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With thanks to the CMS Collaboration, 
and in particular, 

the CMS High-Granularity Calorimeter Group
Active Elements:
• Hexagonal modules based on Si sensors in CE-E 

and high-radiation regions of CE-H
• “Cassettes”: multiple modules mounted on

cooling plates with electronics and absorbers
• Scintillating tiles with on-tile SiPM readout

in low-radiation regions of CE-H

Key Parameters:
Coverage: 1.5 < |h| < 3.0
~215 tonnes per endcap
Full system maintained at -35oC
~620m2 Si sensors in ~30000 modules
~6M Si channels, 0.5 or 1cm2 cell size
~400m2 of scintillators in ~4000 boards
~240k scint. channels, 4-30cm2 cell size
Power at end of HL-LHC: 
~125 kW per endcap

Electromagnetic calorimeter (CE-E): Si, Cu & CuW & Pb absorbers, 28 layers, 25 X0 & ~1.3l
Hadronic calorimeter (CE-H): Si & scintillator, steel absorbers, 22 layers, ~8.5l
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Scintillator

Silicon
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Thanks also to
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https://fastmachinelearning.org/

https://indico.cern.ch/event/924283/
2020 Fast ML for Science workshop:

Please join the next workshop : 
tentatively end-of-2021 / early-2022



HEP data challenge

This requires a series of colliders with continually increasing energy and luminosity 

➔ increasing detector occupancy  

➔ increasing detector granularity and precision

    ➔  increasing data volume produced by detector
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HEP aims to discover increasingly more massive particles, probe 
smaller distances, and study more rare processes.

"The solution to every problem is another problem." 
Johann Wolfgang von Goethe



HEP data challenge
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Collider Tevatron LHC HL-LHC FCC-hh

Luminosity [cm-2 s-1] 3.7 × 1033 21 × 1033 50 × 1033
with leveling 

300 × 1033

Pileup 1-2 50 200 1000

Typical number of tracker channels <1M >100M >1B 17B **

Typical number of calorimeter channels <100k >100k 6M 100M ***

Inner detector TID 10 Mrad 100 Mrad 500 Mrad 30 Grad *

* https://cds.cern.ch/record/2651300/files/CERN-ACC-2018-0058.pdf

***https://arxiv.org/pdf/1912.09962.pdf

** http://cds.cern.ch/record/2674721/files/PoS(Vertex%202017)030.pdf

SppS/Tevatron
1983-2011

(HL)-LHC
2009-2040

FCC-hh
2045/55 - ?



Data challenge solutions ➔  new problems
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What data processing should move on-detector?
• data compression
• reconstruction of low-level objects (hits, clusters)
• reconstruction of high-level objects (tracks, jets)

➔  increasing complexity, power consumption, and radiation tolerance

 Increasing detector data volume

➔  move more data processing to on-detector electronics



On-detector data compression

• This talk: Neural Network (NN) autoencoder in ASIC for on-detector data compression.

• General requirements for on-detector electronics:
• Low power consumption  ➔ well suited to ASIC
• Radiation tolerant ➔ well suited to ASIC
• Complexity: design must be re-configurable  ➔ challenging for ASIC

• Specific requirements for the CMS High-Granularity Calorimeter (HGCAL).
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Context within HL-LHC Data Challenge
Configurable on-detector 

data compression with 
machine learning in ASIC
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Machine learning in 
programmable logic

Heterogeneous computing
• Data challenge 

for trigger path 
most severe ➔ 
40 MHz at HL-
LHC



CMS High Granularity Calorimeter (HGCAL)
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2m

• "Imaging calorimeter" with ~6M readout channels.
• 60× increase from current LHC calorimeters.

• ~50 layers of active material + absorber.
• silicon sensors in front layers
• scintillator + silicon in back layers

proton beam
proton beam collision 

point



26 Chapter 2. Active elements

Figure 2.5: Layout of a layer where only silicon sensors are present, the 9th layer of CE-E.
The division into six 60�cassettes is shown by the alternating colours. The two radial changes
in darkness of colour indicate the changes in silicon thickness. The inner and outer radii are
32.8 cm and 160 cm respectively.

CMS High Granularity Calorimeter (HGCAL)
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~2m

Each layer tiled with 300-500 8" 
hexagonal silicon modules.

• ≤6 HGCROC ASIC : digitizes charge and 
arrival time and provides charge data for 
trigger path.

• 1 ECON-T ASIC : selects/compresses digital 
trigger data for transmission off-detector.
• On-detector data compression with 

machine learning in ECON-T .

Each 8" module includes either 192 or 
432 ~1 cm sensor channels

24 Chapter 2. Active elements

and/or 3 ⇥ 3 neighbouring cells to form trigger primitives, shown as differing colour group-
ings in the figure, and the subdivision of the module into symmetric domains for the readout
chips, simplifying the layout of the module readout printed circuit board (PCB). Silicon wafer
layouts using the three-fold diamond configuration are shown in Fig. 2.4.

Figure 2.3: Schematic illustration of the three-fold diamond configuration of sensor cells on
hexagonal 8” silicon wafers, showing the groupings of sensor cells that get summed to form
trigger cells, for the large, 1.18 cm2, sensor cells (left), and for the small, 0.52 cm2, cells (right).

Figure 2.4: Drawing of hexagonal 8” silicon wafers, with layout of large, 1.18 cm2, sensor cells
(left), and small, 0.52 cm2, cells (right).

The cell size is driven both by physics performance considerations, such as the lateral spread
of electromagnetic showers, and by constraints imposed by the need to keep the cell capaci-
tance within a manageable range. In practice, this results in cell sizes of ⇡1 cm2 for the 300 and
200 µm active thickness sensors and ⇡0.5 cm2 for the 120 µm active thickness sensors, corre-
sponding to a maximum cell capacitance of 65 pF. Each sensor has either 192 or 432 individual
diodes, which act as sensor cells. The HV bias is applied to the sensor back-plane, whereas the
ground return from each individual cell is provided through the DC connection to the corre-
sponding front-end amplifier. Two cells per readout chip are segmented to include calibration
pads with smaller size and correspondingly lower capacitance and noise.

An irradiation campaign is underway, which will include noise measurements, with a partic-

Front End electronics: each 8" module includes
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Imaging calorimeter

Lindsey Gray (FNAL) 
https://cds.cern.ch/record/2239183/files/CR2016_440.pdf

Figure 7. Event display of a simulated high pT jet in the HGCAL with 140 pileup overlayed.

from optimal particle-flow algorithm, the run I performance is also recovered in terms of
jet energy resolution, as shown in figure 8 (right).

Figure 8. Electron identification efficiency and fake rate (left) and jet energy resolution (right) in

the simulation comparing current detector with upgraded one in high pileup environment.

– 6 –

500 GeV jet in 140 pileup
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Imaging calorimeter

8

Figure 4. A display of an event reconstructed by the HDBSCAN algorithm in 3d Cartesian space 
(left) and 2d η-ϕ space (middle). The event is generated by injecting a single pion in front of the 
HGCAL in the presence of 200 overlapping pileup interactions. Different colors mark the 
different reconstructed clusters. For presentation, only hits within a 0.4 x 0.4 window centered 
by the injected pion in the η-ϕ space are shown. A display of the simulated hits associated with 
the injected pion is also shown on the right. 
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Figure 4. A display of an event reconstructed by the HDBSCAN algorithm in 3d Cartesian space 
(left) and 2d η-ϕ space (middle). The event is generated by injecting a single pion in front of the 
HGCAL in the presence of 200 overlapping pileup interactions. Different colors mark the 
different reconstructed clusters. For presentation, only hits within a 0.4 x 0.4 window centered 
by the injected pion in the η-ϕ space are shown. A display of the simulated hits associated with 
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Jingyu Zhang
ICHEP 2020

Simulated hits for single ~50 GeV 
pion interacting with HGCAL

Reconstruction of clusters with 
200 PU overlaid on single pion

single pion

pile up clusters



HGCAL trigger data challenge

* Assumes 40 MHz rate and 50% link packing efficiency

Trigger path stage Number 
channels

bits/
channel

Average 
Compression factor Data rate* # links* 

(10.24 Gbps)

Raw data 6M 20 1 5 Pb/s 1M

Hardware reduction 1M 7 1 300 Tb/s 60k

Threshold selection 1M 7 7 40 Tb/s 9k

432 silicon sensors ➔ 48 
trigger cells (TC) @ 7b per TC

Traditional threshold algorithm : 3 of 48 TC readout 
for most of detector (2 × 1.28G elink per module) 
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24 Chapter 2. Active elements

and/or 3 ⇥ 3 neighbouring cells to form trigger primitives, shown as differing colour group-
ings in the figure, and the subdivision of the module into symmetric domains for the readout
chips, simplifying the layout of the module readout printed circuit board (PCB). Silicon wafer
layouts using the three-fold diamond configuration are shown in Fig. 2.4.

Figure 2.3: Schematic illustration of the three-fold diamond configuration of sensor cells on
hexagonal 8” silicon wafers, showing the groupings of sensor cells that get summed to form
trigger cells, for the large, 1.18 cm2, sensor cells (left), and for the small, 0.52 cm2, cells (right).

Figure 2.4: Drawing of hexagonal 8” silicon wafers, with layout of large, 1.18 cm2, sensor cells
(left), and small, 0.52 cm2, cells (right).

The cell size is driven both by physics performance considerations, such as the lateral spread
of electromagnetic showers, and by constraints imposed by the need to keep the cell capaci-
tance within a manageable range. In practice, this results in cell sizes of ⇡1 cm2 for the 300 and
200 µm active thickness sensors and ⇡0.5 cm2 for the 120 µm active thickness sensors, corre-
sponding to a maximum cell capacitance of 65 pF. Each sensor has either 192 or 432 individual
diodes, which act as sensor cells. The HV bias is applied to the sensor back-plane, whereas the
ground return from each individual cell is provided through the DC connection to the corre-
sponding front-end amplifier. Two cells per readout chip are segmented to include calibration
pads with smaller size and correspondingly lower capacitance and noise.

An irradiation campaign is underway, which will include noise measurements, with a partic-
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Specific challenges and requirements 
for the on-detector ASIC

12 Chapter 1. Introduction and overview

Any replacement calorimeter must have the ability to withstand integrated radiation levels that
are ten times higher than anticipated in the original CMS design. Simulations using FLUKA
(Figs. 1.1 and 1.2) indicate that the highest fluence is around 1016 neq/cm2 and the highest
dose around 2 MGy. Such radiation levels will be encountered at the inner radii of the sili-
con trackers at the HL-LHC. The R&D carried out, by several groups, for the upgrade of the
silicon tracker has demonstrated that silicon sensors could indeed tolerate such levels. The
silicon sensors retain adequate charge collection even after having been submitted to fluences
up to 1.5⇥1016 neq/cm2 (where neq/cm2 denotes the number of 1 MeV equivalent neutrons
per square cm), a fluence that is 50% higher than expected for an integrated luminosity of
3000 fb�1. Hence silicon sensors were chosen for the active material for the bulk of the upgrade
of the endcap calorimeters. In order to reliably operate silicon sensors after irradiation, and to
keep sufficiently low the energy equivalent of electronics noise that results from the increased
leakage current and decreased charge collection efficiency after irradiation, the sensors have to
be operated at around �30 �C.

Figure 1.1: Dose of ionizing radiation accumulated in HGCAL after an integrated luminosity
of3000 fb�1, simulated using the FLUKA program, and shown as a two-dimensional map in the
radial and longitudinal coordinates, r and z.

The proposed design uses silicon sensors as active material in the front sections and plastic
scintillator tiles, with the scintillation light read out by SiPMs, towards the rear. In the re-
gion covered by plastic scintillators the maximum radiation levels correspond to a fluence of
8⇥1013 neq/cm2 and a dose of 3 kGy. In order to keep the radiation-induced energy equivalent
of electronics noise sufficiently low, SiPMs also have to be operated at around �30 �C. Hence
the whole calorimeter will be operated at �30 �C.

The chosen techniques rely on recent advantageous advances in cost per unit area and radia-
tion tolerance of silicon sensors, advances in radiation-tolerant fast electronics, high-bandwidth
data transmission via optical fibres, and in FPGA technology for the first level of event selec-
tion. The challenges lie mainly in the area of engineering (electronics, mechanical, and thermal),
data transmission, and level-1 (L1) trigger formation.

12 Chapter 1. Introduction and overview

Any replacement calorimeter must have the ability to withstand integrated radiation levels that
are ten times higher than anticipated in the original CMS design. Simulations using FLUKA
(Figs. 1.1 and 1.2) indicate that the highest fluence is around 1016 neq/cm2 and the highest
dose around 2 MGy. Such radiation levels will be encountered at the inner radii of the sili-
con trackers at the HL-LHC. The R&D carried out, by several groups, for the upgrade of the
silicon tracker has demonstrated that silicon sensors could indeed tolerate such levels. The
silicon sensors retain adequate charge collection even after having been submitted to fluences
up to 1.5⇥1016 neq/cm2 (where neq/cm2 denotes the number of 1 MeV equivalent neutrons
per square cm), a fluence that is 50% higher than expected for an integrated luminosity of
3000 fb�1. Hence silicon sensors were chosen for the active material for the bulk of the upgrade
of the endcap calorimeters. In order to reliably operate silicon sensors after irradiation, and to
keep sufficiently low the energy equivalent of electronics noise that results from the increased
leakage current and decreased charge collection efficiency after irradiation, the sensors have to
be operated at around �30 �C.

Figure 1.1: Dose of ionizing radiation accumulated in HGCAL after an integrated luminosity
of3000 fb�1, simulated using the FLUKA program, and shown as a two-dimensional map in the
radial and longitudinal coordinates, r and z.

The proposed design uses silicon sensors as active material in the front sections and plastic
scintillator tiles, with the scintillation light read out by SiPMs, towards the rear. In the re-
gion covered by plastic scintillators the maximum radiation levels correspond to a fluence of
8⇥1013 neq/cm2 and a dose of 3 kGy. In order to keep the radiation-induced energy equivalent
of electronics noise sufficiently low, SiPMs also have to be operated at around �30 �C. Hence
the whole calorimeter will be operated at �30 �C.

The chosen techniques rely on recent advantageous advances in cost per unit area and radia-
tion tolerance of silicon sensors, advances in radiation-tolerant fast electronics, high-bandwidth
data transmission via optical fibres, and in FPGA technology for the first level of event selec-
tion. The challenges lie mainly in the area of engineering (electronics, mechanical, and thermal),
data transmission, and level-1 (L1) trigger formation.

12 Chapter 1. Introduction and overview

Any replacement calorimeter must have the ability to withstand integrated radiation levels that
are ten times higher than anticipated in the original CMS design. Simulations using FLUKA
(Figs. 1.1 and 1.2) indicate that the highest fluence is around 1016 neq/cm2 and the highest
dose around 2 MGy. Such radiation levels will be encountered at the inner radii of the sili-
con trackers at the HL-LHC. The R&D carried out, by several groups, for the upgrade of the
silicon tracker has demonstrated that silicon sensors could indeed tolerate such levels. The
silicon sensors retain adequate charge collection even after having been submitted to fluences
up to 1.5⇥1016 neq/cm2 (where neq/cm2 denotes the number of 1 MeV equivalent neutrons
per square cm), a fluence that is 50% higher than expected for an integrated luminosity of
3000 fb�1. Hence silicon sensors were chosen for the active material for the bulk of the upgrade
of the endcap calorimeters. In order to reliably operate silicon sensors after irradiation, and to
keep sufficiently low the energy equivalent of electronics noise that results from the increased
leakage current and decreased charge collection efficiency after irradiation, the sensors have to
be operated at around �30 �C.

Figure 1.1: Dose of ionizing radiation accumulated in HGCAL after an integrated luminosity
of3000 fb�1, simulated using the FLUKA program, and shown as a two-dimensional map in the
radial and longitudinal coordinates, r and z.

The proposed design uses silicon sensors as active material in the front sections and plastic
scintillator tiles, with the scintillation light read out by SiPMs, towards the rear. In the re-
gion covered by plastic scintillators the maximum radiation levels correspond to a fluence of
8⇥1013 neq/cm2 and a dose of 3 kGy. In order to keep the radiation-induced energy equivalent
of electronics noise sufficiently low, SiPMs also have to be operated at around �30 �C. Hence
the whole calorimeter will be operated at �30 �C.

The chosen techniques rely on recent advantageous advances in cost per unit area and radia-
tion tolerance of silicon sensors, advances in radiation-tolerant fast electronics, high-bandwidth
data transmission via optical fibres, and in FPGA technology for the first level of event selec-
tion. The challenges lie mainly in the area of engineering (electronics, mechanical, and thermal),
data transmission, and level-1 (L1) trigger formation.

12 Chapter 1. Introduction and overview

Any replacement calorimeter must have the ability to withstand integrated radiation levels that
are ten times higher than anticipated in the original CMS design. Simulations using FLUKA
(Figs. 1.1 and 1.2) indicate that the highest fluence is around 1016 neq/cm2 and the highest
dose around 2 MGy. Such radiation levels will be encountered at the inner radii of the sili-
con trackers at the HL-LHC. The R&D carried out, by several groups, for the upgrade of the
silicon tracker has demonstrated that silicon sensors could indeed tolerate such levels. The
silicon sensors retain adequate charge collection even after having been submitted to fluences
up to 1.5⇥1016 neq/cm2 (where neq/cm2 denotes the number of 1 MeV equivalent neutrons
per square cm), a fluence that is 50% higher than expected for an integrated luminosity of
3000 fb�1. Hence silicon sensors were chosen for the active material for the bulk of the upgrade
of the endcap calorimeters. In order to reliably operate silicon sensors after irradiation, and to
keep sufficiently low the energy equivalent of electronics noise that results from the increased
leakage current and decreased charge collection efficiency after irradiation, the sensors have to
be operated at around �30 �C.

Figure 1.1: Dose of ionizing radiation accumulated in HGCAL after an integrated luminosity
of3000 fb�1, simulated using the FLUKA program, and shown as a two-dimensional map in the
radial and longitudinal coordinates, r and z.

The proposed design uses silicon sensors as active material in the front sections and plastic
scintillator tiles, with the scintillation light read out by SiPMs, towards the rear. In the re-
gion covered by plastic scintillators the maximum radiation levels correspond to a fluence of
8⇥1013 neq/cm2 and a dose of 3 kGy. In order to keep the radiation-induced energy equivalent
of electronics noise sufficiently low, SiPMs also have to be operated at around �30 �C. Hence
the whole calorimeter will be operated at �30 �C.

The chosen techniques rely on recent advantageous advances in cost per unit area and radia-
tion tolerance of silicon sensors, advances in radiation-tolerant fast electronics, high-bandwidth
data transmission via optical fibres, and in FPGA technology for the first level of event selec-
tion. The challenges lie mainly in the area of engineering (electronics, mechanical, and thermal),
data transmission, and level-1 (L1) trigger formation.

12 Chapter 1. Introduction and overview

Any replacement calorimeter must have the ability to withstand integrated radiation levels that
are ten times higher than anticipated in the original CMS design. Simulations using FLUKA
(Figs. 1.1 and 1.2) indicate that the highest fluence is around 1016 neq/cm2 and the highest
dose around 2 MGy. Such radiation levels will be encountered at the inner radii of the sili-
con trackers at the HL-LHC. The R&D carried out, by several groups, for the upgrade of the
silicon tracker has demonstrated that silicon sensors could indeed tolerate such levels. The
silicon sensors retain adequate charge collection even after having been submitted to fluences
up to 1.5⇥1016 neq/cm2 (where neq/cm2 denotes the number of 1 MeV equivalent neutrons
per square cm), a fluence that is 50% higher than expected for an integrated luminosity of
3000 fb�1. Hence silicon sensors were chosen for the active material for the bulk of the upgrade
of the endcap calorimeters. In order to reliably operate silicon sensors after irradiation, and to
keep sufficiently low the energy equivalent of electronics noise that results from the increased
leakage current and decreased charge collection efficiency after irradiation, the sensors have to
be operated at around �30 �C.

Figure 1.1: Dose of ionizing radiation accumulated in HGCAL after an integrated luminosity
of3000 fb�1, simulated using the FLUKA program, and shown as a two-dimensional map in the
radial and longitudinal coordinates, r and z.

The proposed design uses silicon sensors as active material in the front sections and plastic
scintillator tiles, with the scintillation light read out by SiPMs, towards the rear. In the re-
gion covered by plastic scintillators the maximum radiation levels correspond to a fluence of
8⇥1013 neq/cm2 and a dose of 3 kGy. In order to keep the radiation-induced energy equivalent
of electronics noise sufficiently low, SiPMs also have to be operated at around �30 �C. Hence
the whole calorimeter will be operated at �30 �C.

The chosen techniques rely on recent advantageous advances in cost per unit area and radia-
tion tolerance of silicon sensors, advances in radiation-tolerant fast electronics, high-bandwidth
data transmission via optical fibres, and in FPGA technology for the first level of event selec-
tion. The challenges lie mainly in the area of engineering (electronics, mechanical, and thermal),
data transmission, and level-1 (L1) trigger formation.

 14

Occupancy and pileup:
• Varies by 2-3 orders of magnitude over 

pseudorapidity/depth and in time.
• Compression neural network must be 

configurable to handle different detector 
locations and changing detector/beam 
conditions

Latency: 
• ~On trigger path latency is precious ➔ 

must be < 100 ns

Power : 
• ~30k encoder networks on the entire 

detector. 
• Power budget is 100 mW network, or 

around 1 nJ per inference.

Radiation tolerance : up to 500 Mrad



Autoencoder concept for data compression

48-pixel input
336 bits

Encode with 
on-detector ASIC

Decode with 
off-detector 

FPGA

Transmit 16 × 3b outputs
48 bits

https://blog.keras.io/building-
autoencoders-in-keras.html

Decoded 48-
pixel image
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• Network architecture and precision of weights and biases: fixed in design

• Fully re-configurable : all network weights and biases + dimensionality of output

• Minimize  : power + area + latency
• Maximize : physics performance + configurability + radiation tolerance

Encoder

C. Herwig — Autoencoder for Front-End ASICNov 2, 2020

• Highly-efficient design is necessary to achieve acceptable 
design footprint and power consumption
• Borrow from image processing: convolutional NN (CNN) 

with filters trained to identify physical radiation patterns

NN encoding layers

12

Map to a 
regular 

geometry

2d 3d

or
Scan filters to 

extract features

• A fully-connected NN layer achieves further reduction, 
exploiting correlated features across the image
• CNN operations scale as ~ (Image * Filter) volumes
• Dense layer scales with encoder output dimension

48 × 7b =
 336 bits 
@ 40 MHz

Inputs
OutputsConvertor

ECON
block

7b 
floating 
point 
➔ 

22b 
fixed 
point

22b fixed 
pt
➔ 
8b 

normalized

➔ ➔ ➔
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48-144 bits
@ 40 MHz

weights, 
biases

Encoder NN

Encoder NN design considerations



Encoder NN components
• Convolutional layer (conv2D): extract geometric features
• Flatten layer : vectorizes 2D image from conv2D ( 128 = 8 × 4 × 4) 
• Dense layer : decide which geometric features are important
• ReLU : activation function

3-9 
bits per 
output

16 
outputs

Outputs

× 

HL LHC High Granularity Calorimeter*: Data flow

*Used as test case

CNN: Encodes information by correlating spatial features
• conv2D layer – extract spatially corelated geometric features
• Flatten layer – Vectorizes the 2D image from the conv2D layer [8 x 4 x 4 = 128 x 1]
• Dense layer – aggregates the various features to provide higher order information
• ReLU – an activation function which introduces non-linearity by applying thresholds (part of both the 

conv2D and dense layers)

3×
3

8

8

8 filters

➔ ➔ ➔ReLU ReLU ➔

128 
features

16 
outputs
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Encoder NN design considerations

Convolutional layer Flatten 
layer

Dense 
layer

Encoder NN
Optimization of dimensions shown next



Encoder NN architecture optimization

or or

5×53×34×4×3 8×8 2-10

Geometry mapping # of conv2D filters conv2D kernel size

➔ 

Max pooling conv2D outputs

➔ ➔ 

stride = 2 stride = 1

or

conv2D kernel stride

➔ 

• Optimize encoder network architecture choices including :

 18



Performance metric : EMD
• For rapid prototyping evaluate network performance according to image similarity.

• Energy Mover's Distance : 

• the "work" required to rearrange one radiation pattern into another

• first associated with "optimal transport" problem

• For each NN variation : train network and evaluate EMD with simulated physics events 
including top quarks (jets, leptons) and 200 pileup.

MIT-CTP 5102

The Metric Space of Collider Events

Patrick T. Komiske,⇤ Eric M. Metodiev,† and Jesse Thaler‡

Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and
Department of Physics, Harvard University, Cambridge, MA 02138, USA

When are two collider events similar? Despite the simplicity and generality of this question, there
is no established notion of the distance between two events. To address this question, we develop
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High-energy particle collisions produce a tremendous
number of intricately correlated particles, especially
when energetic quarks and gluons are involved. Behind
this apparent complexity, however, the overall flow of
energy in an event is a robust memory of its simpler
partonic origins [1–8]. Surprisingly, no definition of the
similarity between events presently exists that sharply
captures this correspondence. In the absence of a metric,
e↵orts typically fall back upon ad hoc methods such
as comparing specific observables [9–13] or matching
the pixels of calorimeter images [13–17]. These ap-
proaches su↵er from significant pathologies: disparate
event topologies can give rise to identical observable val-
ues, while pixels lack stability under small perturbations.
A theoretically and experimentally robust definition of
the “distance” between events would profoundly expand
our ability to explore the structure of collider data and
unlock entirely new ways to probe events.

In this letter, we advocate for the earth (or energy)
mover’s distance (EMD) [18–22] as a metric for the space
of collider events. We propose a variant of the EMD,
inspired by Refs. [21, 22], that allows events with di↵erent
total energies to be sensibly compared. The EMD is the
minimum “work” required to rearrange one event E into
the other E
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j) is the
smaller of the two total energies. R is a parameter
that controls the relative importance of the two terms.
While energies and angles are used here for clarity, we
will use transverse momenta pT and rapidity-azimuth
(y, �) distances for our applications relevant for the Large
Hadron Collider (LHC).
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FIG. 1. The optimal movement to rearrange one top jet
(red) into another (blue). Particles are shown as points in
the rapidity-azimuth plane with areas proportional to their
transverse momenta. Darker lines indicate more transverse
momentum movement. The energy mover’s distance in
Eq. (1) is the total “work” required to perform this rearrange-
ment.

The EMD that we propose in Eq. (1) has dimensions
of energy, where the first term quantifies the di↵erence
between the two radiation patterns and the second term
accounts for the creation or destruction of energy. It is
a true metric (satisfying the triangle inequality) as long
as ✓ij is a metric and R �

1
2✓max, where ✓max is the

maximum attainable angular distance between particles.
For instance, R must be at least the jet radius for conical
jets. Formally, the EMD metrizes the energy flow, as it
treats events di↵ering only by soft particles or collinear
splittings identically. This hints at a deep connection to
infrared and collinear (IRC) safety of observables [23–26],
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proaches su↵er from significant pathologies: disparate
event topologies can give rise to identical observable val-
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between the two radiation patterns and the second term
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a true metric (satisfying the triangle inequality) as long
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maximum attainable angular distance between particles.
For instance, R must be at least the jet radius for conical
jets. Formally, the EMD metrizes the energy flow, as it
treats events di↵ering only by soft particles or collinear
splittings identically. This hints at a deep connection to
infrared and collinear (IRC) safety of observables [23–26],
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proaches su↵er from significant pathologies: disparate
event topologies can give rise to identical observable val-
ues, while pixels lack stability under small perturbations.
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the “distance” between events would profoundly expand
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unlock entirely new ways to probe events.
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The EMD that we propose in Eq. (1) has dimensions
of energy, where the first term quantifies the di↵erence
between the two radiation patterns and the second term
accounts for the creation or destruction of energy. It is
a true metric (satisfying the triangle inequality) as long
as ✓ij is a metric and R �
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For instance, R must be at least the jet radius for conical
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treats events di↵ering only by soft particles or collinear
splittings identically. This hints at a deep connection to
infrared and collinear (IRC) safety of observables [23–26],
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The EMD that we propose in Eq. (1) has dimensions
of energy, where the first term quantifies the di↵erence
between the two radiation patterns and the second term
accounts for the creation or destruction of energy. It is
a true metric (satisfying the triangle inequality) as long
as ✓ij is a metric and R �
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maximum attainable angular distance between particles.
For instance, R must be at least the jet radius for conical
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Quantify encoding performance as EMD to 
transform decoded image ➔ input image.



Physics driven hardware co-design
Rapid prototyping and optimization of network achieved through
• QKeras : network development with quantization-aware training and physics simulation
• hls4ml :  neural network description (h5 file e.g.) ➔ HLS-compliant C++  format
• Catapult HLS : C++ ➔ RTL
• TMR4sv_hls : Automated TMR for System Verilog

 20
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Test feature Geometry # filter kernel stride  pooling # params # operations EMD Mean EMD RMS
Reference 4x4x3 8 3x3 1 none 1.00 1.00 1.00 1.00
4x4x3 -> 8x8 8x8 8 3x3 1 none 2.73 1.76 0.64 0.41
max pooling 8x8 8 3x3 1 2x2 0.71 0.97 0.59 0.33
3x3 -> 5x5 kernel 8x8 8 5x5 1 2x2 0.99 2.76 0.64 0.35
pooling -> stride=2 8x8 8 3x3 2 none 0.94 0.59 0.76 0.46
8 -> 10 filters 8x8 10 3x3 2 none 1.17 0.73 0.73 0.43
8 -> 6 filters 8x8 6 3x3 2 none 0.70 0.44 0.85 0.57

Network Architecture Relative Power & Area Relative Performance

Rapid design optimization
• Performance : EMD mean and RMS are both important
• Power and area : scale with number of model operations and parameters

* zero operations removed

*
*

• Reference design : presented in Fall 2020**

• Final design :  8×8 geometry + 8 filters + 3×3 kernel + stride =2 
• 50% power and 80% area of reference (from simulation)
• 2× better performance (EMD RMS) than reference

** https://indico.cern.ch/event/924283/contributions/4105329/attachments/2152250/3630590/encoder_asic_fastml2020.pdf
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Lower EMD is better

https://www.eventclass.org/contxt_ieee2020/online-program/session?s=N-34#e280
https://www.eventclass.org/contxt_ieee2020/online-program/session?s=N-24#e189



Optimization of NN output
• Better to use many low-precision or fewer high-precision outputs?
• Compare EMD performance keeping power and area fixed.
• Conclusion : more lower-precision outputs is better

• for both high- and low-bandwidth scenarios
• for full range of module occupancy

NN outputsSensor output 
bandwidth

64 bits 
160 bits

6 
10 
16

lower EMD better

➔
 

Total module output 
bandwidth

2 × 1.28 Gbps
5 × 1.28 Gbps

# NN outputs

6
10
16

ECON ASIC allows user to select any 
of 16×9 output bits for transmission

• Expect to use 16 × 3 (9) bits for low 
(high) occupancy zones.

• Corresponding precision used in 
QKeras quantization-aware 
training optimizes network for 
programmed output configuration.

 22



Single event effect mitigation

6

Fig. 7. Design floor-plan with an integrated converter, encoder and I2C
peripheral occupying a total area of 3.6 mm2. The converter is highlighted in
grey, the I2C peripheral in white and the rest of the area is occupied by the
encoder.

Digital Implementation in a Radiation Environment

The digital design consists of three major functional blocks:
(i) An encoder, which uses hls4ml, a domain-specific trans-
lator/compiler for implementing the ML algorithm; (ii) A
converter which is a classical module designed with HLS; (iii)
and an I2C peripheral which uses a SystemVerilog RTL code.
The converter is used for normalizing the 48 (22b) inputs
to 48 (8b). An encoder is used for data classification and
further compression to 16 (9b) outputs. To have a flexible and
reconfigurable algorithm, all the parameters (13,728b) can be
setup via the I2C interface on-chip. The programming of the
I2C peripheral takes less than 50 us corresponding to a total
of 1,716 I2C clock cycles, utilizing an 8b input bus. Once
the weights are setup, the algorithm adds a total latency of 2
bunch crossing (BX) cycles to the trigger path - one cycle to
convert and another cycle to encode resulting in total inference
latency of 50 ns and a new input accepted every 25 ns.

Integrated Converter, Encoder and I2C peripheral: An
integrated approach to the development is needed in order
to avoid routing congestion of connecting the weights to the
appropriate layers across the encoder. The floor-plan of the
digital implementation occupying 2.4 mm x 1.5 mm is shown
in Fig 7. The converter logic is located near the data input at
the top of the design, majority of the area is occupied by the
encoder, interleaved with the distributed I2C network.

Design Considerations for Total Ionizing Dose Perfor-
mance: Apart from all requirements considered above, our
design must guarantee on-detector circuit reliability in the
high radiation environment of HL-LHC [18], [19]. The cir-
cuitry should withstand total ionizing dose of approximately
200 Mrad over the lifetime of the experiment along with high
SEE rates [20]–[22]. Since previous measurement results have
indicated that the average time delay of all cells from the
65 nm LP process library increases after 200 Mrad irradia-
tion [23], minimum size cells are avoided. Normal Vt standard
cell technology library is used. Implementation uses worst case
timing libraries to ensure performance after radiation damage.
All weights are stored in registers and no SRAMs or DICE
cells [24] are used.

Fig. 8. Triple modular redundancy scheme used for the encoder and converter.
Each register is triplicated and a majority voter determines the output.

Fig. 9. Full module triplication is used for the I2C peripheral. All combina-
tional logic within the module is triplicated, which is used by three majority
voters to form the inputs to triplicated registers. Feedback from the output of
the registers enables autocorrection and protects against accumulating errors
due to single event upsets over time.

Single Event Effect Mitigation: Mitigating SEEs is a
critical step in the ASIC implementation for effective perfor-
mance in the HL LHC environment. Several techniques have
been proposed and used over the years to tackle this specific
problem [25]–[27].

Triple modular redundancy (TMR) is a well-known tech-
nique to protect digital circuits against the undesirable effects
of SEEs [28], [29]. Depending on the functionality of the block
auto-correction features might be required for registers which
store data.

We have used two different TMR implementations: Simple
TMR with triplicated registers and a majority voter for the
data path shown in Figure 8 and fully triplicating the entire
module as shown in Figure 9 for the I2C peripheral for storing
weights.

Since new data arrives to the encoder block every 25 ns, no
auto-correction techniques are required. On the other hand, the
values of the weights set by the I2C peripheral (parameters of
the neural network) are vital as they are central to the vector
multiplications used in NNs. Once programmed these are not
expected to change over lengthy periods of time, hence, auto
correction techniques are used to ensure that register errors
due to single event upsets do not accumulate over time. As
shown in Figure 9, all combinational logic within the module
is triplicated, which is used by three majority voters to form
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SEE rates [20]–[22]. Since previous measurement results have
indicated that the average time delay of all cells from the
65 nm LP process library increases after 200 Mrad irradia-
tion [23], minimum size cells are avoided. Normal Vt standard
cell technology library is used. Implementation uses worst case
timing libraries to ensure performance after radiation damage.
All weights are stored in registers and no SRAMs or DICE
cells [24] are used.

Fig. 8. Triple modular redundancy scheme used for the encoder and converter.
Each register is triplicated and a majority voter determines the output.

Fig. 9. Full module triplication is used for the I2C peripheral. All combina-
tional logic within the module is triplicated, which is used by three majority
voters to form the inputs to triplicated registers. Feedback from the output of
the registers enables autocorrection and protects against accumulating errors
due to single event upsets over time.

Single Event Effect Mitigation: Mitigating SEEs is a
critical step in the ASIC implementation for effective perfor-
mance in the HL LHC environment. Several techniques have
been proposed and used over the years to tackle this specific
problem [25]–[27].

Triple modular redundancy (TMR) is a well-known tech-
nique to protect digital circuits against the undesirable effects
of SEEs [28], [29]. Depending on the functionality of the block
auto-correction features might be required for registers which
store data.

We have used two different TMR implementations: Simple
TMR with triplicated registers and a majority voter for the
data path shown in Figure 8 and fully triplicating the entire
module as shown in Figure 9 for the I2C peripheral for storing
weights.

Since new data arrives to the encoder block every 25 ns, no
auto-correction techniques are required. On the other hand, the
values of the weights set by the I2C peripheral (parameters of
the neural network) are vital as they are central to the vector
multiplications used in NNs. Once programmed these are not
expected to change over lengthy periods of time, hence, auto
correction techniques are used to ensure that register errors
due to single event upsets do not accumulate over time. As
shown in Figure 9, all combinational logic within the module
is triplicated, which is used by three majority voters to form

• New data every 25ns
• Triplicate registers 

without auto-correction

• Long term weights storage
• Triplicate registers, logic, and clocks
• Auto-correction included

Data path : 
Encoder & Convertor

Configuration : I2C secondary
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Design and 
verification 

methodology

Verification performed at 
each stage of design:
• Model training 
• hls4ml
• Catapult HLS
• RTL
• Synthesis
• Place and route
• LVS and DRC
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Design and verification 
methodology

Step Type Run Time Iterations Size
Model generation D 1s

50-100 1.1k lines of 
C++C Simulation V 1s

HLS D 30 min
3-100 40k lines of 

verilogRTL simulation V 1 min
Logic synthesis D 6 hrs

6

750k gates
Gate-level sim V 30 min
Place and route D 50 hrs

780k gates
Post-layout sim V 1 hrs
Post-layout parasitic sim V 2 hrs
SEE simulation V 4 hrs
Layout D 20 min

1 7.6M 
transistorsLVS and DRC V 1 hr

Network 
optimization

Design 
optimization

Increasing time 
and complexity
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Place and route
• Integrated design to avoid routing congestion from 14k bits of 

weights (programmable via I2C) connected from periphery.
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Design Performance Metrics

Requirements

Rate 40 MHz

Total ionizing dose 200 Mrad

High energy hadron flux 1 × 107 cm2/s

Metric Simulation Target

Power 48 mW <100 mW

Energy / inference 1.2 nJ N/A

Area 2.88 mm2 <4 mm2

Gates 780k N/A

Latency 50 ns <100 ns

* EMD RMS  27

Physics performance studies in progress ➔  
preliminary performance with non-
optimized training comparable to 
traditional threshold algorithm.



ECON-T-P1 submitted

* EMD RMS  28

• ECON-T-P1 submitted for 
fabrication on June 28, 2021.

• Chips expected to reach 
Fermilab in early October 
2021.

• We are ready and excited to 
test the chip and evaluate the 
performance of NN encoder

NN encoder



Summary

• Autoencoder neural network for on-detector data compression.
• Low power, low latency, radiation tolerant, fully re-configurable
• 65nm LP CMOS
• Prototypes will be tested in Fall 2021

• Established design and verification methodology based on hls4ml + 
Catapult HLS allows rapid progression from algorithm development through 
circuit implementation.

• Optimized network provides 2× better performance at ~50%  power of 
reference network.
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Additional material
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Precision of weights and variables

1024b

1024b

• Diagram is example for 4×4×3 
reference network - same structure 
as final 8×8 network

• Weights are all 6b

For final 8×8 network:

• hidden layer neurons:
• 8b fraction 
• sufficient integer bits to cover 

theoretical max value

• output neurons:
• 9b total
• 1b integer
• covers maximum value from 

physics simulation
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