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With thanks to the CMS Collaboration,
and in particular,
the CMS High-Granularity Calorimeter Group
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Thanks also to

£¥: FAST MACHINE LEARNING LAB

https://fastmachinelearning.org/

2020 Fast ML for Science workshop:
https://indico.cern.ch/event/924283/

Please join the next workshop :
tentatively end-of-2021 / early-2022
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HEP data challenge

HEP aims to discover increasingly more massive particles, probe
smaller distances, and study more rare processes.

This requires a series of colliders with continually increasing energy and luminosity
-> increasing detector occupancy
-> increasing detector granularity and precision

- increasing data volume produced by detector

"The solution to every problem is another problem."
Johann Wolfgang von Goethe




HEP data challenge

Collider Tevatron LHC HL-LHC FCC-hh
Luminosity [cm-2 s-1] 3.7 x 1033 | 21 x 1033 Sw(i)thfevig? 300 x 1033
Pileup 1-2 50 200 1000
Typical number of tracker channels <1M >100M >1B 17B **
Typical number of calorimeter channels <100k >100k 6M 100M ***
Inner detector TID 10 Mrad 100 Mrad 500 Mrad 30 Grad *

(HL)-LHC
2009-2040

SppS/Tevatron
1983-2011

O

***https://arxiv.org/pdf/1912.09962.pdf
** http://cds.cern.ch/record/2674721/files/PoS(Vertex%202017)030.pdf

* https://cds.cern.ch/record/2651300/files/CERN-ACC-2018-0058.pdf
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Data challenge solutions = new problems

Increasing detector
-> move more data processing to on-detector electronics

-> increasing and

What data processing should move on-detector?
e data compression
e reconstruction of low-level objects (hits, clusters)
e reconstruction of high-level objects (tracks, jets)



On-detector data compression

e This talk: Neural Network (NN) autoencoder in ASIC for on-detector data compression.

e General requirements for on-detector electronics:
e Low power consumption = well suited to ASIC
e Radiation tolerant = well suited to ASIC
e Complexity: design must be re-configurable = challenging for ASIC

e Specific requirements for the CMS High-Granularity Calorimeter (HGCAL).

lllustration: Lisa Hornung/iStockPhoto



Context within HL-LHC Data Challenge

Configurable on-detector
data compression with Machine learning in
machine learning in ASIC ‘/ programmable logic

L1 Trigger:
all-FPGA
filter stack

e Data challenge A
for trigger path S
most severe > D

40 MHz at HL-
LHC

CMS Detector

Fast validation and
processing stack

o

=

Heterogeneous computing

High level trigger:  Worldwide
filter farm computing grid
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CMS High Granularity Calorimeter (HGCAL)

g A
= =
e "Imaging calorimeter” with ~6M readout channels.
e 60X increase from current LHC calorimeters.
e ~50 layers of active material + absorber.
e silicon sensors in front layers
e scintillator + silicon in back layers
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CMS High Granularity Calorimeter (HGCAL)

Each layer tiled with 300-500 8" Each 8" module includes either 192 or
hexagonal silicon modules. 432 ~1 cm sensor channels

Limit between
3001 and 200
sensors

A Outer Radius

mit between

200pand 1200 AN VR OO

~._sensors
~

Inner Radius \

v

Front End electronics: each 8" module includes

e <6 HGCROC ASIC : digitizes charge and
arrival time and provides charge data for
trigger path.

e 1 ECON-T ASIC : selects/compresses digital
trigger data for transmission off-detector.
e On-detector data compression with
machine learning in ECON-T .



Imaging calorimeter

500 GeV jet in 140 pileup

B A Tracks and clusters clearly
"N P / identifiable by eye throughout

\ & pRERCY most of detector.
s, i ; .
(/! A( . .; b .r',f"
’ s oy v ::f‘ 4 Vit

the longitudinal shower footpri
nt

L i

24 [CMS, | CM@§ Experiment at'AC, CERN o
v =24, Data recorded: Thu Jan 101:00 U‘@'O CEST -
> Run/Event: 1/10 “. }
#F=—~ | Lumi section: 1
L]
.

high pt jet
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: el :

Lindsey Gray (FNAL)
https://cds.cern.ch/record/2239183/files/CR2016_440.pdf N



Imaging calorimeter

CMS Phase 2 Simulation Preliminary

Simulated

100

400 e r
z [em] 475

Simulated hits for single ~50 GeV
pion interacting with HGCAL

Jingyu Zhang
ICHEP 2020

CMS Phase 2 Simulation Preliminary

Reconstructed / plle Up ClUSterS

Reconstruction of clusters with
200 PU overlaid on single pion



HGCAL trigger data challenge

. Number bits/ Average " # links*
frigger path stage channels channel Compression factor SEIE] L (10.24 Gbps)
Raw data 6M 20 1 5 Pb/s 1M
Hardware reduction 1M 7 1 300 Tb/s 60k
Threshold selection 1M 7 7 40 Tb/s 9k

* Assumes 40 MHz rate and 50% link packing efficiency

&

w @

432 silicon sensors = 48 Traditional threshold algorithm : 3 of 48 TC readout
trigger cells (TC) @ 7b per TC for most of detector (2 x 1.28G elink per module)
|3



Specific challenges and requirements

for the on-detector ASIC

Occupancy and pileup:

e Varies by 2-3 orders of magnitude over
pseudorapidity/depth and in time.

e Compression neural network must be
configurable to handle different detector
locations and changing detector/beam
conditions

Latency:
e ~On trigger path latency is precious =
must be < 100 ns

Power :

e ~30k encoder networks on the entire
detector.

e Power budget is 100 mW network, or
around 1 nJ per inference.

Radiation tolerance : up to 500 Mrad

250

200

100

50

300 350 400 450 500 550
Z [cm]

Absorbed Dose [Gy]



Autoencoder concept for data compression

a )

—> Encoder —>i—> Decoder —>

Original
input

Reconstructed
input

https://blog.keras.io/building- Compressed |
autoencoders-in-keras.html representation J

Decode with

/ /[ [/ /

d //

T Encode with _d
off-detector |

L= on-detector ASIC EPCA vz

L //

48-pixel input Transmit 16 X 3b outputs Decoded 48-

K 336 bits 48 bits pixel imagej

|5




Encoder NN design considerations

e Minimize : power + area + latency
e Maximize : physics performance + configurability + radiation tolerance

e Network architecture and precision of weights and biases: fixed in design

e Fully re-configurable : all network weights and biases + dimensionality of output

Inputs

48 X 7b =
336 bits
@ 40 MHz

ECON
block

-

/b
floating
point

e 2

22b
fixed
point

Encoder

e e

Convertor

(" )

22b fixed
pt
>

8b
normalized

. _J

Encoder NN

-

weights,
biases

~

Outputs

48-144 bits

= @ 40 MHz



Encoder NN design considerations

Encoder NN components

e Convolutional layer (conv2D): extract geometric features

e Flatten layer : vectorizes 2D image from conv2D (128 = 8 X 4 X 4)
e Dense layer : decide which geometric features are important

e RelLU : activation function

Encoder NN

Convolutional layer

8 filters

\_

RelLU

(Optimization of dimensions shown next

Flatten
layer

Dense
layer

e 2

=23

128
features

16
outputs

RelLU

e 2

~

Outputs

16
outputs

X

3-9
bits per
output

S
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Encoder NN architecture optimization

e Optimize encoder network architecture choices including :

& &

\\; 4x4x3 8x84/)\\¥

=

2-10

f Geometry mapping N @ of conv2D ﬁ|tersx 6nv2D kernel size

o - i

AN

rMax pooling conv2D outputs\

-

\_ J

K conv2D kernel stride \

e

K stride =2 stride = 1 J

i -l
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Performance metric : EMD

e For rapid prototyping evaluate network performance according to image similarity.
e Energy Mover's Distance :

e the "work" required to rearrange one radiation pattern into another

e first associated with "optimal transport” problem

e For each NN variation : train network and evaluate EMD with simulated physics events
including top quarks (jets, leptons) and 200 pileup.

arXiv:1902.02346
Komiske, Metodiev, Thaler

9}
Input image Decoded image <DE . ® TopJet1 @ Top Jet 2
o
40 B2
-
i
<
ERE
20 E
=
—R/2
0 |
. . EMD: 125.4 GeV
Quantify encoding performance as EMD to R — : :
- . . ~R —R/2 0 R/2
transform decoded image - input image. Rapidity 4
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Physics driven hardware co-design

Rapid prototyping and optimization of network achieved through

e QKeras : network development with quantization-aware training and physics simulation
e hls4ml : neural network description (h5 file e.g.) > HLS-compliant C++ format

e Catapult HLS : C++ = RTL

e TMR4sv_hls : Automated TMR for System Verilog

ALGORITHM ~ *\ e hlsdml sumpllf_les the design of ML gcce_lerators
o | hls4ml directives | << | HLS directives |
DEVELOPMENT ) , ~. o
- ML Model o C++ library of ML functionalities optimized for HLS
&;Trairl\ing *
ll::::‘3:«15'3‘:t<>r é d
e his 4 ml Encoder
_ —a HLS
\/ void foo(int A[10], . . TMR4SV hls
% [ it (01, ac craon Directives -
hlsd4ml &« B2 5T 4 <o s ¢ Doy,
DireCtiveS . iz- o (i< 10:- i) ( l = Wi_— -
AR ewm \[ HLS ] TP,
Perf \_,/ RTL
eriormance C++ T Hardware GDSIl
Specification ~ Technology Library Implementation(s)
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Rapid design optimization

e Performance : EMD mean and RMS are both important

e Power and area : scale with number of model operations and parameters

Lower EMD is better

Network Architecture Relative Power & Area Relative Performance
Test feature | Geometry | # filter |kernel| stride| pooling | # params [# operations | EMD Mean| EMD RMS
Reference 4x4x3 8 3x3 1 none 1.00 1.00 1.00 1.00
4x4x3 -> 8x8 8x8 8 3x3 1 none 2.73 1.76% 0.64 0.41
max pooling 8x8 8 3x3 1 2x2 0.71 0.97* 0.59 0.33
3x3 -> 5x5 kemel 8x8 8 5x5 1 2X2 0.99 2.76 0.64 0.35

I Eooliné -> stride=2 8x8 8 3x3 2 none 0.94 0.59 0.76 0.46 ||

8 -> 10 filters 8x8 10 3x3 2 none 1.17 0.73 0.73 0.43
8 -> 6 filters 8x8 6 3x3 2 none 0.70 0.44 0.85 0.57

e Reference design : presented in Fall 2020**

e Final design : 8x8 geometry + 8 filters + 3x3 kernel + stride =2

e 50% power and 80% area of reference (from simulation)

o 2x better performance (EMD RMS) than reference

|
1

** https://indico.cern.ch/event/924283/contributions/4105329/attachments/2152250/3630590/encoder_asic_fastmI2020.pdf

————

————

E—

E—

https://www.eventclass.org/contxt_ieee2020/online-program/session?s=N-34#e280
https://www.eventclass.org/contxt_ieee2020/online-program/session?s=N-24#e189

21
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Optimization of NN output

e Better to use many low-precision or fewer high-precision outputs?
e Compare EMD performance keeping power and area fixed.
e Conclusion : more lower-precision outputs is better

e for both high- and low-bandwidth scenarios

e for full range of module occupancy

ECON ASIC allows user to select any 437 Total module output # NN outputs
of 16x9 output bits for transmission 4.0 - bandwidth
' — 6
—|— 2 X 1.28 Gbps
e Expect to use 16 x 3 (9) bits for low 3.5 - P w10
. -== 5 X 1.28 Gbps
(high) occupancy zones. — 16
5 3:0-
o
e Corresponding precision used in 2.5 - ‘
QKeras quantization-aware 504 - 2’\ |
training optimizes network for NS o
programmed output configuration. 1.5 1 \========= ____
¢ lower EMD better TS SSS=zsaao..
1.0 _I T T T T
0 5 10 15 20

o)) Occupancy [1 MIPt cells]



Single event effect mitigation

Data path :
Encoder & Convertor

Configuration : 12C secondary

/ \ OutA
inA L comb [t majority D QL
D QH logic | || | Vvoter S
S clka ||
il
in majorit out — outB
corr)b ¢ —D Q V<J>tery ing L con?b 7[ 7] majority D Q—L
logic b logic | [[{| Vvoter S
clk | clkB r
L 1 il

-—D Q- L outc

> inC comb | '||—] majority D Q
\ / logic |_{ | voter r>

clkc

N /

e New data every 25ns e Long term weights storage
e Triplicate registers e Triplicate registers, logic, and clocks
without auto-correction e Auto-correction included
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Design and
verification
methodology

Verification performed at
each stage of design:

e Model training

e hls4ml

Catapult HLS

e RTL

e Synthesis

Place and route
LVS and DRC

TF/Keras/QKeras
Model

Model Training

I
[hls4ml]

C++ Design

System Level Design

Static Analysis

l /' [ for Design Rules

J

" Stimuli '7

A 4

I

N\

[ High-Level Synthesis ]
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A 4

Place and
Route

Layout vs.
Schematic

C-RTL cosimulation
.

J

J/

HLS-Aware
Coverage

J

Register Transfer Level[ Code Coverage ]

) RTL
RTL Design ’—[ simulation

Gate level
simulation

Post signoff
simulation

C-
simulation
| Code Coverage I

(Block, Toggle, fsm)

Post signoff simulation
with parasitics

Design IP block

Design Rule Check / Electrical
Rule Check/ Design for

Manufacture



Design and verification
methodology

Step Type | Run Time | Iterations Size
Model generation D 1s 50-100 1.1k lines of Net_wo_rk _
C Simulation V 1s B C++ optimization
HLS D 30 min 3100 | 4Ok lines of | Design
RTL simulation V 1 min verilog optimization
Logic synthesis D 6 hrs

_ _ 750k gates
Gate-level sim Vv 30 min
Place and route D 50 hrs _ _

_ 6 Increasing time

Post-layout sim Vv 1 hrs 780Kk gates and complexity
Post-layout parasitic sim \Y 2 hrs
SEE simulation \Y 4 hrs
Layout D 20 min ] 7. 6M
LVS and DRC V 1 hr transistors
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Place and route

e Integrated design to avoid routing congestion from 14k bits of
weights (programmable via I12C) connected from periphery.

Converter Encoder NN
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Design Performance Metrics

Physics performance studies in progress =

preliminary performance with non-
optimized training comparable to
traditional threshold algorithm.

Requirements

Rate

40 MHz

Total ionizing dose

200 Mrad

High energy hadron flux

1 X 107cm?/s

Metric Simulation Target
Power 48 mW <100 mW
Energy / inference 1.2 nJ N/A
Area 2.88 mm?2 <4 mm?2
Gates 780k N/A
Latency 50 ns <100 ns
* EMD RMS 27




ECON-T-P1 submitted

e ECON-T-P1 submitted for {1 g
fabrication on June 28, 2021.
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Fermilab in early October
2021.
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e We are ready and excited to
test the chip and evaluate the
performance of NN encoder
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Summary

e Autoencoder neural network for on-detector data compression.
e Low power, low latency, radiation tolerant, fully re-configurable

e 65nm LP CMOS
e Prototypes will be tested in Fall 2021

e Established design and verification methodology based on hls4ml +
Catapult HLS allows rapid progression from algorithm development through

circuit implementation.

e Optimized network provides 2x better performance at ~50% power of
reference network.
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Additional material
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Precision of weights and variables

Coarams) Cipur
' : 13,728 (3,4,4)@22p
e Diagram is example for 4x4x3 ,, 10525

reference network - same structure (3'43;331?8"
as final 8 x8 network Converter \ Encoder
e Weights are all 6b 1.296b | | Tr—
1,344n 48b > | ] _ | (8,)
For final 8 x8 network: ( ~ 48b
\ 4
e hidden layer neurons: (_ RelU (8,4,4)
e 8b fraction —— (IZC b|Oij 1024y
e sufficient integer bits to cover Y (128)
theoretical max value 123841 &"Sq ¢ 1024
’ ayer ! X \
12,288b) _ |- weights biases
e output neurons: - ~(128,16) (16, )
. \_ ~ Y,
e 1b integer
e covers maximum value from ( Reu )
physics simulation |
(16,)@3b..9b =
48b .. 144b
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