at a such a facility, and to provide useful performance benchmarks
for the design of the future detectors. In this Section we shall motivate such accuracy claim. What will
be learned, can also contribute to improve the expectations for future runs of the LHC, by improving
the predictions for the relative size of the tt̄H signal and its irreducible tt̄Z background.

2.1. Total rates and ratios

The main observation motivating the interest in the study of the tt̄H/tt̄Z ratio is the close analogy
between the two processes. At leading order (LO) they are both dominated by the gg initial state, with
the H or Z bosons emitted o↵ the top quark. The qq̄-initiated processes, which at the 100 (13) TeV
amount for <⇠ 10% (<⇠ 30%) of the total rates, only di↵er in the possibility to radiate the Z boson from
the light-quark initial state. The di↵erence induced by this e↵ect, as we shall see, is not large, and is
greatly reduced at 100 TeV. At NLO, renormalization, factorization and cancellation of collinear and
soft singularities will be highly correlated between the two processes, since the relevant diagrams have
the same structure, due to the identity of the tree-level diagrams. This justifies correlating, in the
estimate of the renormalization and factorization scale uncertainties, the scale choices made for tt̄H

and tt̄Z. The uncertainties due to the mass of the top quark are also obviously fully correlated between
numerator and denominator. Furthermore, due to the closeness in mass of the Higgs and Z bosons
and the ensuing similar size of the values of x probed by the two processes, and given that the choice
of PDFs to be used in numerator and denominator in the scan over PDF sets must be synchronized,
we expect a significant reduction in the PDF systematics for the ratio. Finally, the similar production
kinematics (although not identical, as we shall show in the next Section), should guarantee a further
reduction in the modeling of the final-state structure, like shower-induced higher-order corrections,
underlying-event e↵ects, hadronization, etc.

The above qualitative arguments are fully supported by the actual calculations. All results are
obtained using the MadGraph5 aMC@NLO code [36], which includes both NLO QCD and EW
corrections. The default parameter set used in this study is:

Parameter value Parameter value
Gµ 1.1987498350461625 · 10�5

nlf 5
mt 173.3 yt 173.3
mW 80.419 mZ 91.188
mH 125.0 ↵

�1 128.930

MSTW2008 NLO [37] is the default PDF set and µR = µF = µ0 =
P

f2final states
mT,f/2 is the default

for the central choice of renormalization and factorization scales, where mT,f is the transverse mass
of the final particle f . This scale choice interpolates between the dynamical scales that were shown in
Ref. [31] to minimize the pT dependence of the NLO/LO ratios for the top and Higgs spectra.

�(tt̄H)[pb] �(tt̄Z)[pb]
�(tt̄H)
�(tt̄Z)

13 TeV 0.475+5.79%+3.33%

�9.04%�3.08%
0.785+9.81%+3.27%

�11.2%�3.12%
0.606+2.45%+0.525%

�3.66%�0.319%

100 TeV 33.9+7.06%+2.17%

�8.29%�2.18%
57.9+8.93%+2.24%

�9.46%�2.43%
0.585+1.29%+0.314%

�2.02%�0.147%

Table 1: Total cross sections �(tt̄H) and �(tt̄Z) and the ratios �(tt̄H)/�(tt̄Z) with
NLO QCD corrections at 13 TeV and 100 TeV. Results are presented together with the
renormalization/factorization scale and PDF+↵S uncertainties.

1

2

Subsequently, the 1% sensitivity on tth is essential 
to determine h3 at O(5%) at FCC-hh

3

uncertainty drops in ratio
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Figure 10.4: Expected precision on the Higgs self-coupling modifier � with no systematic uncertainties
(only statistical), 1% signal uncertainty, 1% signal uncertainty together with 1% uncertainty on the Higgs
backgrounds (left) and assuming respectively ⇥1, ⇥2, ⇥0.5 background yields (right).)

defining such a control sample is more challenging and we therefore assume an uncertainty of 1% on the
normalisation, motivated by expected precision on this process at the FCC-hh [77]. In this scenario we
find an expected precision �� = 6.5%. Figure 10.4 (right) shows how the precision is affected by vary-
ing the overall background yields by factors of 2 and 0.5 and find an impact on the overall � precision
of ⇡ ±1%.

Figure 10.5 shows the dependence of sensitivity on the detector performance assumptions. The left
plot assumes a ggmass resolution �m�� = 2.9 GeV. The central plot modifies the photon reconstruction
efficiency, and the right one modifies the jet-to-photon fake rate. Each of these scenarios degrades the
precision on the self-coupling by 1-2%. These scenarios roughly match the expected performance of the
ATLAS and CMS detectors at HL-LHC [280, 281], and should therefore be considered as conservative.
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Figure 10.5: Expected precision on the Higgs self-coupling modifier � obtained by varying the photon
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Assumes all uncertainty goes into κλ 

But other NP parameters modify HH 
production and decays 

They can be measured at FCC-ee/eh/hh 
with ~1% precision
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FIG. 1: Cartoon of the region in the plane (g⇤,�/g⇤), defined by Eqs. (13),(14), that can be probed
by an analysis including only dimension-6 operators (in white). No sensible e↵ective field theory
description is possible in the gray area (� < gmin), while exploration of the light blue region
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p
g⇤gmin) requires including the dimension-8 operators.
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FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

C. Cross section of double Higgs production

We can now discuss our parametrization of the cross section of double Higgs production

via gluon fusion. We will use the non-linear Lagrangian (4) and start by neglecting higher-

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each
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The Global Higgs fit at FCC-ee/eh/hh
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• Higgs self-interaction: 

• Direct HH production at FCC-hh 

• Combination with other final states could further improve the 
precision on self-coupling. 

δκλ~5% 

Toy fit neglecting FCCee measurements  
and using simple HH inclusive observable
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FCC-ee needed for absolute normalisation of Higgs couplings
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Another way of understanding E-growth:

Top Yukawa… without a Higgs
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only from the long-term HL-LHC program, but also
from potential future high energy colliders, such as
the HE-LHC or CLIC.

Our leitmotiv is that any observable modification
of a SM coupling will produce in some process a
growth with energy (see table I). In some sense, this is
obvious: since the SM is the only theory that can be
extrapolated to arbitrarily1 high-energy, any depar-
ture from it can have only a finite range of validity,
a fact that is made manifest by a disproportionate
growth in some scattering amplitude. Theories with
a finite range of validity are, by definition, EFTs;
for this reason the best vehicle to communicate our
message is the EFT language of Eq. (1). We stress
nevertheless that at, tree level, the very same con-
clusions can be reached in the  framework [1] or in
the unitary-gauge framework of Ref. [2, 3].

The operators of Eq. (1) have the form |H|
2
⇥O

SM ,
with O

SM a dimension-4 SM operator (i.e. kinetic
terms, Higgs potential, and Yukawas) times

|H|
2 =

1

2

�
v2 + 2hv + h2 + 2�+�� + (�0)2

�
(2)

where v = 246 GeV is the Higgs vacuum expecta-
tion value (vev), h is the physical Higgs boson, and
�±,0 are the would-be longitudinal polarizations of
W - and Z- bosons. From the operators in Eq. (1),
the piece / v2 can be reabsorbed via a redefinition of
the SM input parameters and is therefore unobserv-
able [15, 16]; the piece / vh constitutes instead the
core of the HC measurements program, as it implies
modifications to single-Higgs processes (triple Higgs
processes for O6), and can be matched easily to the
 framework. The h2 piece was discussed in [17, 18]
in the context of double Higgs production. In this
article we focus on the last two terms in Eq. (2) and
study processes with longitudinal gauge bosons in-
stead of processes with an on-shell Higgs; we dub
this search strategy “Higgs without Higgs” - HwH in
short.

The high-energy avenue is potentially very promis-
ing: for E2-growing e↵ects, a 1% sensitivity at the
Higgs boson mass, corresponds to a O(1) sensitivity
at E ⇠ 1 TeV. We will see that, in practice, High-E
measurements are rather complex, so that this näıve
scaling is hardly achieved in the explorative analysis
presented here. However, we envisage several strate-

1
Modulo the Landau pole and the coupling to gravity, both

irrelevant for the present discussion.

FIG. 1. A unitary-gauge diagram with energy-growing sen-

sitive to the Higgs trilinear. The two VBF jets and, in par-

ticular, same sign leptons, give rise to an exceptionally clean

channel.

gies for improvement that outline a challenging and
exciting collider program.

II. HIGH-ENERGY PROCESSES

The first ingredient in this program is to identify
which processes grow maximally with energy once
Higgs Couplings are modified. There is a simple and
intuitive way of quickly accessing this information
based on 1) dimensional analysis, 2) our choice of
EFT basis Eq. (1), and 3) on the parametrization
chosen in Eq. (2), where the longitudinal polariza-
tions are explicitly represented by their scalar high-
energy counterpart [19–21]. For v ! 0, the opera-
tors of Eq. (1) contribute directly to contact inter-
actions with n = 4 fields (OWW , OBB , OGG, Or),
5 fields (Oy ) or 6 fields (OH), with a coupling
/ 1/⇤2 that carries two inverse powers of mass di-
mensions. Amplitudes generated by just these con-
tact vertices do not involve any propagator (which
carries inverse powers of energy) and are therefore
maximally energy-growing. At high-energy—E �

mW ,mh,mt—the only other dimensionful parameter
is the energy E, so that generically we expect that
the BSM and SM contributions to the same process
scale as

A
O
n

ASM
n

⇠
E2

⇤2
. (3)

Table I shows the relevant processes that exhibit
this behaviour; more explicitly, at hadron (lepton)

Goldstones = WL,ZL
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Synergy High-pT - Higgs Threshold
The global Higgs fit focused on inclusive measurements 

They don’t do justice to richness of kinematical distributions accessible  
at high-energy hadronic machines 

“Energy helps accuracy” — "Higgs couplings without the Higgs" 

 ttH  jVVt @ high √Ŝ 

What are the measurements to perform at HL-LHC to be fully exploited 
later at HZ factory?

Riva @ Higgs 
2020

Often the energy growth is cancelled in too inclusive observables. 
Need to resurrect the interference by looking at angular and energy distributions

https://indico.cern.ch/event/900384/contributions/3998906/attachments/2133231/3592647/H2020_Riva.pdf
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— New Physics —

(ii) Exploration potential

e.g. susy searches, vector resonances, extended Higgs sectors, searches for new interactions
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The power of PDF

http://collider-reach.web.cern.ch/collider-reach/
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The power of PDF
100-ish TeV pp collider
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Figure 7: Evolution with time of the mass reach at
p

s = 100 TeV, relative to HL-LHC,
under di↵erent luminosity scenarios (1 year counts for 6 ⇥ 106 sec). The left (right) plot
shows the mass increase for a (qq̄) resonance with couplings enabling HL-LHC discovery
at 6 TeV (1 TeV).

tive on extending the discovery reach for new phenomena at high mass scales,
high-statistics studies of possible new physics to be discovered at (HL)-LHC,
and incisive studies of the Higgs boson’s properties. Specific measurements
may set more aggressive luminosity goals, but we have not found generic
arguments to justify them. The needs of precision physics arising from new
physics scenarios to be discovered at the HL-LHC, to be suggested by anoma-
lies observed in e+e� collisions at a future linear or circular collider, or to
be discovered at 100 TeV, may well drive the need for even higher statistics.
Such requirements will need to be established on a case-by-case basis, and
no general scaling law gives a robust extrapolation from 14 TeV. Further
work on ad hoc scenarios, particularly for low-mass phenomena and elusive
signatures, is therefore desirable.

For a large class of new-physics scenarios that may arise from the LHC,
less aggressive luminosity goals are acceptable as a compromise between
physics return and technical or experimental challenges. In particular, even
luminosities in the range of 1032 cm�2s�1 are enough to greatly extend the
discovery reach of the 100 TeV collider over that of the HL-LHC, or to en-
hance the precision in the measurement of discoveries made at the HL-LHC.

We have given an overview of the impressive raw capabilities of the 100
TeV pp collider. Of course, given that we can extrapolate the SM alone

16

Hinchliffe, Kotwal, Mangano, Quigg, LTW 

A factor of at least 5 increase in reach 
beyond the LHC, with modest luminosity

Hinchliffe, Kotwal, Mangano, Quigg, Wang ’15

http://collider-reach.web.cern.ch/collider-reach/
http://indico.cern.ch/event/438866/timetable/%23all.detailed
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In conventional realizations of SUSY, a special role is played by the 
Higgsinos, stops, and gluinos, as these couple strongest to the Higgs. 

(Dimopoulos & Giudice ’95; Cohen, Kaplan & Nelson ’96 ......) 
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light Higgsinos!

very low sensitivity @ LHC
ILC needed to probe the other side 

I. Probing natural SUSY

light stops, light gluinos!
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I. Probing natural SUSY

Fig. 12: Left: Discovery potential and Right: Projected exclusion limits for 3000 fb�1 of total integrated lumi-
nosity at

p
s = 100 TeV. The solid lines show the expected discovery or exclusion obtained from the boosted top

(black) and compressed spectra (blue) searches. In the boosted regime we use the E/T cut that gives the strongest
exclusion for each point in the plane. The dotted lines in the left panel show the ±1� uncertainty band around the
expected exclusion.

Collider Energy Luminosity Cross Section Mass
LHC8 8 TeV 20.5 fb�1 10 fb 650 GeV
LHC 14 TeV 300 fb�1 3.5 fb 1.0 TeV

HL LHC 14 TeV 3 ab�1 1.1 fb 1.2 TeV
HE LHC 33 TeV 3 ab�1 91 ab 3.0 TeV
FCC-hh 100 TeV 1 ab�1 200 ab 5.7 TeV

Table 1: The first line gives the current bound on stops from the LHC 8 TeV data [106, 132]. The remaining lines
give the estimated 5� discovery reach in stop pair production cross section and mass for different future hadron
collider runs (from [131]). At 100 TeV, NLL+NLO cross sections can be used to extend the reach.

boosted top tagging may suffer from intrinsic limitations due to the nature of calorimeters [18], the
search presented here avoids specialized substructure variables and instead uses top-tagging techniques
established at the LHC. This is applied to stop searches in theory studies in [108,127–131]. Top tagging
has been used by experiments at the LHC [137, 138] in other types of searches, and from [137] we take
the efficiency of top tagging to be 50% for tops with pT > 500 GeV. From the same search we take the
fake rate to be 5% for the same pT range. There is very little data for pT > 800 GeV, but we will use
these efficiencies throughout out study, even at very high energy. The HPTTopTagger [15] study focuses
on pT > 1 TeV and finds somewhat lower tagging efficiency but also lower fake rates.

Therefore, we make the following cuts taking the efficiency from the literature:

– Require both tops decay hadronically (46%),
– Require one b-tag (70%) [139, 140],
– Require both tops pass a top tagger (25%).

We also simulate pair production of 6 TeV stops decaying to a nearly massless (1 GeV) neutralino
at a 100 TeV machine. The simulation is done at parton level with MadGraph 5 [121] and is used to
compute the efficiency for the following two cuts:

– Require that both tops have pT > 500 GeV (97%),
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s = 100 TeV. The solid lines show the expected discovery or exclusion obtained from the boosted top

(black) and compressed spectra (blue) searches. In the boosted regime we use the E/T cut that gives the strongest
exclusion for each point in the plane. The dotted lines in the left panel show the ±1� uncertainty band around the
expected exclusion.
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LHC 14 TeV 300 fb�1 3.5 fb 1.0 TeV

HL LHC 14 TeV 3 ab�1 1.1 fb 1.2 TeV
HE LHC 33 TeV 3 ab�1 91 ab 3.0 TeV
FCC-hh 100 TeV 1 ab�1 200 ab 5.7 TeV

Table 1: The first line gives the current bound on stops from the LHC 8 TeV data [106, 132]. The remaining lines
give the estimated 5� discovery reach in stop pair production cross section and mass for different future hadron
collider runs (from [131]). At 100 TeV, NLL+NLO cross sections can be used to extend the reach.

boosted top tagging may suffer from intrinsic limitations due to the nature of calorimeters [18], the
search presented here avoids specialized substructure variables and instead uses top-tagging techniques
established at the LHC. This is applied to stop searches in theory studies in [108,127–131]. Top tagging
has been used by experiments at the LHC [137, 138] in other types of searches, and from [137] we take
the efficiency of top tagging to be 50% for tops with pT > 500 GeV. From the same search we take the
fake rate to be 5% for the same pT range. There is very little data for pT > 800 GeV, but we will use
these efficiencies throughout out study, even at very high energy. The HPTTopTagger [15] study focuses
on pT > 1 TeV and finds somewhat lower tagging efficiency but also lower fake rates.

Therefore, we make the following cuts taking the efficiency from the literature:

– Require both tops decay hadronically (46%),
– Require one b-tag (70%) [139, 140],
– Require both tops pass a top tagger (25%).

We also simulate pair production of 6 TeV stops decaying to a nearly massless (1 GeV) neutralino
at a 100 TeV machine. The simulation is done at parton level with MadGraph 5 [121] and is used to
compute the efficiency for the following two cuts:

– Require that both tops have pT > 500 GeV (97%),

25



Christophe Grojean INFIERI-UAM,  August 202128

I. Probing natural SUSY

 [TeV]g~m
0 5 10 15 20

 [T
eV

]
q~

m

0

5

10

15

20
-1100 TeV, 3000 fb

-133 TeV, 3000 fb
-114 TeV, 3000 fb

-114 TeV, 300 fb

q~q~,q~g~,g~g~→pp
 discoveryσ5 

 [TeV]g~m
0 5 10 15 20

 [T
eV

]
q~

m

0

5

10

15

20
-1100 TeV, 3000 fb

-133 TeV, 3000 fb
-114 TeV, 3000 fb

-114 TeV, 300 fb

q~q~,q~g~,g~g~→pp
95% CL exclusion
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panel shows the 5 � discovery reach [95% CL exclusion] for the four collider scenarios studied here. A 20%

systematic uncertainty is assumed and pile-up is not included.

3.4.2.2 Associated production with meq > meg

The gluino-squark-neutralino model in the previous section was probed in a region where meg ⇠ meq. In
this section, we consider squark-gluino associated production in a region of parameter space in which
the gluinos are relatively light, while the squarks are heavier, but not completely decoupled. This work
is documented more completely in [150], where we have analysed the prospects for squark-gaugino
associated production at a 100 TeV collider.

Squark-gluino associated production is interesting because it has the potential to probe much
higher squark masses than those reached in pair production. Spectra with a hierarchy between the gluino
and the first two generation squarks are predicted in many scenarios, such as anomaly-mediated SUSY
breaking [151, 152], or in “mini-split"-type models [33, 153, 154].

We consider two simplified models for squark-gluino associated production. In both, the particle
content consists only of first and second generation squarks, gluino, and a Bino LSP (e�0

1 = B̃). The two
models correspond to different choices of the LSP mass:

– Non-compressed: M1 = 100 GeV (results in Fig. 18(a))
– Compressed: meg � me�0

1
= 15 GeV (results in Fig. 18(b))

where we take the first and second generation squarks to be degenerate in mass, and decouple all other
superpartners. Our results are insensitive to the choice of M1 = 100 GeV in the non-compressed spectra,
as the LSP is effectively massless for me�0

1
⌧ meg. The compressed spectra are consistent with the gluino-

neutralino dark matter (DM) coannihilation region [155, 156].
Events from squark-gluino associated production have distinctive event topologies, with a hard

leading jet and significant E/T . Both arise primarily from the decay of the heavy squark, since the gluino
is produced at relatively low pT . As in the gluino simplified models above, the dominant sources of
background are top pair production and production of an SM boson + jets [78]. However, both of these
backgrounds fall off rapidly both with increasing pT (j1), E/T , and E/T

p
HT (where HT is the scalar sum

of the jet transverse energies). This can be seen for an example spectrum point in Fig. 17.
The leading jet typically has a pT (j1) ⇠ meq/2, while the decay of the squark into the LSP

eq ! qeg ! 3 qe�0
1 results in a highly boosted neutralino and large E/T . As such, heavy squark - light

gluino associated production events have a striking collider signature with very low SM backgrounds.
We impose the following baseline cuts for both spectra:

HT > 10 TeV, E/T /
p

HT > 20 TeV1/2.
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Fig. 12: Left: Discovery potential and Right: Projected exclusion limits for 3000 fb�1 of total integrated lumi-
nosity at

p
s = 100 TeV. The solid lines show the expected discovery or exclusion obtained from the boosted top

(black) and compressed spectra (blue) searches. In the boosted regime we use the E/T cut that gives the strongest
exclusion for each point in the plane. The dotted lines in the left panel show the ±1� uncertainty band around the
expected exclusion.

Collider Energy Luminosity Cross Section Mass
LHC8 8 TeV 20.5 fb�1 10 fb 650 GeV
LHC 14 TeV 300 fb�1 3.5 fb 1.0 TeV

HL LHC 14 TeV 3 ab�1 1.1 fb 1.2 TeV
HE LHC 33 TeV 3 ab�1 91 ab 3.0 TeV
FCC-hh 100 TeV 1 ab�1 200 ab 5.7 TeV

Table 1: The first line gives the current bound on stops from the LHC 8 TeV data [106, 132]. The remaining lines
give the estimated 5� discovery reach in stop pair production cross section and mass for different future hadron
collider runs (from [131]). At 100 TeV, NLL+NLO cross sections can be used to extend the reach.

boosted top tagging may suffer from intrinsic limitations due to the nature of calorimeters [18], the
search presented here avoids specialized substructure variables and instead uses top-tagging techniques
established at the LHC. This is applied to stop searches in theory studies in [108,127–131]. Top tagging
has been used by experiments at the LHC [137, 138] in other types of searches, and from [137] we take
the efficiency of top tagging to be 50% for tops with pT > 500 GeV. From the same search we take the
fake rate to be 5% for the same pT range. There is very little data for pT > 800 GeV, but we will use
these efficiencies throughout out study, even at very high energy. The HPTTopTagger [15] study focuses
on pT > 1 TeV and finds somewhat lower tagging efficiency but also lower fake rates.

Therefore, we make the following cuts taking the efficiency from the literature:

– Require both tops decay hadronically (46%),
– Require one b-tag (70%) [139, 140],
– Require both tops pass a top tagger (25%).

We also simulate pair production of 6 TeV stops decaying to a nearly massless (1 GeV) neutralino
at a 100 TeV machine. The simulation is done at parton level with MadGraph 5 [121] and is used to
compute the efficiency for the following two cuts:

– Require that both tops have pT > 500 GeV (97%),
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exclusion for each point in the plane. The dotted lines in the left panel show the ±1� uncertainty band around the
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Collider Energy Luminosity Cross Section Mass
LHC8 8 TeV 20.5 fb�1 10 fb 650 GeV
LHC 14 TeV 300 fb�1 3.5 fb 1.0 TeV

HL LHC 14 TeV 3 ab�1 1.1 fb 1.2 TeV
HE LHC 33 TeV 3 ab�1 91 ab 3.0 TeV
FCC-hh 100 TeV 1 ab�1 200 ab 5.7 TeV

Table 1: The first line gives the current bound on stops from the LHC 8 TeV data [106, 132]. The remaining lines
give the estimated 5� discovery reach in stop pair production cross section and mass for different future hadron
collider runs (from [131]). At 100 TeV, NLL+NLO cross sections can be used to extend the reach.

boosted top tagging may suffer from intrinsic limitations due to the nature of calorimeters [18], the
search presented here avoids specialized substructure variables and instead uses top-tagging techniques
established at the LHC. This is applied to stop searches in theory studies in [108,127–131]. Top tagging
has been used by experiments at the LHC [137, 138] in other types of searches, and from [137] we take
the efficiency of top tagging to be 50% for tops with pT > 500 GeV. From the same search we take the
fake rate to be 5% for the same pT range. There is very little data for pT > 800 GeV, but we will use
these efficiencies throughout out study, even at very high energy. The HPTTopTagger [15] study focuses
on pT > 1 TeV and finds somewhat lower tagging efficiency but also lower fake rates.

Therefore, we make the following cuts taking the efficiency from the literature:

– Require both tops decay hadronically (46%),
– Require one b-tag (70%) [139, 140],
– Require both tops pass a top tagger (25%).

We also simulate pair production of 6 TeV stops decaying to a nearly massless (1 GeV) neutralino
at a 100 TeV machine. The simulation is done at parton level with MadGraph 5 [121] and is used to
compute the efficiency for the following two cuts:

– Require that both tops have pT > 500 GeV (97%),

25
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I. Natural SUSY: beyond standard searches

Run-1: search for heavy stop (t̃2)
• 2012 (20 fb�1): stops searches based on t̃1 t̃1

production, with t̃1 ! t�̃0
1 or t̃1 ! b�̃±

1

• No sensitivity for t̃1 ! t�̃0
1 with

m
t̃1

& m�̃0
1
+ mt : very similar to SM tt̄

• [New at the LHC] Production of the heavier
stop mass eigenstate (t̃2) relying on the
t̃2 ! Zt̃1 decay to reduce tt̄ ! Signature:
Z(`+`�)+`+b+E

miss
T

• Eur. Phys. J. C 74 (2014) 2883 (20 fb�1)
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Run-2: t̃2 searches in 2016

• Analysis performed in collaboration with the Bern group

• ATLAS-CONF-2016-038 (13 fb�1): explore t̃2 ! Zt̃1 with 3`+b+E
miss
T

• JHEP 1708 (2017) 006 (36 fb�1): analysis extended to t̃2 ! ht̃1 with
1`+4b+E

miss
T

• Interpretations for varying BRs in t̃2 ! ht̃1/Zt̃1 and also for t̃1 ! t�0
2,

�0
2 ! h/Z �̃0
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Searching for light stop from heavy stop decay

~ RUN 2 ~

X. Poveda @ DESY’17

~ RUN 1 ~
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II. Vector resonances

Christophe Grojean Effective Higgs Zurich, 7th.Jan. 2o1311

Effective Higgs

typical mass scale
M = g* f

NP
EW scale v=246GeV

g, g’, yt

SM

g2  /g*
SM

effective approach valid iff
mass gap: M >> gSM v

weakly coupled NP strongly coupled NP

MSSM in the decoupling limit composite Higgs models

in both cases, Higgs couples to NP with g*

g* ~ gSM g* >> gSM

 Precision Higgs study: 

 Direct searches for resonances:

Composite Higgs : Reach 
Complementary approaches to probe composite Higgs models 
•  Direct search for heavy resonances at the LHC 
•  Indirect search via Higgs couplings at the ILC 
Note: the two approaches cannot be directly compared since the spectra of 
the heavy resonances are heavily model-dependent.  Higgs couplings provide 
a model-independent probe of Higgs compositeness. 
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Which one is doing best?
it depends on value of g*

Precision /indirect searches (high lumi.) vs. direct searches (high energy)
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A combination of VV searches

JJ

Jlν Jll

JJ

Jlν

Jll

for the W
0
! WLZL and Gbulk ! WLWL signal hypotheses is found in the mass range to

1.9 < mX < 2.1 TeV, while the excess extends down to mX = 1.8 TeV for the ZLZL sig-
nal hypothesis. In these mass ranges, the ATLAS data prefer a production cross section of
⇡ 10 fb, while the CMS data favour smaller values (⇡ 3 fb) and are more consistent with the
no-signal hypothesis. The maximum-likelihood (ML) combined cross section is essentially
identical to the corresponding ATLAS value. The scan of the profiled likelihood functions
are compared in Figure 10 for mX = 2 TeV, corresponding to the largest signal significance.
Due to the large uncertainties on the signal strength, the best-fit cross-section values by
ATLAS and CMS are compatible within ±1� for W

0
! WLZL and Gbulk ! WLWL. The

compatibility is slightly reduced under the Gbulk ! ZLZL hypothesis.
In conclusion, the mild CMS excess reduce slightly the large ATLAS excess, but the

global significance stays well above 3 � for Gbulk ! WLWL and Gbulk ! ZLZL hypotheses
and close to 3 � for W

0
! WLZL. The preferred mass range for the excess after the

combination is for mX between ⇡ 1.9 and ⇡ 2 TeV.

Figure 7. Full hadronic CMS + ATLAS combined limits (black). The green (yellow) bands

represent the two sigma (one sigma) limits from our fit with the fudge factors. The read and blue

lines correspond to the observed and expected limits respectively of ATLAS-only and CMS-only.

From left to right we show respectively the results for Gbulk ! WLWL, W
0
! WLZL and

Gbulk ! ZLZL selections and signal hypotheses.

Figure 11 shows the evolution of observed and expected limits when the signal is com-
posed by ZLZL and WLWL components.

– 12 –

Figure 8. The p-values from full hadronic CMS + ATLAS combination (black). The green (yellow)

bands represent the two sigma (one sigma) limits from our fit with the fudge factors. The red and

blue lines correspond to the observed and expected limits respectively of ATLAS-only and CMS-

only. We also show the result of the combination without use of the fudge factors in dashed. From
left to right we show respectively the results for Gbulk ! WLWL, W

0
! WLZL and Gbulk ! ZLZL

selections and signal hypotheses.

Figure 9. Best fitted cross section for ATLAS and CMS combination in the VV ! JJ channel,

compared with the best fitted cross section from the individual results for ATLAS-only (red) and

CMS-only (blue). The green (yellow) bands represent the two sigma (one sigma) limits from our fit

with the fudge factors. From left to right we show respectively the results for Gbulk ! WLWL,

W
0
! WLZL and Gbulk ! ZLZL selections and signal hypotheses.

– 13 –

Figure 19. Combination of ATLAS and CMS in semi-leptonic channels: Top: Gbulk ! ZLZL,

Middle: Gbulk ! WLWL. The results of the combination (black) are compared with individual

ATLAS-only (red) and CMS-only (blue). Bottom: W’. Left: Expected (dashed) and observed

(continuous) limits. The green (yellow) bands represent the two sigma (one sigma) limits for the

ATLAS and CMS combination when the fudge factors are included in limits setting. Right p-value

to the ATLAS and CMS combination including the fudge factors in limits setting (continuous), and

not including them (dashed).
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Figure 19. Combination of ATLAS and CMS in semi-leptonic channels: Top: Gbulk ! ZLZL,

Middle: Gbulk ! WLWL. The results of the combination (black) are compared with individual

ATLAS-only (red) and CMS-only (blue). Bottom: W’. Left: Expected (dashed) and observed

(continuous) limits. The green (yellow) bands represent the two sigma (one sigma) limits for the

ATLAS and CMS combination when the fudge factors are included in limits setting. Right p-value

to the ATLAS and CMS combination including the fudge factors in limits setting (continuous), and

not including them (dashed).
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F. Dias et al. http://arxiv.org/abs/1512.03371
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At 8 TeV, some excess in ZW decays (in jets) mostly in ATLAS:
The ATLAS Dijet Diboson excess  
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Figure 5: Background-only fits to the dijet mass (mj j) distributions in data (a) after tagging with the WZ selection,
(b) after tagging with the WW selection and (c) after tagging with the ZZ selection. The significance shown in
the inset for each bin is the di↵erence between the data and the fit in units of the uncertainty on this di↵erence.
The significance with respect to the maximum-likelihood expectation is displayed in red, and the significance when
taking the uncertainties on the fit parameters into account is shown in blue. The spectra are compared to the signals
expected for an EGM W 0 with mW0 = 1.5, 2.0, or 2.5 TeV or to an RS graviton with mGRS = 1.5 or 2.0 TeV.

to the shape of the signal, and N is a log-normal distribution for the nuisance parameters, ✓, modelling
the systematic uncertainty on the signal normalisation. The expected number of events is the bin-wise
sum of the events expected for the signal and background: nexp = nsig + nbg. The number of expected
background events in dijet mass bin i, ni

bg, is obtained by integrating dn/dx obtained from eqn. (1) over
that bin. Thus nbg is a function of the dijet background parameters p1, p2, p3. The number of expected
signal events, nsig, is evaluated based on MC simulation assuming the cross section of the model under
test multiplied by the signal strength and including the e↵ects of the systematic uncertainties described in

16

• ATLAS reported an excess in the Run I all-jet Diboson search 

• Excess seen at ≈2 TeV in three overlapping analyses (i.e., not 
independent results)


• 3.4� in the WZ channel, 2.6� in WW, 2.9� in ZZ


• Global significance evaluated to 2.5� after Look Elsewhere effect
ATLAS arXiv:1506.00962 
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Figure 5: Background-only fits to the dijet mass (mj j) distributions in data (a) after tagging with the WZ selection,
(b) after tagging with the WW selection and (c) after tagging with the ZZ selection. The significance shown in
the inset for each bin is the di↵erence between the data and the fit in units of the uncertainty on this di↵erence.
The significance with respect to the maximum-likelihood expectation is displayed in red, and the significance when
taking the uncertainties on the fit parameters into account is shown in blue. The spectra are compared to the signals
expected for an EGM W 0 with mW0 = 1.5, 2.0, or 2.5 TeV or to an RS graviton with mGRS = 1.5 or 2.0 TeV.

to the shape of the signal, and N is a log-normal distribution for the nuisance parameters, ✓, modelling
the systematic uncertainty on the signal normalisation. The expected number of events is the bin-wise
sum of the events expected for the signal and background: nexp = nsig + nbg. The number of expected
background events in dijet mass bin i, ni

bg, is obtained by integrating dn/dx obtained from eqn. (1) over
that bin. Thus nbg is a function of the dijet background parameters p1, p2, p3. The number of expected
signal events, nsig, is evaluated based on MC simulation assuming the cross section of the model under
test multiplied by the signal strength and including the e↵ects of the systematic uncertainties described in
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Figure 5: Background-only fits to the dijet mass (mj j) distributions in data (a) after tagging with the WZ selection,
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to the shape of the signal, and N is a log-normal distribution for the nuisance parameters, ✓, modelling
the systematic uncertainty on the signal normalisation. The expected number of events is the bin-wise
sum of the events expected for the signal and background: nexp = nsig + nbg. The number of expected
background events in dijet mass bin i, ni

bg, is obtained by integrating dn/dx obtained from eqn. (1) over
that bin. Thus nbg is a function of the dijet background parameters p1, p2, p3. The number of expected
signal events, nsig, is evaluated based on MC simulation assuming the cross section of the model under
test multiplied by the signal strength and including the e↵ects of the systematic uncertainties described in
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Collider Energy Luminosity ⇠ [1�] References

LHC 14TeV 300 fb�1 6.6� 11.4⇥ 10�2 [60–62]

LHC 14TeV 3 ab�1 4� 10⇥ 10�2 [60–62]

ILC 250GeV 250 fb�1

4.8-7.8⇥10�3 [1, 62]
+ 500GeV 500 fb�1

CLIC 350GeV 500 fb�1

2.2 ⇥10�3 [62, 63]+ 1.4TeV 1.5 ab�1

+ 3.0TeV 2 ab�1

TLEP 240GeV 10 ab�1

2⇥10�3 [62]
+ 350GeV 2.6 ab�1

Table 3.1: Summary of the reach on ⇠ (see the text for the definition) for various collider options.

4 EWPT reassessment

As mentioned in the Introduction, EWPT, and in particular the oblique parameters Ŝ and T̂ ,

set some of the strongest constraints on CH models. However, as we stressed before, they su↵er

from an unavoidable model dependence, so that incalculable UV contributions can substantially

relax these constraints [19]. We believe that presenting the corresponding exclusion contours

in the previous plots without taking into account any possible UV contribution would lead to a

wrong and too pessimistic conclusion. Therefore we parametrize the new physics contributions

to Ŝ and T̂ as
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where the first terms represent the IR contributions due to the Higgs coupling modifications

[11], the second term in �Ŝ comes from tree-level exchange of vector resonances and the last

terms parametrize short distance e↵ects. The scale ⇤ in eq. (4) represents the scale of new

physics, which we set to ⇤ = 4⇡f . We could instead use m⇢ to parametrize this scale, however,

here we have the situation in mind where m⇢ could be lighter than the typical resonances scale,

or the cut-o↵ scale, and our choice maximises the NP e↵ect, leading to a more conservative

bound. Moreover, being the sensitivity to this scale logarithmic, the final result only has a

mild sensitivity on this choice. The coe�cients ↵ and � are of order one and could have either

sign [19]. In the literature, a constant positive contribution to �T̂ has often been assumed to

relax the constraints from EWPT [53, 64]. However, the finite UV contributions of the form

of the last terms in eq. (4.1) arising from loops of heavy fermionic resonances always depend

on ⇠, significantly changing the EW fit compared to a constant contribution. In order to show

realistic constraints from EWPT, we define a �
2 as a function of ⇠, m⇢, ↵, �, i.e. �

2(⇠, m⇢, ↵, �),

and compute 95%CL exclusion contours in the (m⇢, ⇠) plane marginalising over ↵ and �. In

order to control the level of cancellation in the �
2 due to the contribution of the UV terms, we
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kink in the limits originates from the superposition of the di-lepton and di-boson searches we

considered which, as already mentioned, is more sensitive to weak and strong g⇢, respectively.

This is due to the fact that, while the coupling to fermions decreases, the one to (longitudinal)

gauge bosons increases like g⇢ and the di-boson BR rapidly becomes dominant.

The global message which emerges from these pictures is rather simple and expected. An

increase of the collider energy improves the mass reach dramatically, and in particular only

the 100TeV FCC can access the multi–TeV region. An increase in luminosity, instead, has a

marginal e↵ect on the mass reach but considerably extends the sensitivity in the large g⇢ (i.e.,

small rate) direction. In particular we see that the impact of the high luminosity extension of

the LHC is considerable given that largish values of the g⇢ coupling are perfectly plausible in

the CH scenario (see the Conclusions for a more detailed discussion).

Let us now turn to the indirect constraints from the measurement of the Higgs coupling to

vector bosons. The 1� (68%CL) error on ⇠ (i.e., twice the one on kV ' 1 � ⇠/2) obtainable

for di↵erent collider options, as extracted from currently available literature, are summarised

in table 3.1. Twice those values, which in the assumption of gaussian statistics corresponds to

the 95%CL limits on ⇠, are reported in figures 3.2 and 3.3 as black dashed curves, with the

excluded region sitting above the lines. In the (m⇢, ⇠) plane, the limits simply corresponds to

horizontal lines and translate into straight lines with varying inclination in the (m⇢, g⇢) plane.

In particular, we show the LHC reach with 300 fb�1 and 3 ab�1, obtained from single Higgs

production, corresponding to ⇠ > 0.13 and ⇠ > 0.08 respectively, and the expected reach of the

ILC and TLEP at
p

s = 500GeV and
p

s = 350GeV corresponding to ⇠ > 0.01 and ⇠ > 0.004.
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increase of the collider energy improves the mass reach dramatically, and in particular only
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marginal e↵ect on the mass reach but considerably extends the sensitivity in the large g⇢ (i.e.,

small rate) direction. In particular we see that the impact of the high luminosity extension of

the LHC is considerable given that largish values of the g⇢ coupling are perfectly plausible in

the CH scenario (see the Conclusions for a more detailed discussion).

Let us now turn to the indirect constraints from the measurement of the Higgs coupling to

vector bosons. The 1� (68%CL) error on ⇠ (i.e., twice the one on kV ' 1 � ⇠/2) obtainable

for di↵erent collider options, as extracted from currently available literature, are summarised

in table 3.1. Twice those values, which in the assumption of gaussian statistics corresponds to

the 95%CL limits on ⇠, are reported in figures 3.2 and 3.3 as black dashed curves, with the

excluded region sitting above the lines. In the (m⇢, ⇠) plane, the limits simply corresponds to

horizontal lines and translate into straight lines with varying inclination in the (m⇢, g⇢) plane.

In particular, we show the LHC reach with 300 fb�1 and 3 ab�1, obtained from single Higgs

production, corresponding to ⇠ > 0.13 and ⇠ > 0.08 respectively, and the expected reach of the

ILC and TLEP at
p

s = 500GeV and
p

s = 350GeV corresponding to ⇠ > 0.01 and ⇠ > 0.004.
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This is due to the fact that, while the coupling to fermions decreases, the one to (longitudinal)

gauge bosons increases like g⇢ and the di-boson BR rapidly becomes dominant.

The global message which emerges from these pictures is rather simple and expected. An

increase of the collider energy improves the mass reach dramatically, and in particular only

the 100TeV FCC can access the multi–TeV region. An increase in luminosity, instead, has a

marginal e↵ect on the mass reach but considerably extends the sensitivity in the large g⇢ (i.e.,

small rate) direction. In particular we see that the impact of the high luminosity extension of

the LHC is considerable given that largish values of the g⇢ coupling are perfectly plausible in

the CH scenario (see the Conclusions for a more detailed discussion).

Let us now turn to the indirect constraints from the measurement of the Higgs coupling to

vector bosons. The 1� (68%CL) error on ⇠ (i.e., twice the one on kV ' 1 � ⇠/2) obtainable

for di↵erent collider options, as extracted from currently available literature, are summarised

in table 3.1. Twice those values, which in the assumption of gaussian statistics corresponds to

the 95%CL limits on ⇠, are reported in figures 3.2 and 3.3 as black dashed curves, with the

excluded region sitting above the lines. In the (m⇢, ⇠) plane, the limits simply corresponds to

horizontal lines and translate into straight lines with varying inclination in the (m⇢, g⇢) plane.

In particular, we show the LHC reach with 300 fb�1 and 3 ab�1, obtained from single Higgs

production, corresponding to ⇠ > 0.13 and ⇠ > 0.08 respectively, and the expected reach of the

ILC and TLEP at
p

s = 500GeV and
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s = 350GeV corresponding to ⇠ > 0.01 and ⇠ > 0.004.
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Collider Energy Luminosity ⇠ [1�] References

LHC 14TeV 300 fb�1 6.6� 11.4⇥ 10�2 [60–62]

LHC 14TeV 3 ab�1 4� 10⇥ 10�2 [60–62]

ILC 250GeV 250 fb�1

4.8-7.8⇥10�3 [1, 62]
+ 500GeV 500 fb�1

CLIC 350GeV 500 fb�1

2.2 ⇥10�3 [62, 63]+ 1.4TeV 1.5 ab�1

+ 3.0TeV 2 ab�1

TLEP 240GeV 10 ab�1

2⇥10�3 [62]
+ 350GeV 2.6 ab�1

Table 3.1: Summary of the reach on ⇠ (see the text for the definition) for various collider options.
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As mentioned in the Introduction, EWPT, and in particular the oblique parameters Ŝ and T̂ ,

set some of the strongest constraints on CH models. However, as we stressed before, they su↵er

from an unavoidable model dependence, so that incalculable UV contributions can substantially

relax these constraints [19]. We believe that presenting the corresponding exclusion contours

in the previous plots without taking into account any possible UV contribution would lead to a
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where the first terms represent the IR contributions due to the Higgs coupling modifications

[11], the second term in �Ŝ comes from tree-level exchange of vector resonances and the last

terms parametrize short distance e↵ects. The scale ⇤ in eq. (4) represents the scale of new

physics, which we set to ⇤ = 4⇡f . We could instead use m⇢ to parametrize this scale, however,

here we have the situation in mind where m⇢ could be lighter than the typical resonances scale,

or the cut-o↵ scale, and our choice maximises the NP e↵ect, leading to a more conservative

bound. Moreover, being the sensitivity to this scale logarithmic, the final result only has a

mild sensitivity on this choice. The coe�cients ↵ and � are of order one and could have either

sign [19]. In the literature, a constant positive contribution to �T̂ has often been assumed to

relax the constraints from EWPT [53, 64]. However, the finite UV contributions of the form

of the last terms in eq. (4.1) arising from loops of heavy fermionic resonances always depend

on ⇠, significantly changing the EW fit compared to a constant contribution. In order to show

realistic constraints from EWPT, we define a �
2 as a function of ⇠, m⇢, ↵, �, i.e. �

2(⇠, m⇢, ↵, �),

and compute 95%CL exclusion contours in the (m⇢, ⇠) plane marginalising over ↵ and �. In

order to control the level of cancellation in the �
2 due to the contribution of the UV terms, we
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III. Fermionic top partners 
(aka vector-like quarks)

Search in same-sign dilepton events
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Figure 3: Production cross sections at the LHC for T5/3 as functions of its mass. The dashed line
refers to pair-production; the solid and the two dotted curves refer to single production for the
three values of the coupling (from highest to lowest) λT5/3

= Y∗ sin ϕR = 4, 3, 2. Cross sections for
B are given by the same curves for the same values of λB = Y∗ cos ϕL sinϕR.

and M = MT5/3
(M = MB), λ = λT5/3

= Y∗ sin ϕR (λ = λB = Y∗ cos ϕL sin ϕR) in the case
of T5/3 (B). For example, setting λ = 3 gives Γ = 31 (82) GeV for M = 0.5 (1) TeV. Single
production proceeds via the diagram of Fig. 2, and becomes dominant for heavier masses,
see Fig. 3. For simplicity, although it is likely to be important for extending the discovery
reach to larger masses, we will neglect single production in the present work. We will argue
that this should not affect significantly our final results, and that it is in fact a conservative
assumption.

Finally, it is worth mentioning that no direct bounds on the heavy quark masses MT5/3
,

MB exist from Tevatron, as no searches have been pursued for new heavy quarks decaying
to tW . The CDF bound on heavy bottom quarks b′, Mb′ > 268 GeV, is derived assuming
that b′ decays exclusively to bZ [25]. We estimate that for M = 300 GeV (500 GeV), the
pair-production cross section of T5/3 or B at Tevatron is 201 fb (1 fb). For M = 300 GeV
this corresponds to ∼ 35 events in the same-sign dilepton channel, before any cut, with an
integrated luminosity of 4 fb−1, suggesting that, although challenging, a dedicated analysis
at CDF and D0 could lead to interesting bounds on MT5/3

, MB.

3 Signal and Background Simulation

We want to study the pair production of B and T5/3 at the LHC focussing on decay channels
with two same-sign leptons. We consider two values of the heavy fermion masses, M =
500 GeV and M = 1 TeV, and set λT5/3

= λB = 3. As explained in the previous section,
such large values of the couplings are naturally expected if the heavy fermions are bound

5
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pair prod.

[Contino, Servant ’08]

 tt+jets is not a background [except for charge mis-ID and fake e-]

 the resonant (tW) invariant mass can be reconstructed
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reach to larger masses, we will neglect single production in the present work. We will argue
that this should not affect significantly our final results, and that it is in fact a conservative
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(aka vector-like quarks)

Aguilar-Saavedra ’09๏ l± + 4b final state

Aguilar-Saavedra ’09

Azatov et al ’12

Vignaroli ‘12

๏ l± + 6b final state

๏ γγ final state

b

๏ l± + 4b final state
Vector-Like Top Summary  

Vector-like T  
BR Hypothesis 

95% CL Limit on mT (GeV)  
obs (exp) 

95% CL Limit on mT (GeV)  
obs (exp) 

100% Wb (chiral, Y) 770 (795) 920 (890) 

100% Zt 810 (810) 790 (830) 

100% Ht 950 (885) 770 (840) 

T singlet 800 (755) 740 (800) 

T in (T, B) doublet 855 (820) 760 (820) 

arXiv:1509.04177 

ATLAS (*) CMS 

arXiv:1505.04306 

Vector-like top masses below ~720 GeV excluded for any possible combination of BRs. 

Combined limits 

15 

(*) Not a combination. Only most restrictive  
individual bounds shown. 

1505.04306 1509.04177

Moriond’17 update
bounds above 1 TeV!

http://arXiv.org/abs/0907.3155
http://arXiv.org/abs/0907.3155
http://arXiv.org/abs/1204.0455
http://arXiv.org/abs/1204.0468
http://arXiv.org/abs/1505.04306
http://arXiv.org/abs/1505.04306
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Search for Extended Higgs sectors

Extended Higgs sectors are a prediction of many BSM scenarios. 
They may play a role in the following open questions:

- (EW) Baryogenesis 

- Identity of Dark Matter

- Smallness of the neutrino masses

- Naturalness of the EW scale

Modified scalar potential can lead 
to a 1st order EW phase transition

Type-II see-saw through extra scalars

Scalar DM with TeV mass 

Scalar mediators in hidden-sector 
DM coupled to Higgs portal

Extended scalar sectors follows in natural theories: 
i) SUSY 
ii) Neutral Naturalness

A 100TeV pp collider offers the unique opportunity to discover EW-charged 
or SM-singlet scalars with a few TeV mass 

☞
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Fig. 88: 95% C.L. exclusion bounds for neutral (left panel, from [517]) and charged (right panel, from [296])
Higgses of the MSSM at a 100 TeV collider. The blue and orange regions are probed by the channels pp !

bbH0/A ! bb⌧⌧ and pp ! bbH0/A ! bbtt for the neutral Higgses and pp ! tbH±
! tb⌧⌫ pp ! tbH±

! tbtb

for the charged Higgses, respectively. The red region is probed by heavy Higgs production in association with one
or two top quarks, with subsequent decay to t̄t, yielding a same-sign dilepton signature. Given the same channel
or the same color, the two different opacities indicate the sensitivities w.r.t. a luminosity of 3 ab�1 and 30 ab�1 at
a 100 TeV pp collider, respectively. The cross-hatched and diagonally hatched regions are the predicted exclusion
contours for associated Higgs production at the LHC for 0.3 ab�1, and 3 ab�1, respectively.

Parent Higgs Decay Possible Final States Channels in 2HDM
HH type (bb/⌧⌧/WW/ZZ/��)(bb/⌧⌧/WW/ZZ/��) H0

! AA, h0h0

Neutral Higgs HZ type (``/qq/⌫⌫)(bb/⌧⌧/WW/ZZ/��) H0
! AZ, A ! H0Z, h0Z

H0, A H+H� type (tb/⌧⌫/cs)(tb/⌧⌫/cs) H0
! H+H�

H±W⌥ type (`⌫/qq0)(tb/⌧⌫/cs) H0/A ! H±W⌥

Charged Higgs HW± type (`⌫/qq0)(bb/⌧⌧/WW/ZZ/��) H±
! h0W, H0W, AW

Table 44: Summary of exotic decay modes for non-SM Higgs bosons. For each type of exotic decays (second
column), we present possible final states (third column) and relevant channels in 2HDM. Note that H in column
two refers to any of the neutral Higgs, e.g. h0, H0 or A in 2HDM.

In addition to their decays to the SM particles, non-SM Higgses can decay via exotic modes, i.e.,
heavier Higgs decays into two light Higgses, or one light Higgs plus one SM gauge boson. Clearly this
happens in the case when the splitting between the various heavy higgses is not small. This can happen
in the alignment limit of the 2HDM without decoupling. As outlined above, this limit is less generic than
the decoupling limit, but still worth a detail study.

Five main exotic decay categories for Higgses of the 2HDM are shown in Table 44. Once these
decay modes are kinematically open, they typically dominate over the conventional decay channels.
Recent studies on exotic decays of heavy Higgs bosons can be found in Refs. [518–529].

Theoretical and experimental constraints restrict possible mass hierarchies in 2HDM. At high
Higgs mass and close to the alignment limit, unitarity imposes a relation between the soft Z2-breaking
term and the heavy CP-even neutral Higgs mass m2

12 = m2
H0s�c�

33. In this limit, the decay branching
fraction H0

! h0h0, AA, H+H� vanishes and vacuum stability further requires the CP-even non-SM
33Note that this is automatically fulfilled in the MSSM.

150

LHC
FCC

Fig. 88: 95% C.L. exclusion bounds for neutral (left panel, from [517]) and charged (right panel, from [296])
Higgses of the MSSM at a 100 TeV collider. The blue and orange regions are probed by the channels pp !

bbH0/A ! bb⌧⌧ and pp ! bbH0/A ! bbtt for the neutral Higgses and pp ! tbH±
! tb⌧⌫ pp ! tbH±

! tbtb

for the charged Higgses, respectively. The red region is probed by heavy Higgs production in association with one
or two top quarks, with subsequent decay to t̄t, yielding a same-sign dilepton signature. Given the same channel
or the same color, the two different opacities indicate the sensitivities w.r.t. a luminosity of 3 ab�1 and 30 ab�1 at
a 100 TeV pp collider, respectively. The cross-hatched and diagonally hatched regions are the predicted exclusion
contours for associated Higgs production at the LHC for 0.3 ab�1, and 3 ab�1, respectively.

Parent Higgs Decay Possible Final States Channels in 2HDM
HH type (bb/⌧⌧/WW/ZZ/��)(bb/⌧⌧/WW/ZZ/��) H0

! AA, h0h0

Neutral Higgs HZ type (``/qq/⌫⌫)(bb/⌧⌧/WW/ZZ/��) H0
! AZ, A ! H0Z, h0Z

H0, A H+H� type (tb/⌧⌫/cs)(tb/⌧⌫/cs) H0
! H+H�

H±W⌥ type (`⌫/qq0)(tb/⌧⌫/cs) H0/A ! H±W⌥

Charged Higgs HW± type (`⌫/qq0)(bb/⌧⌧/WW/ZZ/��) H±
! h0W, H0W, AW

Table 44: Summary of exotic decay modes for non-SM Higgs bosons. For each type of exotic decays (second
column), we present possible final states (third column) and relevant channels in 2HDM. Note that H in column
two refers to any of the neutral Higgs, e.g. h0, H0 or A in 2HDM.

In addition to their decays to the SM particles, non-SM Higgses can decay via exotic modes, i.e.,
heavier Higgs decays into two light Higgses, or one light Higgs plus one SM gauge boson. Clearly this
happens in the case when the splitting between the various heavy higgses is not small. This can happen
in the alignment limit of the 2HDM without decoupling. As outlined above, this limit is less generic than
the decoupling limit, but still worth a detail study.

Five main exotic decay categories for Higgses of the 2HDM are shown in Table 44. Once these
decay modes are kinematically open, they typically dominate over the conventional decay channels.
Recent studies on exotic decays of heavy Higgs bosons can be found in Refs. [518–529].

Theoretical and experimental constraints restrict possible mass hierarchies in 2HDM. At high
Higgs mass and close to the alignment limit, unitarity imposes a relation between the soft Z2-breaking
term and the heavy CP-even neutral Higgs mass m2

12 = m2
H0s�c�

33. In this limit, the decay branching
fraction H0

! h0h0, AA, H+H� vanishes and vacuum stability further requires the CP-even non-SM
33Note that this is automatically fulfilled in the MSSM.

150

Fig. 88: 95% C.L. exclusion bounds for neutral (left panel, from [517]) and charged (right panel, from [296])
Higgses of the MSSM at a 100 TeV collider. The blue and orange regions are probed by the channels pp !

bbH0/A ! bb⌧⌧ and pp ! bbH0/A ! bbtt for the neutral Higgses and pp ! tbH±
! tb⌧⌫ pp ! tbH±

! tbtb

for the charged Higgses, respectively. The red region is probed by heavy Higgs production in association with one
or two top quarks, with subsequent decay to t̄t, yielding a same-sign dilepton signature. Given the same channel
or the same color, the two different opacities indicate the sensitivities w.r.t. a luminosity of 3 ab�1 and 30 ab�1 at
a 100 TeV pp collider, respectively. The cross-hatched and diagonally hatched regions are the predicted exclusion
contours for associated Higgs production at the LHC for 0.3 ab�1, and 3 ab�1, respectively.

Parent Higgs Decay Possible Final States Channels in 2HDM
HH type (bb/⌧⌧/WW/ZZ/��)(bb/⌧⌧/WW/ZZ/��) H0

! AA, h0h0

Neutral Higgs HZ type (``/qq/⌫⌫)(bb/⌧⌧/WW/ZZ/��) H0
! AZ, A ! H0Z, h0Z

H0, A H+H� type (tb/⌧⌫/cs)(tb/⌧⌫/cs) H0
! H+H�

H±W⌥ type (`⌫/qq0)(tb/⌧⌫/cs) H0/A ! H±W⌥

Charged Higgs HW± type (`⌫/qq0)(bb/⌧⌧/WW/ZZ/��) H±
! h0W, H0W, AW

Table 44: Summary of exotic decay modes for non-SM Higgs bosons. For each type of exotic decays (second
column), we present possible final states (third column) and relevant channels in 2HDM. Note that H in column
two refers to any of the neutral Higgs, e.g. h0, H0 or A in 2HDM.

In addition to their decays to the SM particles, non-SM Higgses can decay via exotic modes, i.e.,
heavier Higgs decays into two light Higgses, or one light Higgs plus one SM gauge boson. Clearly this
happens in the case when the splitting between the various heavy higgses is not small. This can happen
in the alignment limit of the 2HDM without decoupling. As outlined above, this limit is less generic than
the decoupling limit, but still worth a detail study.

Five main exotic decay categories for Higgses of the 2HDM are shown in Table 44. Once these
decay modes are kinematically open, they typically dominate over the conventional decay channels.
Recent studies on exotic decays of heavy Higgs bosons can be found in Refs. [518–529].

Theoretical and experimental constraints restrict possible mass hierarchies in 2HDM. At high
Higgs mass and close to the alignment limit, unitarity imposes a relation between the soft Z2-breaking
term and the heavy CP-even neutral Higgs mass m2

12 = m2
H0s�c�

33. In this limit, the decay branching
fraction H0

! h0h0, AA, H+H� vanishes and vacuum stability further requires the CP-even non-SM
33Note that this is automatically fulfilled in the MSSM.

150

0.3/fb

3/fb

3/ab

30/abContino FCC@Rome ’16

just one example 
for illustration:

charged Higgs 95%CL exclusion 

J. Hajer et al ’15

IV. Searches for extended Higgs sectors

http://indico.cern.ch/event/438866/timetable/%23all.detailed
http://arxiv.org/abs/1504.07617
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• CepC representative “we should all go separate to the 
funding agencies so that at least one gets funded” ?!?! 

• Nima: “If you do particle physics with the goal of 
discovering a new particle, better you think what to do with 
your life now.” (in the context of “direct discovery” vs 
“indirect/precision physics” at future colliders) 
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V. Particle or not Particle?

New physics doesn’t necessarily mean new particle, 
it could also mean new dynamics.  

And it could reveal through precision measurements
m⇤ = g⇤f⇤

g* weak: 

resonances before interactions

energy helps accuracy

at high energy, you can be sensitive without having to be precise

�O

O
/ E2 precision of 0.1% @ 100GeV ≈ precision of 10% @ 1TeV

same sensitivity to new physics

Farina et al ’16

g* strong: 

interactions before resonances

http://arxiv.org/abs/arXiv:1609.08157
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g* strong: 

interactions before resonances

Tail parameters:  W and Y

High-energy lepton colliders can further improve the constraints

✦ ILC bounds:       500 GeV

✦ CLIC bounds:    1 TeV  
                        3 TeV

LEP LHC13 FCC 100 ILC TLEP CEPC ILC 500 CLIC 1 CLIC 3

luminosity 2⇥ 10
7 Z 0.3/ab 3/ab 10/ab 10

9 Z 10
12 Z 10

10 Z 3/ab 1/ab 1/ab

W ⇥10
4

[�19, 3] ±0.7 ±0.45 ±0.02 ±4.2 ±1.2 ±3.6 ±0.3 ±0.5 ±0.15

Y ⇥10
4

[�17, 4] ±2.3 ±1.2 ±0.06 ±1.8 ±1.5 ±3.1 ±0.2 ⇠ ±0.5 ⇠ ±0.15

✦ Low-energy lepton machines not competitive with HL-LHC

[Farina, GP, Pappadopulo, Rudermann Torre, Wulzer ’16]FCC 100 would give 
much stronger bounds

|W | < 0.3⇥ 10�4 , |Y | < 0.2⇥ 10�4

|W |, |Y | . 0.5⇥ 10�4

|W |, |Y | . 0.15⇥ 10�4

Recast from  
[CLIC Design Report ’12]

Recast from [Harigaya et al. ’15]

e.g. measurement of p4 EW oblique parameters 

A) oblique parameters, and off-shell Z’s, from Drell-Yan 

B) SM EFT from Jets 

Z, �

q

q̄

l�

l+

q

q̄

q

q̄

g

• Farina, Panico, Pappadopulo, JTR, 
Torre, Wulzer 1609.08157 

•  Alioli, Farina, Pappadopulo, JTR 
1712.02347 (PRL)

• Alioli, Farina, Pappadopulo, 
JTR, 1706.03068

II. New Physics in Precision Tails 

http://arxiv.org/abs/arXiv:1609.08157
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↪ e.g. Newton mechanics and constant speed of light

 Apparent fine-tunings
↪ charm quark to screen the Kaon mass difference

 Theoretical inconsistencies
↪ W boson to regularize Fermi theory,  Higgs boson to unitarize WW scattering

 Serendipity
↪ CMB discovery

 Surprises
↪ muon

Discovering New Physics: the way forward
so far new discoveries followed from 
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Need powerful machines to explore the unknown 
through the intensity and energy frontiers.

Data always bring new understanding.
We need facts and data: physics is a natural science!

We have profound questions and 
we need create opportunities to answer them!
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Thank you for your attention. 
Good luck for your studies!

if you have question/want to know more 

do not hesitate to send me an email 

christophe.grojean@desy.de

mailto:christophe.grojean@desy.de

