Introduction

Quantum,information Conitutation

Germán Sierra (Instituto de Física Teórica UAM-CSIC, Madrid)
6th INFIERY Summer School
Madrid, 1st September 2021

Plan of the lecture

- Part I: Historial background
- Part II: The qubit and quantum gates

Quantum Computation and Quantum Information

Quantum Mechanics

Quantum Computation and

Quantum Information

Quantum Mechanics

Computer Sciences

Quantum Computation and

Quantum Information

Quantum Mechanics

Computer Sciences

Quantum Computation and

Quantum Information

Information Theory

Quantum Mechanics

Computer Sciences

Quantum Computation and

Quantum Information

Information Theory
Cryptography

Quantum Mechanics

Quantum Mechanics

Golden age of Physics

Quantum Mechanics

Golden age of Physics

First Quantum Revolution

Max Planck
1858-1947

Ueber eine Verbesserung der Wien'schen Spectralgleichung; von M. Planck.
(Vorgetragen in der Sitzung vom 19. October 1900.)
About an improvement of Wien's spectral equation

Zur Theorie des Gesetzes
der Energieverteilung im Normalspectrum; von M. Planck.
(Vorgetragen in der Sitzung vom 14. December 1900.)

$$
u_{v} d v=\frac{8 \pi h v^{8}}{c^{8}} \cdot \frac{d v}{e^{\frac{h v}{k \vartheta}}-1}
$$

U-Soluay conference "electrons et photons" [1927]

A. Piccard, E. Henriot, P. Ehrenfest, E. Herzen, Th. de Donder, E. Schrödinger, J.E. Verschaffelt, W. Pauli, W. Heisenberg, R.H. Fowler, L. Brillouin;
P. Debye, M. Knudsen, W.L. Bragg, H.A. Kramers, P.A.M. Dirac, A.H. Compton, L. de Broglie, M. Born, N. Bohr; I. Langmuir, M. Planck, M. Skłodowska-Curie, H.A. Lorentz, A. Einstein, P. Langevin, Ch.-E. Guye, C.T.R. Wilson, O.W.

is light
 a wave or a particle?

is light a wave or a particle?

Isaac Newton
1642-1727

Isaac Newton
1642-1727

Isaac Newton
1642-1727

James Maxwell 1831-1879

Thomas Young 1773-1829

is light a wave or a particle?

Isaac Newton 1642-1727

James Maxwell 1831-1879

Albert Einstein (1879-1955)

On a heuristic point of view about the creation and generation of light

6. Über einen
die Erzeugung und Verwandlung des Lichtes
betreffenden heuristischen Gesichtspunkt;
von A. Einstein.

Zwischen den theoretischen Vorstellungen, welche sich die Physiker über die Gase und andere ponderable Körper gebildet haben, und der Maxwellschen Theorie der elektromagnetischen Prozesse im sogenannten leeren Raume besteht ein tiefgreifeuder formaler Unterschied. Während wir uns nămlich den Zustand eines Körpers durch die Lagen und Geschwindigkeiten einer zwar sehr groBen, jedoch endlichen Anzahl von Atomen und Elektronen für vollkommen bestimmt ansehen, bedienen wir uns zur Bestimmung des elektromagnetischen Zustandes eines Raumes kontinuierlicher räumlicher
when a ray of light propagates from a point, energy is not distributed continuously over increasing volume, but it is composed of a finite number of energy quanta, in space,that move without being divided and that they can be absorbed or emitted only as a whole.

On a heuristic point of view about the creation and generation of light

6. Über einen
die Erweugung und Verwandlung des Lichtes
betreffenden heuristischen Gesichtspunkt;
von A. Einstein.

Zwischen den theoretischen Vorstellungen, welche sich die Physiker über die Gase und andere ponderable Körper gebildet haben, und der Maxwellschen Theorie der elektromagnetischen Prozesse im sogenannten leeren Raume besteht ein tiefgreifeuder formaler Unterschied. Während wir uns nămlich den Zustand eines Körpers durch die Lagen und Geschwindigkeiten einer zwar sehr groBen, jedoch endlichen Anzahl von Atomen und Elektronen für vollkommen bestimmt ansehen, bedienen wir uns zur Bestimmung des elektromagnetischen Zustandes eines Raumes kontinuierlicher räumlicher
when a ray of light propagates from a point, energy is not distributed continuously over increasing volume, but it is composed of a finite number of energy quanta, in space,that move without being divided and that they can be absorbed or emitted only as a whole.

Quantum of light $=$ photon

Photoelectric effect

photons

$$
E=h f \quad \text { (Planck 1900) }
$$

Energy of a yellow photon $E \approx 2$ electrón-voltios

Louis de Broglie 1892-1987

Particles are also waves

Louis de Broglie 1892-1987

$$
[x, p]=i \hbar \quad \Delta x \Delta p \geq \frac{\hbar}{2}
$$

Particles are also waves

$$
\lambda=\frac{h}{p}
$$

Matrix Mechanics / uncertainty principle

Werner Heisenberg 1901-1976

Wave function / Time evolution

$$
i \frac{\partial \psi}{\partial t}=\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(\vec{x})\right) \psi
$$

Erwin Schrödinger 1887-1961

Erwin Schrödinger 1887-1961

$$
i \frac{\partial \psi}{\partial t}=\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(\vec{x})\right) \psi
$$

$$
\frac{d P}{d V}=|\psi(\vec{x})|^{2}
$$

Max Born 1882-1970

Wave function / Time evolution

Probabilistic interpretation

Richard Feymann : Quantum Mechanics can be understood by giving it a lot of thought 1918-1988 to the double slit experiment

Feynman
 LECTURES ON PHYSICS

The NEW MILLENNIUM Edition

Double slit experiment with electrons

Interference and superposition principle

Dr. Quantum - Double Slit experiment

Paradox: the electron "passes" through both slits INTERFERING WITH ITSELF

"Quantum" Skier
Classical Observer

Quantum interference of large organic molecules

Stefan Gerlich, ${ }^{1}$ Sandra Eibenberger, ${ }^{1}$ Mathias Tomandl, ${ }^{1}$ Stefan Nimmrichter, ${ }^{1}$ Klaus Hornberger, ${ }^{2}$ Paul J. Fagan, ${ }^{3}$ Jens Tüxen, ${ }^{4}$ Marcel Mayor, ${ }^{4,5}$ and Markus Arndta ${ }^{\text {a }}{ }^{1}$

Oriol Romero-Isart ${ }^{1}$, Mathieu L. Juan ${ }^{2}$, Romain Quidant ${ }^{2,3}$, and J. Ignacio Cirac ${ }^{1}$

Protocol to create superposition of macroscopic objects including living beings. Explore the role of life and consciousness in Quantum Mechanics.

Paradox: Schrödinger cat (1935)

$$
\psi=\text { Dead }+ \text { Alive }
$$

Copengahen interpretation

Opening the box produces the COLLAPSE of the wave function

Many world interpretation: Hugh Everett (1957)
time

Hugh Everett 1930-1982

Many world interpretation: Hugh Everett (1957)
time

Hugh Everett 1930-1982

Anticipated in literature by Jorge Luis Borges
in the story "The Garden of Forking Paths" (1941)
"El jardín de senderos que se bifurcan"
"Unlike $\mathcal{N e w t o n ~ a n d ~ S c h o p e n h a u e r , ~ h i s ~ a n c e s t o r ~ d i d ~}$ not Gelieve in a uniform, absolute time. He Gelieved in infinite series of times, in a growing and dizzying network "f divergent, convergent and parallel times....

Jorge Luis Borges 1899-1966

Einstein: I am convinced that God does not play dice. Do you think the moon is not there when we are not looking at it?

Bohr: Don't tell God what to do

Einstein and Bohr 1925

Einstein, Podolsky and Rosen paradox (1935)

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?
A. Einstein, B. Podolsky and N. Rosen, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

हilstill atraws DUANUU HHERORY

Scientist and Two Colleagues Find It is Not 'Complete' Even Though 'Correct.'

SEE FULLER ONE POSSIBLE

Believe a Whole Description of 'the Physical Reality' Can Be Provided Eventually.

EPR : Gedanken experiment

EPR : Gedanken experiment

 $\sum_{\text {MmW }}^{5 N M}$

Superposition of two electron with opposite momentum

Spooky action at a distance

end of the EPR article

We leave open the possibility that it exists, or not, a complete description of reality. We believe that theory exists.

Spooky action at a distance

We leave open the possibility that it exists, or not,

End of the EPR article a complete description of reality. We believe that theory exists.

Hidden variable theories

Schrödinger called entanglement this instantaneous action at a distance (1935)

Verschränkung (german)

Entanglement is not one, but the characteristic feature of Quantum Mechanics, which imposes its total departure from classical Physics

David Bohm
1917-1992

The EPR paradox spurred the construction of hidden variable theories

Theory of "pilot waves" of de Broglie and Bohm

David Bohm
1917-1992

John von Neumann
1903-1957

The EPR paradox spurred the construction of hidden variable theories

Theory of "pilot waves" of de Broglie and Bohm

Von Neumann theorem:

Hidden variable theories are incompatible with Quantum Mechanics

Two interpretations of the physical reality

Local Realism (EPR-hidden variables)

The observable quantities have a value prior to their measurement

Quantum Mechanics

The observable quantities DO NOT have a value prior to their measurement

After this discussion a DICTUM was imposed
"Shut up and calculate"

After this discussion a DICTUM was imposed

"Shut up and calculate"

but one should

NEVER EVER GIVE UP!

John Bell found that von Neumann's proof was wrong: he assumed what he wanted to prove

EPR ideas were not a mere philosopical speculation about the interpretation of Quantum Mechanics

John Bell found that von Neumann's proof was wrong: he assumed what he wanted to prove

EPR ideas were not a mere philosopical speculation about the interpretation of Quantum Mechanics

It would be possible to falsify "local realism" with an experiment

Bell inequalities (1964)

Bell experiment

EPR pair of spins

Bell experiment

Bell experiment

Local realism $\longrightarrow\left|P(\vec{a}, \vec{b})-P\left(\vec{a}, \vec{b}^{\prime}\right)\right| \leq 1+P\left(b, \vec{b}^{\prime}\right)$

Bell experiment

Experiments to verify Bell's inequality

- electrons -> photons
- spin -> polarization

Monitor of coincidences

Aspect's experiments (1981)

$$
\begin{array}{lc}
\text { CHSH inequality } & -2 \leq S \leq 2 \\
\text { Quantum prediction } & S_{M C}=2.70 \pm 0.05 \\
\text { Experimental result } & S_{\exp }=2.697 \pm 0.01
\end{array}
$$

Alan Aspect 1947

HOGAL REALISA

Bell experiment in Austria, Innsbruk (1998)

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger,

Bell experiment in Canary islands (2007)

QESS (Quantum Entanglement at Space Scale) 2016-2018

Joint Proyect China and Austria

Quantum Mechanics

Computer Sciences

Quantum Computation and

Quantum Information

Computer Sciences

Turing machine

Alan Turing (1914-1944)

Cunit	Tape	Cunit	Tape	Direction
s_{1}	b	s_{2}	b	l
s_{2}	b	s_{3}	b	l
s_{2}	1	s_{2}	1	l
s_{3}	b	H	b	-
s_{3}	1	s_{4}	b	r
s_{4}	b	s_{2}	1	l

b1 $\stackrel{n_{1}}{\sim} 1 b b 1 \stackrel{n_{2}}{\sim} 1 \stackrel{s_{1} \downarrow}{b} \rightarrow b 1 \stackrel{n_{1}+n_{2}}{\sim} 1 b \rightarrow$ Halt

Alan Turing (1914-1944)

The Chuch-Turing thesis (1936)

Any algorithmic process can be simulated efficiently using a Turing machine

Turing, computers and crytography

Enigma machine
Museo scienza e tecnologia Milano,

Electronic computer at the Manchester university 1950

The architect of the computers

John von Neumann 1903-1957

The first transistor (1947)

John Bardeen
1908-1991

Walter Brattain
1902-1987

William Schockely 1902-1987

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress - such as processing speed or the price of electronic products - are linked to Moore's law.

Richard Feynman 1918-1988

Simulating Physics with Computers

Richard P. Feynman 1982

Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy.

David Deutsch 1953

Quantum theory, the Church-Turing principle and the universal quantum computer

By D. Deutsch

1985

Proposed a quantum generalization of the Turing machines
= Quantum Computer

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer

Authors:Peter W. Shor (AT\&T Research) arXiv:quant-ph/9508027

Computational time Prime factorization

N : integer, $\mathrm{n}=\log \mathrm{N}$: number of digits

Peter Shor 1959

Best classical algorithm:

$$
O\left(e^{1.9 n^{1 / 3}(\log n)^{2 / 3}}\right)
$$

Exponential speedup

Shor's algorithm:

$$
O\left(n^{2} \log n \log \log n\right)
$$

A fast quantum mechanical algorithm for database search

arXiv:quant-ph/9605043

Lov Grover 1961
Searching an item in a list of N data takes classicaly order N steps In a quantum computer it takes order \sqrt{N} quadratic speedup $\quad N \rightarrow \sqrt{N}$

Quantum Mechanics

Computer Sciences

Quantum Computation and

Quantum Information

Information Theory

Information theory

Claude Shannon 1916-2001

Capacity of a communication channel

$$
C=\lim _{T \rightarrow \infty} \frac{\log N(T)}{T} \quad H=-K \sum_{i=1}^{n} p_{i} \log p_{i}
$$

Noiseless channel coding theorem -> optimal resources to store information
Noisy channel coding theorem -> amount of information that can be reliable transmitted
Error correcting codes - > to protect information transmitted from the noise

The Minivac 601, a digital computer trainer 1962 designed by Shannon.

Quantum coding

Quantum version of Shannon theory
Shannon entropy -> von Neumann entropy
Noiseless coding theorem -> quantum noiseless coding theorem

Introduced the terminology "quantum bit = qubit"

Quantum coding

Quantum version of Shannon theory
Benjamin Schumacher
Shannon entropy -> von Neumann entropy
Noiseless coding theorem -> quantum noiseless coding theorem

Introduced the terminology "quantum bit = qubit"

ACKNOWLEDGMENTS

The term "qubit" was coined in jest during one of the author's many intriguing and valuable conversations with W. K. Wootters, and became the initial impetus for this work. The author is also grateful to C. H. Bennett and R. Jozsa for their helpful suggestions and for numerous words of encouragement.

Information is physical

Physics Today 44, 5, 23 (1991)

Rolf Landauer 1927-1999

Information is physical

Physics Today 44, 5, 23 (1991)

Rolf Landauer 1927-1999

Landauer principle

$$
E=k_{B} T \ln 2
$$

Cryptography

See talk "Introduction to Quantum Communication" by Vicente Martin (UPM), Thursday 2nd Sept

QUANTUM CRYPTOGRAPHY: PUBLIC KEY DISTRIBUTION AND COIN TOSSING

Charles H. Bennett (IBM Research, Yorktown Heights NY 10598 USA) Gilles Brassard (dept. IRO, Univ. de Montreal, H3C 3J7 Canada)

Charles Bennet 1943

When elementary quantum systems, such as polarized photons, are used to transmit digital information, the uncertainty principle gives rise to novel cryptographic phenomena unachieveable with traditional transmission media, e.g. a communications channel on which it is impossible in principle to eavesdrop without a high probability of disturbing the transmission in such a way as to be detected. Such a quantum channel can be used in conjunction with ordinary insecure classical channels to distribute random key information between two users with the assurance that it remains unknown to anyone else, even when the users share no secret information initially. We also present a protocol for coin-tossing by exchange of quantum messages, which is secure against traditional kinds of cheating, even by an opponent with unlimited computing power, but,ironically can be subverted by use of a still subtler quantum phenomemon, the Einstein-Podolsky-Rosen paradox.

Gilles Brassard 1955

The BBVA prize Frontiers of Knowledge Award in Basic

 Sciences to Charles Bennett, Gilles Brassard, and Peter Shor in 2019 for their respective roles in the development of quantum computing and cryptography

The 19th century was the era of steam power, the 20th century was the era of information, and the 21st century will go down in history as the quantum age, the age in which quantum technologies dominate all the changes occurring in society, in a way we cannot yet foresee."
G. Brassard,

2019

Principles of Quantum Mechanics

 in a nutshell

The qubit

qubit $=$ a quantum state of a two level system

Example of a qubit: spin $1 / 2$ particle

$$
\begin{aligned}
& |0\rangle=|\uparrow\rangle \\
& \text { computational basis }|0\rangle,|1\rangle \\
& \text { vector notation } \quad|0\rangle=\binom{1}{0}, \quad|1\rangle=\binom{0}{1} \\
& \langle 0 \mid 0\rangle=\langle 1 \mid 1\rangle=1, \quad\langle 0 \mid 1\rangle=0
\end{aligned}
$$

$$
\begin{gathered}
|\psi\rangle=a|0\rangle+b|1\rangle, \quad a, b \in \mathbb{C} \\
\langle\psi \mid \psi\rangle=1 \rightarrow|a|^{2}+|b|^{2}=1 \quad e^{i \alpha}|\psi\rangle, \alpha \in \mathbb{R} \quad \text { same state }
\end{gathered}
$$

Standard parametrization

$$
\begin{gathered}
|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle=\binom{\cos \frac{\theta}{2}}{e^{i \phi} \sin \frac{\theta}{2}} \\
\theta \in[0, \pi] \quad \phi \in[0,2 \pi)
\end{gathered}
$$

Geometric representation: Bloch sphere

θ : polar angle $\quad \phi$: azimuthal angle

Pure state of a qubit \longmapsto Point on the Bloch sphere

 How to compute the angles θ, ϕ ?Prepare N times an unknown state in the Lab

$$
\begin{gathered}
\text { Probability of measuring }|0\rangle
\end{gathered} p_{0}=\frac{N_{0}}{N_{0}+N_{1}}, p_{1}=\frac{N_{1}}{N_{0}+N_{1}}, ~ \begin{gathered}
\text { Probability of measuring }|1\rangle \quad p_{0}+p_{1}=1
\end{gathered}
$$

Quantum Mechanical prediction

$$
\begin{gathered}
p_{0}=|\langle 0 \mid \psi\rangle|^{2}=\cos ^{2} \frac{\theta}{2} \quad p_{1}=|\langle 1 \mid \psi\rangle|^{2}=\sin ^{2} \frac{\theta}{2} \\
\text { Error } \propto 1 / \sqrt{N}
\end{gathered}
$$

Stern-Gerlach detector Observable

$$
\overbrace{}^{2} \quad \Longleftrightarrow \sigma^{Z}=Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Expectation value

$$
\left\langle\sigma^{z}\right\rangle=p_{0}-p_{1}
$$

$\mathrm{QM}\left\langle\sigma^{z}\right\rangle=\langle\psi| \sigma^{z}|\psi\rangle=\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2}=\cos \theta$

What about ϕ ?

Stern-Gerlach detector Observable

$$
\sigma^{x}=X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\begin{array}{ll}
\text { Probability of measuring }|+\rangle & p_{+}=\frac{N_{+}}{N_{+}+N_{-}} \\
\text {Probability of measuring }|-\rangle & p_{-}=\frac{N_{-}}{N_{+}+N_{-}}
\end{array}
$$

Quantum Mechanical prediction

$$
\begin{gathered}
p_{+}=|\langle+\mid \psi\rangle|^{2}=\frac{1+\sin \theta \cos \phi}{2} \quad p_{-}=|\langle-\mid \psi\rangle|^{2}=\frac{1-\sin \theta \cos \phi}{2} \\
\left\langle\sigma^{x}\right\rangle=p_{+}-p_{-}
\end{gathered}
$$

QM $\quad\left\langle\sigma^{x}\right\rangle=\langle\psi| \sigma^{x}|\psi\rangle=\sin \theta \cos \phi$

The state is still not totally fixed

Stern-Gerlach detector Observable

$$
\sigma^{y}=Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

$$
\begin{array}{ll}
\text { Probability of measuring }|+i\rangle & p_{+i}=\frac{N_{+i}}{N_{+i}+N_{-i}} \\
\text { Probability of measuring |-> } & p_{-i}=\frac{N_{-i}}{N_{+i}+N_{-i}}
\end{array}
$$

Quantum Mechanical prediction

$$
\begin{gathered}
p_{+i}=|\langle+i \mid \psi\rangle|^{2}=\frac{1+\sin \theta \sin \phi}{2} \quad p_{-i}=|\langle-i \mid \psi\rangle|^{2}=\frac{1-\sin \theta \sin \phi}{2} \\
\left\langle\sigma^{y}\right\rangle=p_{+i}-p_{-i}
\end{gathered}
$$

QM $\quad\left\langle\sigma^{y}\right\rangle=\langle\psi| \sigma^{y}|\psi\rangle=\sin \theta \sin \phi$

The state is now totally fixed

$$
\left\{\begin{array}{c}
\left\langle\sigma^{x}\right\rangle=\cos \phi \sin \theta=x \\
\left\langle\sigma^{y}\right\rangle=\sin \phi \sin \theta=y \\
\left\langle\sigma^{z}\right\rangle=\cos \theta=z
\end{array}\right.
$$

$$
|\psi\rangle=\binom{\sqrt{\frac{1+z}{2}}}{\frac{x+i y}{\sqrt{2(1+z)}}}
$$

Density matrix

Classical Mechanics

A "pure" state of a 1D particle is given by the point in the phase space (q,p)
A "mixed" state is given by a probability density $\rho(q, p)$
Expectation values of an observable $\mathcal{O}(q, p)$ is given by $\langle\mathcal{O}\rangle=\int d q d p \rho(q, p) \mathcal{O}(q, p)$

Density matrix

Classical Mechanics

A "pure" state of a 1D particle is given by the point in the phase space (q, p)
A "mixed" state is given by a probability density $\rho(q, p)$
Expectation values of an observable $\mathcal{O}(q, p)$ is given by $\langle\mathcal{O}\rangle=\int d q d p \rho(q, p) \mathcal{O}(q, p)$

Quantum Mechanics

$$
\begin{gathered}
\rho=|\psi\rangle\langle\psi|=\left(\begin{array}{cc}
\cos ^{2} \frac{\theta}{2} & e^{-i \phi} \cos \frac{\theta}{2} \sin \frac{\theta}{2} \\
e^{i \phi} \cos \frac{\theta}{2} \sin \frac{\theta}{2} & \sin ^{2} \frac{\theta}{2}
\end{array}\right) \\
\operatorname{tr} \rho=1 \\
\langle 0\rangle=\operatorname{Tr}(\rho O) \quad \rho^{\dagger}=\rho \\
\rho>0
\end{gathered}
$$

Mixed state

Ensemble of N pure states $\left|\psi_{i}\right\rangle$ with probabilities p_{i}

$$
\rho=\sum_{i=1}^{N} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \quad 1=\sum_{i=1}^{N} p_{i}
$$

General state

$\rho=\frac{1}{2}\left(\begin{array}{cc}1+z & x-i y \\ x+i y & 1-z\end{array}\right)=\frac{1}{2}\left(1+x \sigma^{x}+y \sigma^{y}+z \sigma^{z}\right)$

Eigenvalues

$$
\begin{aligned}
& \frac{1+r}{2}, \frac{1-r}{2} \quad r=\sqrt{x^{2}+y^{2}+z^{2}} \\
& \rho>0 \rightarrow 0 \leq r \leq 1
\end{aligned}
$$

$$
\left\langle\sigma^{x}\right\rangle=\operatorname{Tr}\left(\rho \sigma^{x}\right)=x,\left\langle\sigma^{y}\right\rangle=\operatorname{Tr}\left(\rho \sigma^{y}\right)=y,\left\langle\sigma^{z}\right\rangle=\operatorname{Tr}\left(\rho \sigma^{z}\right)=z
$$

Pure states:	$r=1$	$\rho=\|\psi\rangle\langle\psi\|$
Mixed states:	$r<1$	$\rho \neq\|\psi\rangle\langle\psi\|$
Maximally mixed state:	$r=0$	$\rho=\frac{\mathrm{I}}{2}$

Bloch ball

Single qubit gates

$$
\begin{gathered}
|\psi\rangle \\
U|\psi\rangle=\left|\psi^{\prime}\right\rangle \\
\left\langle\psi^{\prime} \mid \psi^{\prime}\right\rangle=\langle\psi| U^{\dagger} U|\psi\rangle=\langle\psi \mid \psi\rangle \\
U^{\dagger} U=\mathbb{I}
\end{gathered}
$$

$U \quad$ unitary matrix

Pauli gates

$$
X=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Hadamard gate

S gate
$H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$

$$
\begin{aligned}
S & =\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right) \quad T=\left(\begin{array}{lc}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right) \\
H|0\rangle & =\frac{|0\rangle+|1\rangle}{\sqrt{2}}=|+\rangle \\
H|1\rangle & =\frac{|0\rangle-|1\rangle}{\sqrt{2}}=|-\rangle
\end{aligned}
$$

Hadamard's magic

$$
\begin{gathered}
X=H Z H \quad Y=S H Z H S^{\dagger} \\
\langle X\rangle_{\psi}=\langle\psi| X|\psi\rangle=\langle\psi| H Z H|\psi\rangle=\langle Z\rangle_{H \psi} \\
\langle Y\rangle_{\psi}=\langle\psi| Y|\psi\rangle=\langle\psi| S H Z H S^{\dagger}|\psi\rangle=\langle Z\rangle_{H S^{\dagger} \psi}
\end{gathered}
$$

IBM tomography

General qubit gate

Qubit $=\operatorname{spin} 1 / 2$ representation of the rotation group $S U(2)$

$$
\begin{gathered}
R_{\vec{n}}(\theta)=e^{-i \theta \vec{n} \cdot \vec{\sigma} / 2} \\
U=e^{i \alpha} R_{\vec{n}}(\theta)
\end{gathered}
$$

Euler's decomposition $U=e^{i \alpha} R_{z}(\beta) R_{y}(\gamma) R_{z}(\delta)$
$U=e^{i \alpha}\left(\begin{array}{cc}e^{-i \beta / 2} & 0 \\ 0 & e^{i \beta / 2}\end{array}\right)\left(\begin{array}{cc}\cos \gamma / 2 & -\sin \gamma / 2 \\ \sin \gamma / 2 & \cos \gamma / 2\end{array}\right)\left(\begin{array}{cc}e^{-i \delta / 2} & 0 \\ 0 & e^{i \delta / 2}\end{array}\right)$

gimbal set
1 qubit $|\psi\rangle=\psi_{0}{ }^{|0\rangle}+\psi_{1}{ }^{|1\rangle}$

$+$

4 terms

State vectors

1 qubit

$$
|\psi\rangle=\binom{\psi_{0}}{\psi_{1}}
$$

2 qubits $\quad|\psi\rangle=\left(\begin{array}{l}\psi_{00} \\ \psi_{01} \\ \psi_{10} \\ \psi_{11}\end{array}\right)$
3 qubits $\quad|\psi\rangle=\left(\begin{array}{l}\psi_{000} \\ \psi_{001} \\ \psi_{010} \\ \psi_{011} \\ \psi_{100} \\ \psi_{101} \\ \psi_{110} \\ \psi_{111}\end{array}\right)$
n qubits $\quad|\psi\rangle=$ vector with 2^{n} components

Entangled states

$$
\begin{aligned}
|\psi\rangle & =\psi_{00} \bigodot^{|0\rangle}{ }^{|0\rangle}+\psi_{01}{ }^{|0\rangle}{ }^{|1\rangle} \\
& +\psi_{10} \bigodot^{|1\rangle}{ }^{|1\rangle}+\psi_{11} \bigodot^{|1\rangle}
\end{aligned}
$$

EPR state : Gedanken experiment

Linear superposition of two electrons with opposite momentum

How to create entanglement?

How to create entanglement?

Need a 2 qubit gate CNOT = Controlled NOT

How to create entanglement?

Need a 2 qubit gate CNOT = Controlled NOT

control qbit	target qbit
$\|00\rangle$	$\rightarrow\|00\rangle$
$\|01\rangle$	$\rightarrow\|01\rangle$
$\|10\rangle$	$\rightarrow\|11\rangle$
$\|11\rangle$	$\rightarrow\|10\rangle$

How to create entanglement?

Need a 2 qubit gate CNOT = Controlled NOT

$$
\begin{aligned}
& \text { control target } \\
& \text { qbit qbit } \\
& |00\rangle \rightarrow|00\rangle \\
& |01\rangle \rightarrow|01\rangle \\
& |10\rangle \rightarrow|11\rangle \\
& |11\rangle \rightarrow|10\rangle \\
& |c, t\rangle \rightarrow|c, c \oplus t\rangle \\
& c \oplus t=c+t \bmod 2
\end{aligned}
$$

How to create entanglement?

Need a 2 qubit gate CNOT = Controlled NOT

$$
\begin{aligned}
\substack{\text { control } \\
\text { qbit } \\
\text { qbit } \\
|00\rangle} & \rightarrow|00\rangle \\
|01\rangle & \rightarrow|01\rangle \\
|10\rangle & \rightarrow|11\rangle \\
|11\rangle & \rightarrow|10\rangle \\
|c, t\rangle & \rightarrow|c, c \oplus t\rangle \\
c \oplus t & =c+t \bmod 2
\end{aligned} \quad C N O T=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

How to create entanglement?

Need a 2 qubit gate CNOT = Controlled NOT

$$
\begin{array}{ll}
\substack{\text { control } \\
\text { qbit } \\
\text { target } \\
\text { qbit }} & C N O T=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \\
|00\rangle \rightarrow|00\rangle & \\
|01\rangle \rightarrow|01\rangle & \\
|10\rangle \rightarrow|11\rangle \\
|11\rangle \rightarrow|10\rangle & |c\rangle \\
|c, t\rangle \rightarrow|c, c \oplus t\rangle & \\
c \oplus t & =c+t \bmod 2
\end{array}
$$

Creation of entanglement

Creation of entanglement

Bell basis for 2 qubit states

$$
\begin{aligned}
\left|\phi_{+}\right\rangle & =\frac{|00\rangle+|11\rangle}{\sqrt{2}} \\
\left|\phi_{-}\right\rangle & =\frac{|00\rangle-|11\rangle}{\sqrt{2}} \\
\left|\psi_{+}\right\rangle & =\frac{|01\rangle+|10\rangle}{\sqrt{2}} \\
\left|\psi_{-}\right\rangle & =\frac{|01\rangle-|10\rangle}{\sqrt{2}}
\end{aligned}
$$

The qubits are maximally entangle for each of these states

Creation of entanglement

$$
\left.|0\rangle-H|\quad| \phi_{+}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

$$
\frac{|0\rangle-|1\rangle}{\sqrt{2}}|0\rangle
$$

$\frac{|0\rangle-|1\rangle}{\sqrt{2}}|0\rangle$

Computational basis -> Bell basis

Toffoli gate = CCNOT

Universal classical gates

A finite set of gates that can be used to compute any function
Non reversible: AND, OR, NOT

Reversible: + Toffoli

Universal quantum gates

A finite set of quantum gates that can approximate any unitary operation to arbitrary precision

$$
\{H, S, T, \text { CNOT }\} \quad\{H, S, C N O T, T O F F O L I\}
$$

Deutsch's algorithm (1985)

The problem: given a boolean function $f(x)$ determine if it is constant or balanced

$$
x \in\{0,1\}, \quad f(x) \in\{0,1\}
$$

There are 4 functions of this type

$$
\begin{array}{ccccc}
x & f_{0} & f_{1} & f_{2} & f_{3} \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1
\end{array}
$$

Constant function: $f(0)=f(1) \quad$ Balanced function: $f(0) \neq f(1)$

$$
f_{0}, f_{3} \quad f_{1}, f_{2}
$$

Given an unknown function to determine its character we have to compute

$$
f(0) \text { and } f(1)
$$

This is refereed to as "calling TWICE an oracle"

Question: Can one call only ONCE the oracle?

Answer: YES using quantum parallelism and interference

Quantum oracle

Quantum oracle

Step 1: call to the oracle

$$
\begin{aligned}
|x\rangle & =U_{f} \\
|0\rangle-|1\rangle & |x\rangle \\
& (-1)^{f(x)}(|0\rangle-|1\rangle)
\end{aligned}
$$

Quantum oracle

Step 1: call to the oracle

$$
\begin{aligned}
|x\rangle & =U_{f} \\
|0\rangle-|1\rangle & |x\rangle \\
& (-1)^{f(x)}(|0\rangle-|1\rangle)
\end{aligned}
$$

Step 2: interference of the answers

$$
\begin{aligned}
& |0\rangle+|1\rangle-U_{f} \quad(-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle \\
& |0\rangle-|1\rangle-|0\rangle-|1\rangle
\end{aligned}
$$

Step 3: quantum data mining

$$
(-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle-H
$$

$$
\begin{gathered}
\left((-1)^{f(0)}+(-1)^{f(1)}\right)|0\rangle \\
+ \\
\left((-1)^{f(0)}-(-1)^{f(1)}\right)|1\rangle
\end{gathered}
$$

Step 3: quantum data mining

$$
(-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle-H
$$

$$
\begin{gathered}
\left((-1)^{f(0)}+(-1)^{f(1)}\right)|0\rangle \\
+ \\
\left((-1)^{f(0)}-(-1)^{f(1)}\right)|1\rangle
\end{gathered}
$$

Step 4: getting the answer

$$
\begin{align*}
& \text { If } f(0)=f(1) \quad \longrightarrow \quad|0\rangle \\
& \text { If } f(0) \neq f(1) \quad \longrightarrow \quad|1\rangle
\end{align*}
$$

Step 3: quantum data mining

$$
(-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle-H \quad \begin{gathered}
\left((-1)^{f(0)}+(-1)^{f(1)}\right)|0\rangle \\
+ \\
\left((-1)^{f(0)}-(-1)^{f(1)}\right)|1\rangle
\end{gathered}
$$

Step 4: getting the answer

$$
\begin{align*}
& \text { If } f(0)=f(1) \quad \longrightarrow \quad|0\rangle \\
& \text { If } f(0) \neq f(1) \quad \longrightarrow \quad|1\rangle
\end{align*}
$$

Deustch circuit

Step 3: quantum data mining
$(-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle-H$

$$
\begin{gathered}
\left((-1)^{f(0)}+(-1)^{f(1)}\right)|0\rangle \\
+ \\
\left((-1)^{f(0)}-(-1)^{f(1)}\right)|1\rangle
\end{gathered}
$$

Step 4: getting the answer

$$
\begin{array}{ll}
\text { If } & f(0)=f(1) \\
\text { If } & f(0) \neq f(1)
\end{array}
$$

Deustch circuit

One does not know which constant or balanced is

Step 3: quantum data mining
$(-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle-H$

$$
\begin{gathered}
\left((-1)^{f(0)}+(-1)^{f(1)}\right)|0\rangle \\
+ \\
\left((-1)^{f(0)}-(-1)^{f(1)}\right)|1\rangle
\end{gathered}
$$

Step 4: getting the answer

$$
\begin{array}{ll}
\text { If } & f(0)=f(1) \\
\text { If } & f(0) \neq f(1)
\end{array}
$$

$|0\rangle$
|1)

Deustch circuit

One does not know which constant or balanced is

You can't always get what you want But if you try sometime you find You get what you need

References

Quanturn Computation andQuantum Information

MICHAEL A. NIELSEN and ISAAC L. CHUANG

Giuliano Benenti Giulio Casati Giuliano Strini

Gifiano Benenti Giulio Casati Giuliano Strini

Principles of Quantum Computation and Information

Volume I: Basic Concepts
Principles of Quantum Computation and information

Volume II: Basic Tools and Special Topics

Thanks so much for your attention

Muchas gracias por su atención

