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OUTLINE

• What is Deep Learning?

• Key elements in Deep Learning

• Examples of Deep Learning algorithms

• Some applications in Physics

• Conclusions
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WHAT IS DEEP LEARNING?
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Machine Learning vs Deep Learning

- Focus on learning the task
- Can be applied to small datasets
- Few layers/processing stages

- Focus on joint feature-task learning 
- Requires large datasets
- Several layers/processing stages

Machine Learning (often considered as shallow)

Deep Learning

Credit: https://blog.thinkwik.com



Introduction to Machine Learning & Deep Learning – Part II @INFIERI2021 (juancarlos.sanmiguel@uam.es)

WHAT IS DEEP LEARNING?

• Timeline…

http://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

Why Deep Learning has become so popular nowadays?
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WHAT IS DEEP LEARNING?

• Why now?

Large datasets 
(Big Data)

Deep learning
frameworks

GPU technology

Credit graph: https://www.sciencedirect.com
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DEEP LEARNING – KEY ELEMENTS

• Algorithms are based on Neural Networks1

−Most basic Neural Network: Perceptron

 Input data instance ௝ ௝ଵ ௝ே 

 Output unit/prediction ௝

 Parameters (to be learned) : weights ௜ and bias  

 Activation function 

1 M. Hagan, H. Demuth, & M. Beale. Neural network design. PWS Publishing Co.. 1997

ଵ

ଶ

ெ
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DEEP LEARNING – KEY ELEMENTS
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• Optimization or loss function 
−Evaluates the error with current parameters values 

−Requires annotated data for its computation

−Employed to find the optimal parameters

−Examples:
Cross-entropy error 

(classification)

஼ா ௝ ௝ ௝ ௝

ே

௝ୀଵ

Mean least-square error 
(regression)

ெௌா ௝ ௝
ଶ

ே

௝ୀଵ

௝ is the network prediction for each data instance jth and ௝ is the associated ground-truth

Number of processed  
data instances
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DEEP LEARNING – KEY ELEMENTS

• Iterative learning
−Allows to get the optimal value for parameters 

−This scheme is applied to batches of N instances of the dataset

−“Update parameters” is often called optimization strategy:

 Mostly based on backpropagation (backward step)
to quantify dependency of parameters with the network output

 Alternatives: Stochastic Gradient Descent, RMSprop, Adam,…
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Run Network 
(forward step)

Compute 
optimization

function

Update
parameters
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DEEP LEARNING ALGORITHMS

• Convolutional Neural Networks1 

−Neural Networks designed for classification of 2D data (e.g. images)

−Sequential composition of various types of layers (processing stages)
often conceptually organized into feature extraction and classification

9/24

1K. O'Shea, & R. Nash. An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458.

Output 
Data

volume

Input 
Data

volume

Convolution
layer

Non-lineal 
activation

Spatial
Pooling

… …

Input layer Feature extraction layers Classification layers

Horse
Cat
Dog
…
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DEEP LEARNING ALGORITHMS

• Convolutional Neural Networks: Convolutional layer
−Determines the features that can be extracted from a 2D signal ௜

−Defined by multiple 2D kernels ௥ of size and the kernel 
values are the parameters to be learned during training

−Output values ௜௥ are obtained by applying each kernel ௥
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DEEP LEARNING ALGORITHMS

• Convolutional Neural Networks: other layers
−Non-linear activation

 Allows to solve non-linear problems

 Reduces convergence time

 Keeps bounded the processed data

 Many alternatives available:
sigmoid, tanh, ReLU, Leaky ReLU,….

−Spatial Pooling

 Reduces data dimensionality 
(only spatial dimensions)

 Adds spatial independency to the 
location of extracted features

 Decreases the number of parameters
for subsequent layers in the network

11/24



Introduction to Machine Learning & Deep Learning – Part II @INFIERI2021 (juancarlos.sanmiguel@uam.es)

DEEP LEARNING ALGORITHMS

• Convolutional Neural Networks: classification 
−Fully-connected layer (FC)

 Classification composed by one or multiple sequential FC layers

Flatten layer

Data volume
W1×H1×D1

from feature 
extraction layers

…

Unidimensional 
data volume 

1 ×M (M=W1H1D1)

Fully connected 
layer

௝ ௝ ௜௝ ௜

ெ

௜ୀଵ

ଵଵ

ଶଵଵଶ

ଶଶ
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DEEP LEARNING ALGORITHMS

• Autoencoders1:

− Unsupervised learning

− Allows to learn a low-dimensional space representing input data ௝

− Optimization function ெௌா
ଵ

ே ௝ ௝
ଶே

௝ୀଵ - No ground-truth
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1G. Hinton, and R. Salakhutdinov. "Reducing the dimensionality of data with neural networks." Science 313 (5786):504-7, 2006

௝
ெ

Input 
data

௝
ெ

Reconstructed
data

Encoder
network

Decoder
network

Latent space
representation

with dim

Reduces 
dimensionality

Increases
dimensionality
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DEEP LEARNING ALGORITHMS

• Autoencoders - Example with only FC layers 
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Original 
Image

PCA (ML)
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Deep
Auto-encoder
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Slide credit Hung-yi Lee
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DEEP LEARNING ALGORITHMS

• Recurrent Neural Networks (RNNs)1

−Model temporal evolution of sequential data problems ௧

−Has in-built “memory” (matrix A)

−Defined by non-linear activations (functions and ) and 
linear operations (matrices ). To obtain the output a time 
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RNN architecture
(folded version)

RNN architecture
(unfolded version)

Image credit Christopher Olah

௜ାଵ ௜ ௜ାଵ  
௜ାଵ ௜
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DEEP LEARNING ALGORITHMS

• Recurrent Neural Networks - Alternative approaches
−A major RNN drawback is that time-dependency dilutes over 

timesteps (vanishing gradient) so RNNs are improved by gating

−Gating adds difficulty to training as compared to vanilla RNNs

−Gated Recurrent Unit (GRUs)1

 Update gate ௧: how much of previous memory/result ௧ିଵ to keep

 Reset gate  ௧: how much of previous memory/result ௧ିଵ to forget

16/24

1 K. Cho,et al. "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation". arXiv:1406.1078.
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DEEP LEARNING ALGORITHMS

• Generative Adversarial Networks
−Combination of two independent networks

 Generator: obtains synthetic data (i.e. fake generator) similar to real data

 Discriminator: given some input, determine if it is real or fake
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1 I. Goodfellow et al. «Generative Adversarial Networks». arXiv:1406.2661, 2014 

Image credit: https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016
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DEEP LEARNING ALGORITHMS

• Generative Adversarial Networks
−Training takes place at three stages

1. Run the network for real and fake images

2. Then, freeze generator and update discriminator
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1 I. Goodfellow et al. «Generative Adversarial Networks». arXiv:1406.2661, 2014 
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DEEP LEARNING ALGORITHMS

• Generative Adversarial Networks
−Training takes place at three stages

3. Finally, Freeze discriminator and update generator
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Optimization is formulated as a minimax game
- Discriminator tries to maximize its reward ( , )
- Generator tries to minimize Discriminator’s reward 
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DEEP LEARNING APPLICATIONS

• Identifying phases of matter in quantum mechanics
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Huembeli, P., Dauphin, A., & Wittek, P. (2018). Identifying quantum phase transitions 
with adversarial neural networks. Physical Review B, 97(13), 134109.

1) Learn the 
feature extractor

2) Employ the trained feature extractor 
to categorize phase transitions
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DEEP LEARNING APPLICATIONS

• Single collider events in LHC data 
cannot be labeled as signal or 
background due to the probabilistic 
nature of quantum mechanics

• Unsupervised learning is applied 
for tagging Top Jet and images 
as an anomaly detection approach

• Postprocessing is applied to boost
tagging performance

21/24

Finke, T., Krämer, M., Morandini, A. et al (2021). 
Autoencoders for unsupervised anomaly detection 
in high energy physics. J. High Energ. Phys. 2021,.
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DEEP LEARNING APPLICATIONS

• Data in particle physics are often depicted by sets and graphs, 
so Graph Neural Networks (GNNs) are suitable tools here

• GNNs are trainable functions which operate on graphs, 
updating nodes’ and edges’ contents given some task
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Shlomi, J., Battaglia, P., & Vlimant, J. R. (2020). Graph neural networks in particle physics. 
Machine Learning: Science and Technology, 2(2), 021001.

segmenting calorimeter cells 
jet classification based on the 
particles associated to the jet.



Introduction to Machine Learning & Deep Learning – Part II @INFIERI2021 (juancarlos.sanmiguel@uam.es)

CONCLUSIONS

• Advantages of Deep Learning 
− Flexible structure that can be adapted to a plethora of problems 

− Can easily increase complexity by adding more layers

− Huge open-source community with state-of-the-art algorithms

• Disadvantages of Deep Learning 
− Complex theorical analysis (sometimes is not even possible) that 

prevents from having a closed formulation for the neural network

− High sensibility to local minima so multiple runs are needed

− Requires a large quantity of data and high computational resources

− Many design options make difficult to optimize hyperparameters and 
network structure

• Deep Learning is often applied on high level features
derived from physics data. Improvements are expected 
when operating on lower-level information.
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WANT TO LEARN MORE?

• Due to the DL novelty, research papers are the main source 
of knowledge but some books cover the fundamentals… 

• As for practical work, check popular DL frameworks  
(TensorFlow, PyTorch, MXNet, CNTK,…)

I. Goodfellow et al, "Deep 
Learning", MIT Press, 2016 

http://www.deeplearningbook.org/

2nd Ed 2021
https://amzn.to/2TUhHXW

Beginner Intermediate-Expert Expert Expert

1st Ed 2021
https://bit.ly/3sN2hBH

1st 2021 
https://amzn.to/3yiSp3G
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ANY QUESTIONS


