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PHOTONICS RESEARCH GROUP

Research Group of Ghent University

— Faculty of Engineering and Architecture

— Department of Information Technology (INTEC)

— Associated laboratory of IMEC

— Member of the Center for Nano- & Biophotonics (NB photonics)

Technology Research

— Photonic Integrated Circuits: light on a chip

— On silicon: “Silicon Photonics”

— Enhanced with new materials:
III-V, ferro-electrics, graphene, …

Applications

— High-speed telecom and datacom

— Sensing for life sciences: visible and Mid-IR

— Optical information processing

11 Professors 

16 postdocs

50 PhD students

10 support staff

20+ nationalities

7 ERC grants

6 spin-off companies

50 journal papers/year

Class 100 clean rooms

M.Sc. Photonics program
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WHAT’S IN A NAME?

photonics (noun)

the branch of technology concerned with 

the properties and transmission of 

photons, for example in fibre optics

(Oxford Dictionary)

Photonics is the physical science and application of light 

generation, detection, and manipulation through emission, 

transmission, modulation, signal processing, switching, 

amplification, and sensing.

(Wikipedia)

Manipulation of light on
the scale of the wavelength
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MANIPULATING BEAMS OF LIGHT

Beams of light contain information

• Total power

• Intensity profile

• Phase profile

• Wavelength

• Polarization
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WHAT IS LIGHT? An electromagnetic wave

— Propagates at speed of light c

— Electrical and Magnetic field E and H

— Oscillation frequency f

— with a wavelength 
E

H c

wavelength 

f   = c

A flux of photons

— with energy E = h.f
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PHOTONICS: SCIENCE AND ENGINEERING WITH LIGHT

What is light used for?

- material processing

- displays and lighting

- communication fiber optics

- sensing

- computing?

Displays

Data Storage

Spectroscopy

Communication Sensing
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KEY DRIVER OF PHOTONICS TODAY: COMMUNICATION

Powered by Optical Fiber Links
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OPTICAL COMMUNICATION IS NOT NEW

source:Sean D'Souza
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OPTICAL COMMUNICATION: 18TH CENTURY ‘CHAPPE’

The Semaphore: Packet-switched relay network
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ELECTRICAL COMMUNICATION: THE DOWNFALL OF OPTICS?

source: Jason Salmon/Shutterstock.com

The telegraph

The “wireless”
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1960: THE LASER

A new light source:

• One wavelength

• High power

• High-quality beam

1960: First Laser (Maiman)

source: HRL

1962: Laser Diode
(Hall, Nathan)

source: Osram
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Tx

Laser

Modulator

Rx

photodetector

AN OPTICAL LINK Electrical signal is modulated

on an optical carrier

• intensity

• phase

• polarisation

A photodetector in the receiver converts the signal

back to the electrical domain

Transmission
medium

input signal
(electrical)

output signal
(electrical)

Scaling → 100Gbps
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BUT: THE PROBLEM WITH LIGHT

Light travels in straight lines

Manipulate with

• lenses

• mirrors

Not scalable, difficult alignment
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light rays
diffract outward

OPTICAL WAVEGUIDE

surrounding
cladding with low
refractive index

core with high
refractive index

Optical waveguides:

light is confined in a dielectric core of 

of high refractive index
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WAVEGUIDE = POTENTIAL WELL FOR PHOTONS

Light prefers to reside in a material with high refractive index

Solution of Maxwell’s equation:

• Sine/cosine in the core

• Decaying exponential outside

There is an optical field outside the core!!!

Discrete mode(s) with ‘effective refractive index’

refractive
index

𝑛𝑐𝑜𝑟𝑒

𝑛𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔

𝑛𝑒𝑓𝑓



18

INFIERI School – 3 September 2021

WAVEGUIDE = POTENTIAL WELL FOR PHOTONS

Light prefers to reside in a material with high refractive index

Solution of Maxwell’s equation:

• Sine/cosine in the core

• Decaying exponential outside

There is an optical field outside the core!!!

Discrete mode(s) with ‘effective refractive index’

• higher index contrast: more modes

refractive
index

𝑛𝑐𝑜𝑟𝑒

𝑛𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔

𝑛𝑒𝑓𝑓
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WAVEGUIDE = POTENTIAL WELL FOR PHOTONS

Light prefers to reside in a material with high refractive index

Solution of Maxwell’s equation:

• Sine/cosine in the core

• Decaying exponential outside

There is an optical field outside the core!!!

Discrete mode(s) with ‘effective refractive index’

• higher index contrast: more modes

• smaller waveguides: fewer modes
refractive
index

𝑛𝑐𝑜𝑟𝑒

𝑛𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔

𝑛𝑒𝑓𝑓
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THE OPTICAL FIBER

Making optical fibers out of very pure glass

• 9µm core

• 125µm cladding

• Very small index contrast

Attentuation < 1dB/km

Kao
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Tx

Laser

Modulator

Rx

photodetector

AN OPTICAL LINK Electrical signal is modulated

on an optical carrier

• intensity

• phase

• polarisation

A photodetector in the receiver converts the signal

back to the electrical domain

Optical fiber can transmit
this signal over many kms

input signal
(electrical)

output signal
(electrical)
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FIBERS OFFER “UNLIMITED” BANDWIDTH!

Maximum channel capacity C [bps] - (Shannon-Hartley 

theorem)

B = used bandwidth [Hz]

S/N = Signal to noise ratio

C = B ∙ log2 1 +
S

N

f[Hz ]

Direct modulation
Optical

60GHz0Hz

RadioFrequency carrier

200THz

10GHz 5GHz 40THz
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WAVELENGTH DIVISION MULTIPLEXING

Utilizing 40THz of bandwidth? [1200nm – 1650nm]

• No direct electrical modulation or detection

Solution: Wavelength Division multiplexing (WDM)

• Modulate on wavelength carriers

f[Hz]200THz

40THz
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Wavelength
Multiplexer

Wavelength
Demultiplexer

Tx

Laser

Modulator

Rx
photodetector

WDM OPTICAL LINK

Modulate multiple signals on individual

wavelength carriers

• dense WDM: Δλ~0.8nm (100GHz)

• coarse WDM: Δλ~5-20nm

Needs wavelength mux/demux

(wavelength filter)

𝜆1

𝜆2

𝜆3

𝜆4

Scaling → Pbps/fiber
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PHOTONICS POWERS THE INTERNET

Submarine optical cable network

source: network atlas
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PHOTONIC SENSING

Spectrometry / Spectroscopy

• separating/filtering the 

wavelengths in light

• Using dispersive or interferometric

optical elements
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PHOTONIC SENSING

Interferometric Sensing

• extremely sensitive

beam splitter

beam splitter

mirror

mirror

Δ𝜙

phase shift

𝑇 𝜆
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PHOTONIC SENSING

Interferometric Sensing

• extremely sensitive
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WAVELENGTH FILTERING

Interferometers with delays

• wavelength dependent

beam splitter

beam splitter

mirror

mirror

Δ𝐿

Δ𝜙 = 2𝜋
Δ𝐿

𝜆
wavelength

𝑇 𝜆
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wavelength

𝑇 𝜆

WAVELENGTH FILTERING: RESONATORS

Roundtrip delay: Sharp resonances

Sensitive to phase shifts

beam splitter

mirror

mirror

mirror

Δ𝜙
roundtrip

𝐿𝑟𝑖𝑛𝑔

resonance: 𝑚. 𝜆 = 𝐿𝑟𝑖𝑛𝑔
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MANIPULATING BEAMS OF LIGHT

Using optical elements

• Lenses

• Mirrors

• Polarizers

• Shutters

• Spatial filters

• Wavelength filters

• Phase plates

• SLM

Does not scale very well
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MANIPULATING LIGHT ON CHIPS

The benefits of scale

Complexity

Overall Performance

Reliability

Ergonomy

goes up

Power consumption

Ecological Footprint

Cost

goes down
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PHOTONIC INTEGRATION: MANY FUNCTIONS ON A CHIP

light
transport

Circuits connect elements together with waveguides

detection

signal
modulation

wavelength
filtering

light
source
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PHOTONIC INTEGRATION: MANY FUNCTIONS ON A CHIP

Complexity of the circuits depends on

• number of functional blocks

• density of integration

Circuits connect elements together with waveguides

Laser

Modulator

Wavelength
filter

Fiber Coupler

Photodetector

Fiber Coupler

waveguide
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WAVEGUIDE : (RECTANGULAR) LINE ON A SUBSTRATE

High index core surrounded by low-index cladding

Different material combinations, different geometries

Light can be guided around bends

core

cladding
bend radius must be sufficiently large
(depends on refractive index contrast)
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DIRECTIONAL COUPLER = BEAM SPLITTER

Two waveguides close together: light can couple

= similar as two coupled potential wells

Coupling strength ~ Length

refractive
index

𝑛𝑐𝑜𝑟𝑒

𝑛𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔

𝑛𝑒𝑓𝑓

𝐿𝑐𝑜𝑢𝑝𝑙𝑒𝑟
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MZI: TRANSLATED TO A CHIP

beam splitters + waveguides

Active phase shifter in one arm: switching or modulating of the output

coupler

coupler

phase shifter
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MZI: TRANSLATED TO A CHIP

beam splitters + waveguides

delay line will give a wavelength dependent response

coupler

coupler

wavelength

𝑇 𝜆

Δ𝜙 = 2𝜋
𝑛𝑒𝑓𝑓Δ𝐿

𝜆
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RING RESONATORS

Optical feedback loop

Resonance when 𝑛𝑒𝑓𝑓𝐿𝑟𝑖𝑛𝑔 = 𝑚. 𝜆

wavelength

𝑇 𝜆



44

INFIERI School – 3 September 2021

WAVELENGTH FILTERING

channel drop filter

- selects a passband from 

a wavelength range

interleaver

- separates alternating 

wavelength bands

demultiplexer

- separates multiple 

wavelength channels

pass

drop

in

out1

in out2

out3

out4

out5

pass

drop

pass

drop

in
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VERTICAL FIBER INTERFACES

Diffraction grating couples light 

from fiber to waveguide (and back)

• wavelength dependent
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ELECTRICAL MODULATION
Electrical actuation: Switching and modulation

• Thermal

• Carrier injection/extraction

• Electro-optics

Different applications:

• Tuning: slow, analog

• Switching: slow, digital (<kHz), full amplitude

• Signal modulation: fast (GHz – 100GHz)

• amplitude

• phase

Electrical signal

Modulated light

CW light
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PHOTODETECTION Mechanisms

• photodiodes: absorbed photon 

creates electron-hole pair.

• p-i-n diode

• metal-semiconductor-metal diode

• photoconductors: absorbed photon 

creates free carriers

• photobolometers: absorbed photon 

heats material, which then changes 

electrical resistivity

Examples

• III-V semiconductors (visible, telecom, MIR)

• Germanium (telecom)

• Silicon (visible, NIR)

modulated light

electrical signal

detector
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LASERS AND AMPLIFIERS

Introducing optical gain on a PIC

• semiconductors (III-V, Germanium)

can be electrically pumped

• rare-earth (Erbium) can be

incorporated in glass waveguides

• parametric gain (four wave mixing)

requires nonlinear material

light
source

amplification
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PHOTONIC INTEGRATION: A MIX OF MATERIALS

light
transport

detection

signal
modulation

wavelength
filtering

Glass, polymers,
III-V semiconductors

Silicon

Lithium Niobate
Polymers

III-V 
semiconductors

III-V semiconductors
(GaAs, InP)
Germanium

light
source

III-V semiconductors
(GaAs, InP)
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GROWING PHOTONIC CHIP MARKET

Different material systems

source: maximizemarketresearch

75% = semiconductor technology
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SILICON IS NOT A GOOD PHOTONIC MATERIAL

light
transport

detection

signal
modulation

wavelength
filtering

light
source

Indirect bandgap:
no light emission

High waveguide loss
No efficient
modulation
mechanism

Poor absorption for
telecom wavelengths



54

INFIERI School – 3 September 2021

10μm

Pure silicon

doped silicon

Weak vertical 
confinement
in the top layer

Weak horizontal confinement by the etched rib

EARLY SILICON WAVEGUIDES
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𝑛 = 3.45
Silicon

𝑛 = 3.45
Silicon

Strong vertical 
confinement
in the top layer

Weak Horizontal confinement by the rib

SILICON ON INSULATOR RIB WAVEGUIDES

𝑛 = 1.45
Silicon dioxide (glass)
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𝑛 = 3.45
Silicon

𝑛 = 3.45
Silicon

SILICON ON INSULATOR STRIP WAVEGUIDES

Strong vertical 
confinement
in the top layer

Strong Horizontal confinement by the strip

𝑛 = 1.45
Silicon dioxide (glass)
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𝑛 = 1.45
Silicon dioxide (glass)

𝑛 = 3.45
Silicon

𝑛 = 3.45
Silicon

SILICON ON INSULATOR STRIP WAVEGUIDES: MULTIMODE
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𝑛 = 3.45
Silicon

𝑛 = 3.45
Silicon

450nm

220nm

SHRINKING SOI WAVEGUIDES

𝑛 = 1.45
Silicon dioxide (glass)
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SILICON PHOTONIC WAVEGUIDES

Si substrate

silicon-oxide

500 nm

200 nm

𝑛𝑐𝑜𝑟𝑒 = 3.45
𝑛𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔 = 1.45 High intensity 

on sidewalls
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HIGHER CONTRAST, SMALLER CORES, TIGHTER BENDS

4
 m

m

5
0
 m

m

0
.3

m
m

Silica on silicon

Indium Phosphide

Silicon on insulator

Contrast ~ 0.01 – 0.1
Mode diameter ~ 8µm
Bend radius ~ 5mm
Size ~ 10 cm2

Contrast ~ 0.2 – 0.5
Mode diameter ~ 2µm
Bend radius ~ 0.5mm
Size ~ 10mm2

Contrast ~ 1.0 – 2.5
Mode diameter ~ 0.4µm
Bend radius ~ 5µm
Size ~ 0.1mm2

10000 ×
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SILICON PHOTONIC CIRCUIT SCALING

Khanna et al. 2016

Rapidly growing integration

• O(1000) components on a chip

• photonics + electronic drivers

• different applications (mostly comms)

• Relatively small chip volumes

(compared to electronics)

number of components/chip
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WHY SILICON PHOTONICS?

Scale
Large scale manufacturing

Submicron-scale waveguides
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SILICON PHOTONICS

The implementation of high density photonic integrated circuits by 

means of CMOS process technology in a CMOS fab

Complex functionality, compact chips, low cost, high volumes
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SILICON PHOTONICS INDUSTRIAL LANDSCAPE

Source: Yole developpement

http://www.yole.fr/
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SILICON PHOTONICS TRANSCEIVERS

Typical data rate: 100 Gb/s

Typical symbol rate: 25 GBaud

• PSM4 (4 parallel fibers)

• WDM (4 wavelengths)

• PAM4

• Coherent (2 polarisations + QPSK)

• Coherent (16-QAM)
Under development: 

Data rate: 400-800 Gb/s

Symbol rate: 50-100 Gb/s
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PHOTONIC LARGE-SCALE INTEGRATION IS HERE

That does not mean it is easy…

Larger circuits → lower fabrication yield?
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THE FABRICATION PROCESS
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BARE SILICON-ON-INSULATOR WAFER

Silicon (220nm)

Oxide (2µm)

Silicon substrate
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PHOTOLITHOGRAPHY

1. Spin-coat Photoresist + pre-bake

2. Mask is projected in the resist

(UV light at 248nm or 193nm)

UV Illumination

Photoresist
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PHOTOLITHOGRAPHY

1. Spin-coat Photoresist + pre-bake

2. Mask is projected in the resist

(UV light at 248nm or 193nm)

3. Post-Exposure bake

4. Resist is developed

Exposed
Photoresist

Silicon (220nm)



78

INFIERI School – 3 September 2021

PARTIAL SILICON ETCHING

1. Lithography of second layer

2. Plasma etching

3. Resist Stripping

Oxide (2µm)

Silicon (220nm)

Silicon (150nm)

Grating Coupler
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DOPED REGIONS FOR MODULATORS AND HEATERS

1. Lithography of windows

2. Ion implantation

3. Resist Stripping

Doped Silicon

Modulator

Heater



84

INFIERI School – 3 September 2021

GERMANIUM PHOTODETECTORS

1. Oxide cladding

2. Planarization (CMP)

3. Opening of window

4. Epitaxial Growth of Ge

5. Planarization (CMP)

Photodetector

Si

SiO2
Ge
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ELECTRICAL CONTACTS: DAMASCENE PROCESS

1. Depositing dielectric layers

2. Lithography and Etching holes

3. Filling with Tungsten (W)

4. Planarization (CMP)

Tungsten contacts
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METAL INTERCONNECTS: DAMASCENE PROCESS

1. Depositing dielectric layers

2. Lithography and Etching tracks

3. Filling with Copper (Cu)

4. Planarization (CMP)

Repeat for more layers Copper wiring

Travelling-wave
RF electrodes
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SILICON PHOTONICS CHIPS

1. Passive circuits with multiple etch layers

2. Modulators and Photodetectors

3. Metal wiring

Bond pads

Heaters

Modulator

Grating Coupler

Photodetector

Wiring
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Low-loss rib and strip waveguides

Multiple types of Integrated heaters 

p(i)n junction modulators

Germanium photodetectors

Germanium
photodetectors

AlCu bondpads
2 Cu-damascene

interconnect layers High-efficiency
grating couplers

IMEC’S ISIPP50G PLATFORM

High-speed p-n
modulators

optical 
waveguide

Pantouvaki, JLT 2017
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HIGH INDEX CONTRAST: A BLESSING AND A CURSE

CMOS technology is the only manufacturing technology with sufficient nm-process control 
to take advantage of the blessing without suffering from the curse

Every nm3 matters

Si

SiO2

[2um box]
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SENSITIVITY OF SILICON PHOTONICS WAVELENGTH FILTERS

Especially wavelength filters are sensitive

wire width

wire height

temperature

𝜕λ

𝜕𝑤
≈ 1 Τ𝑛𝑚

𝑛𝑚

𝜕λ

𝜕ℎ
≈ 2 Τ𝑛𝑚

𝑛𝑚

𝜕λ

𝜕𝑇
≈ 0.08 ൗ𝑛𝑚

𝐾

SiO2

Si

w

h

wavelength
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COPING WITH VARIABILITY: IMPROVED FABRICATION

Use more advanced fabs

- better tools

- higher resolution

- better wafers

statistical process control
wg width -> 480nm
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COPING WITH VARIABILITY: VARIABILITY-AWARE DESIGN

propagating variability at component level to circuit level

• accurate circuit models

• sensitivity of the components

• wafer-scale distribution of variability

Monte-Carlo methods or Stochastic Methods

crosstalk
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COPING WITH VARIABILITY: TUNING

Actively compensate for mismatches in fabrication

Make everything tunable

• add tuning elements within your circuit

• add active electronic control
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ELECTRO-OPTIC ACTUATORS

Electrical signal

Modulated light

CW light
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ELECTRICAL MODULATION, SWITCHING AND TUNING

Electrical actuation:

• Thermal

• Carrier injection/extraction

• Electro-optics

Different applications:

• Tuning: slow, analog

• Switching: slow, digital (<kHz), full amplitude

• Signal modulation: fast (GHz – 100GHz)

• amplitude

• phase

Electrical signal

Modulated light

CW light
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Waveguides are thermally sensitive:

Δ𝜙 ~ Δ𝑛𝑒𝑓𝑓 ~ 𝑇 ~ 𝑃𝑒𝑙𝑒𝑐 ~ 𝑉2 ~ 𝐼2

Integrate resistor close to the waveguide

efficiency: 𝑃𝜋 ≈ 5 − 30𝑚𝑊

(for silicon waveguides)

THE BASIC OPTICAL PHASE SHIFTER: A HEATER

waveguide

metal resistor

voltage

phase shift

doped silicon
resistor
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Power consumption

Thermal crosstalk

Need better phase shifters

and tunable couplers

HEATERS HAVE A PROBLEM…

waveguide

metal resistor

doped silicon
resistor
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FAST SIGNAL MODULATION: CARRIERS

Add doped junction to silicon waveguide:

modulate refractive index

Metal strip line

Metal strip line

waveguide 
core

p-doping

n-doping

Si 
substrate

oxide
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ELECTRICAL SIGNAL MODULATION

Add doped junction to silicon waveguide:

modulate refractive index

• travelling wave modulator

• ring resonator modulator

1mm

20µm
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EFFECT MAGNITUDE VS. SPEED

M
ag

n
it

u
d

e 
o

f 
th

e
 e

ff
ec

t

Speed of the effect

Thermal (us)

⚫ Heaters

Carriers (ns)

⚫ Diodes, capacitors

Birefrigence (ms)

⚫ Liquid crystals

Tuning

Switching

Modulation

Mechanical (ms-us)

⚫ MEMS, NEMS

Pockels (2) (fs)

⚫ Polymers, perovskites
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LIQUID CRYSTAL TUNING

Reorienting molecules

Electrostatic actuation (high voltage)

Liquid Crystal

Oxide

Silicon

Van Iseghem, ECIO 2020
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LIQUID CRYSTAL TUNER

fiber in

fiber out

LC

reference arm

splitter
combiner

V
0

+V/2

-V/2

𝑓 = 1 𝑘𝐻𝑧

0.8π for 50µm
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MECHANICAL TUNABLE WAVEGUIDE COUPLERS

Stacked LayersSingle Layer

Errando-Herranz, JSTQE 2019

𝑆𝑖𝑛1

𝑆𝑖𝑛2

𝑉𝑐

𝑆𝑜𝑢𝑡1 = 𝑆𝑖𝑛1 1 − 𝜅 + 𝑆𝑖𝑛2𝜅

𝑆𝑜𝑢𝑡2 = 𝑆𝑖𝑛1𝜅 + 𝑆𝑖𝑛2(1 − 𝜅)

𝜅

𝑆𝑜𝑢𝑡1

𝑆𝑜𝑢𝑡2

Horizontal 

Displacement

Vertical 

Displacement
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MECHANICAL OPTICAL PHASE SHIFTERS

Errando-Herranz, JSTQE 2019

𝑉𝑐

𝑠𝑖𝑛

𝑠𝑜𝑢𝑡 = 𝑠𝑖𝑛. 𝑒
𝑗Δ𝜙 𝑉𝑐

𝜙

𝑠𝑜𝑢𝑡

Stacked LayersSingle Layer

Horizontal 

Displacement

Vertical 

Displacement
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strain relief
S-bend

Optical Waveguides
suspension

anchor

suspension
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MEMS PHASE SHIFTER

waveguide

shuttle

folded 
springs

comb drive actuator

V

device footprint 
60 × 40 µm2

narrow Si 
Beam

Edinger, CLEO 2021
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MEMS TUNABLE COUPLER

In-plane movable coupler

default state = cross

comb drive actuation

Voltage

Input

Ground

Fixed 
Waveguide

Movable 
Waveguide

Takabayashi. Transducers 2021

Drop

Pass
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TUNABLE COUPLER

Optical Transition + Anchor

Suspended
Waveguides

Electrical insulation Trench

comb drive

Input Pass

Drop 10 µm

Takabayashi. Transducers 2021



113

INFIERI School – 3 September 2021

APPLICATIONS OF PHOTONIC CHIPS
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WAVELENGTH RANGE

Telecom: NIR 1250 -1650nm

Sensing: 400-10000nm

source: Sensors 2017, 17(9), 2088
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1 mm 1 m 1 km 1Mm

1000km

10km

100m

1m
10cm

1cm

OPTICAL LINKS: CONNECTING BOXES…

Within the “box”: electrical

Between “boxes”: optical
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ON-BOARD OPTICS

Smaller, cheaper, faster transceivers can come closer to the electronics
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ON-BOARD OPTICS

Replace front-pluggable modules with transceivers on the board

• closer to the electronics, anywhere on the board

• smaller form factor

• Smaller frontplate space (better ventilation)
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TRANSCEIVERS

Silicon Photonics Transceivers

• Targeting Datacenter Applications

• Compatible with single-mode fiber

• Enabling on-board optics

Simplest implementation

• Single wavelength

• Multiple fibers (4×25G, 8×50G)

Mellanox

Luxtera
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PACKAGE-LEVEL OPTICAL COMMUNICATION

Example: TeraPHY (Ayar Labs – INTEL)

Tx/Rx Chiplets next to CPU/GPU/Memory within the same package

Made in silicon photonics with monolithic electronics
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OPTICAL SENSOR

Measure the change of optical signal as it passes through a medium

source readout
medium

• Intensity

• Phase (very sensitive!)

• Wavelength (spectrum)
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(BIO)MOLECULE SENSORS

— Silicon photonics: cheap disposable sensor

— Needs transducer to translate the presence of particular 

molecules into a refractive index change

— Mostly work on the chemistry / material science side 
Input grating

coupler
50 m

2 m

50 m

2 m

200 m

Fluid channel

Sensor 

element

Output grating

Coupler array

9 mm

Input grating

coupler

Input grating

coupler
50 m

2 m

50 m

2 m

200 m

Fluid channel

50 m

2 m

50 m

2 m

200 m

50 m

2 m

50 m

2 m

200 m

Fluid channel

Sensor 

element

Sensor 

element

Output grating

Coupler array

Output grating

Coupler array

9 mm
NRC Canada

Genalyte

128 sensors
on a chip
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RING RESONATOR SENSORS

Resonance wavelength shift:

• Temperature, Strain, …

• Waveguide cladding composition

wavelength

𝑇 𝜆

Δ𝜆𝑟𝑒𝑠
𝜆

=
Δ𝑛𝑒𝑓𝑓

𝑛𝑔
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RING RESONATOR SENSORS

0.000

0.004

0.008

0.012

0.016

1557.50 1557.60 1557.70 1557.80 1557.90 1558.00

wavelength [nm]

o
u

tp
u

t 
[a

.u
.]

2% NaCl

2,05% NaCl

2,15% NaCl

4% NaCl

K. De Vos, OpEx 15, p.7610 (2007)

𝜕𝜆𝑟𝑒𝑠
𝜕𝑛𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔

= 86.6
𝑛𝑚

𝑅𝐼𝑈

input fiber

output 
fiber

microfluidics

ring
resonatorMicrofluidic channels with liquid

Example: salt concentration
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RING RESONATOR BIOSENSORS

Attach ligand molecules to rings

Only matching molecules will bind and shift resonance

Label-free: No need for fluorescent dyes

wavelength

𝑇 𝜆

receptor
molecules

selective 
binding
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RING RESONATOR BIOSENSORS: AVIDIN/BIOTIN

selective binding

• shift ~ concentration

• rate ~concentration

Ultra-low detection limits

receptor:
Bioton

binding of
Avidin

wavelength

𝑇 𝜆

time

Δ𝜆

Δ𝜆

𝜕𝜆

𝜕𝑡
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RING RESONATOR BIOSENSORS: MULTIPLEXING

Detecting many proteins at the same time
IR Camera 

readout

Tunable 
Laser beam
illumination

microfluidics

Receptor protein spots

K. De Vos, LEOS AM 2009

Grating couplers

Grating 
couplers
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RING RESONATOR BIOSENSORS: MULTIPLEXING

Detecting many proteins at the same time

K. De Vos, LEOS AM 2009
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RING RESONATOR BIOSENSORS: MULTIPLEXING

Different ring resonators functionalized for different 

protein reception in a single microfluidic channel

wavelength shift when introducing proteins in fluid

K. De Vos, LEOS AM 2009
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SPECTROMETRY - SPECTROSCOPY

White light as input

Dispersive element (grating)

Many detectors (imager)

Resolution ~ size

Photonic Chip
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DIFFERENT ABSORPTION SPECTRA
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2.3 UM DFB LASER ARRAY SPECTROMETER

MMI beam combiner

NH3 
absorption
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GLUCOSE ABSORPTION SPECTROSCOPY

Example: On-chip glucose monitoring

(using 4 on-chip spectrometers for 4 wavelength ranges)

Wavelength dependent slow drift remains
Absorption dip increases with increasing 

glucose concentration
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PHOTONIC “CLINIC ON THE WRIST”

photonic chip to measure multiple quantities

• O2-sat (oximetry)

• Glucose, lactate, alcohol

• Heartbeat, blood pressure
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OFF-CHIP BEAM STEERING
Phased array beam steering:

• use grating couplers as ‘antennas’

• phase delay controls steering angle

grating

heaters for
phase control

Silicon

K. Van Acoleyen, Opt. Lett. 34, p.1477 (2009)
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LIDAR

Radar with light.

Main application: autonomous vehicles
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FREE-SPACE COMMUNICATION

Needs Pointing-Acquisition-Tracking

• beam forming

• beam steering

Optical phased arrays

• flat (pancake)

• lightweight

• no moving parts
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PHOTONIC MICROWAVE PROCESSING

Process microwave signals in the optical domain:

• filtering, equalizing

• frequency conversion

Example: Triplex technology

Roeloffzen, JSTQE 2018

V+ V-V gnd

pass

RF signal in
RF signal out

in2

in1phase 
modulator filter

balanced PD
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PROGRAMMABLE MICROWAVE FILTER

Programmable microwave filter

• select frequency band

• variable bandwidth

• variable frequency

Integrated tuners and monitors

Progressive configuration algorithms

Choo, JLT 2018
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PHOTONICS IN COMPUTING?

mostly for communication

Fiber links in supercomputers

Ayar Labs / INTEL

Package connections
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Electrons

• Fermions

• Strong interactions

• Strong nonlinearities

Binary logic

COMPUTING WITH LIGHT?

Photons

• Bosons

• Weak Interactions

• Poor nonlinearities

Linear analog operations

source:Sony

Can we do optical information processing?
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CALCULATIONS WITH PHOTONS?

multiport interferometers: 

coupling many

inputs to many outputs

Clements et al. Optica 2016Miller. OpEx. 2013

𝜙𝜅

tunable
coupler

phase
shifter

+
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CALCULATIONS WITH PHOTONS?

Multiport interferometers performs real-time matrix-vector product 

(MAC operation)

𝑎1
𝑎2
𝑎3
⋮
𝑎𝑛

𝑏1
𝑏2
𝑏3
⋮
𝑏𝑛

𝒃 = 𝑴 ⋅ 𝒂
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APPLICATIONS OF FORWARD-ONLY MESHES

Linear circuit  performs real-time matrix-vector product (MAC operation)

Basic operation in

• Pattern Recognition

• Linear Quantum Optics

• Artificial Neural Networks

𝒃 = 𝑴 ⋅ 𝒂
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QUANTUM INFORMATION PROCESSING

Silica programmable linear circuit with thermo-optic tuners

6 x 6 universal linear circuit: can construct any T-matrix.

Consists of thermo-optic 2x2 MZI switches

source: U. Bristol

70mm
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QUANTUM OPTIC PROCESSING: SINGLE PHOTONS

Encoding qubits: single photons

• e.g. polarization or position (in one of two waveguide ‘rails’)

measure with
single-photon detectors

interfere the photons
in a waveguide meshpair of ‘rails’ ۧ|1

ۧ|0
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QUANTUM INFORMATION PROCESSING

Heralded CNOT gate

• heralded: using photon pairs to detect whether a photon is present

• Qubit encoding on rails: photon is either in one waveguide or the next (or both)

• Controlled NOT gate
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LARGE-SCALE FORWARD-ONLY MATRIX CIRCUIT

Harris et al, Nature Photonics 2017

Shen, Harris  et al, Nature Photonics 2017

Harris et al,  Optica 2018

Michael Hochberg (opsis), Michael Fanto (RIT), Paul Alsing

(AFRL), Stefan Preble (RIT), Philip Walther (U. Vienna)

26 input modes

26 output modes

88 MZIs

176 phase shifters
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NEURAL NETWORK ACCELERATORS

Harris, Nature Phot. 2018

nonlinear optical activation function
weighted
connections
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LIGHTMATTER: PHOTONIC CIRCUITS FOR AI ACCELERATORS

https://www.anandtech.com/show/16010/hot-chips-2020-live-
blog-silicon-photonics-for-ai-600pm-pt
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Reservoir Readout

RESERVOIR COMPUTING

Don’t train the neural network, only train the linear readout

*

*
*

*
*

*

*

●●

● ●

●

●

x

y

z'

*

*
* *

*
**
x'

y'

To higher 
order space

●●
● ●

●
●
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SILICON PHOTONICS RESERVOIR

• Giant multipath interferometer

• No active power consumption inside chip

Vandoorne et al.  2014

Long spiral waveguides to 
‘slow down’ the response
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Distorted signal
Linear equalizer
BER: 2.25 x 10-3

Reservoir: BER < 10-5 

0 errors in 131072 bits 

Same number of copies as the 
reservoir has nodes

RESERVOIR COMPUTING TO EQUALIZE DISTORTED SIGNAL

Traditional approach: digital signal processing (power hungry, speed limited)
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ACCESSING PHOTONIC

CHIP TECHNOLOGIES?
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VARY LARGE SCALE (INTEGRATION)

TSMC Fab 14
1.4M 300mm wafers / year

Source: TSMC
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SILICON PHOTONICS AND CMOS

The STRENGTH of Silicon Photonics 

is that it can make use of CMOS-technology

The WEAKNESS of Silicon Photonics 

is that it must make use of CMOS-technology

CMOS-technology requires insanely expensive infrastructure 
but delivers ridiculously cheap chips 

with a ludicrous degree of sophistication
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ECONOMY OF (WAFER) SCALE

Wafer-scale economics

— Larger wafers

— Higher volumes

— Massive parallellism

— Minimal marginal cost

4”

1975

6”

1980

200mm

1991

300mm

2001

450mm

201?

— More expensive tools

— Higher volumes

— Larger fixed cost
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REUSE OF (ELECTRONICS) TECHNOLOGY LEVEL

200-300mm fab huge cost G$

Process flow development very large cost 10-50 M$

Fabrication run (25 wafers) large cost 100K$ - M$

Fabrication run (shared) moderate cost 10-100K$/user

Chip (high volume) very low cost 1-100$

Chip (moderate volume) very low cost 1-100$

Chip (low volume) low cost 5-500$
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WHAT IS HIGH VOLUME?

2020

100 mega datacenters
10000 racks / center
64 cables / rack
2 transceivers per cable

128 Mchips

Datacenter Cabling

~1 fabmonth

50 mega datacenters
20000 racks / center
2000 cables / rack
2 transceivers per cable

4 Gchips

Datacenter Cabling

2025

<2 fabyears

5×5 mm2 per chip
1,250 chips / wafer (200mm)
40,000 wafers / month

50 Mchips / month

Saturated 200mm fab
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ECONOMY OF (WAFER) SCALE

Chip cost per mm2 in a dedicated, loaded fab.

100

10K 100K 1M 10M 100M1K
Number of chips/year

M
P

W

(InP PICs)

0.1

1

10

€
/m

m
2

  o
f 

ch
ip

 a
re

a

Source: JePPIX Roadmap 2015

(Si PICs)
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MULTI-PROJECT-WAFER (MPW) SERVICES

The “reticle” (mask) has an area of 25 x 25 mm.

That equals 25 chips of 5x5 mm2

On a 200 (300) mm wafer you can fit 50 (110) chips

Share this cost!!!

1. Collect 25 designs from different users.

2. Combine these on a single mask set

3. Collectively process the wafers 

(typically 25 wafers in one batch)

4. Dice the wafers into 5x5 mm chips (!!)

5. Send these 5x5 mm chips to each user
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PROTOTYPING A NEW (SILICON) PHOTONIC IC

Design (4M)

Fabrication (6M)

Package (1M)

Test (2M)

Then you discover the bugs…

Repeat!
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PROTOTYPING A NEW ELECTRONIC CIRCUIT

Select a suitable programmable IC: FPGA, DSP, μC (1d)

Program and test the chip (1-4w)

Only then, if needed:

• Design ASIC …

input-output blocks

logic 
blocks

programmable
interconnects
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digitally 

Field-Programmable Gate Array (FPGA)

• digitally (configurable) logic blocks

• programmable interconnections

• high performance

• extremely successful

FPGA

Field-Programmable Analog Array (FPPA)

Electronically Programmable Analog Circuits (EPAC)

Reconfigurable Analog Signal Processor (RASP)

• analog opamps and passives

• programmed through digital switches

• signal integrators, filters, vector-matrix multipliers

• limited processing power, bandwidth (< MHz)

, FPAA, EPAC, RASP

analog 

bandwidth

extremely successful
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THE PHOTONIC FPGAS?
or programmable photonics

reconfigurable photonics

photonic processors

universal photonic circuits …

Photonic Integrated Circuits

that can be reconfigured

using software

to perform different functions.

analog optical functions

digitally programmed

high bandwidth (microwaves)

extremely successful

analog 

digitally 

bandwidth

extremely successful
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PROGRAMMABLE PHOTONIC CHIP

Can process signals in the optical domain

• balancing

• filtering

• transformations

Both on Optical and RF signals

Photonic
Processor

RF signals
out RF signals in

Optical signals in and out
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GENERIC PROGRAMMABLE OPTICAL PROCESSOR

Optical inputs and outputs

RF inputs: modulators

RF outputs: balanced PDs

Specialized high performance blocks

Connected by a programmable

linear optical circuit

specialized
functional

blocks

• long delay lines
• tunable resonators
• optical amplifiers
• attenuators
• ...

(balanced)
photodetectors

fiber interfaces

high-speed
phase modulators

waveguide mesh
with tunable couplers

and phase shifters

optical input/output

RF inputsRF outputs
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MZI

MZI

MZI

MZI

MZI

MZI

MZI

MZI

MZI

(RE)ROUTING LIGHT

Light can be arbitrarily routed

Multiple routes in the same mesh

Edges can be shared

This coupler is used 
by both routes

bar

cross
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MZI

MZI

MZI

MZI

MZI

MZI

MZI

MZI

MZI

SPLITTING LIGHT

Couplers control arbitrary splitting ratios

Power distribution networks

Multicasting

This coupler acts
as a splitter

partial

bar

cross
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MZI

MZI

MZI

MZI

MZI

MZI

MZI

MZI

MZI

MACH-ZEHNDER INTERFEROMETERS

Basic building block for FIR filters

Delay can be adjusted per unit lengths

This coupler is
used twice

Δ𝐿
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MZI

MZI

MZI

MZI

MZI

MZI

MZI

MZI

MZI

RING RESONATORS

Loop light in itself

Coupler ring resonators together
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HEXAGONAL MESH CIRCUIT DEMONSTRATION

• 7 hexagonal cores

• 30 tunable couplers

(2 heaters per coupler)

• >100 possible circuits

Perez et al, Nature Comm. 2017
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PROGRAMMABLE PHOTONICS CAN BE USED IN MANY PLACES

routing & 
multiplexing

Optical Communications

• Fiber-to-the-home

• xDSL over fiber

• Radio over Fiber (5G)

Bogaerts, JSTQE 2020, Nature 2020

fiber-to-the-home 
subscribers

5G antenna:
microwave beamforming

xDSL
subscribers

fiber optic
link
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PROGRAMMABLE PHOTONICS CAN BE USED IN MANY PLACES

fiber Bragg
grating sensors

Sensor Systems

• Fiber Sensor Readouts

• Optical Beam scanners

• LiDAR and RADAR

Bogaerts, JSTQE 2020, Nature 2020

optical beam
scanner

FMCW LiDAR
ranging engine

multi-sensor
readout

building sensor
processors

microwave
radar
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PROGRAMMABLE PHOTONICS CAN BE USED IN MANY PLACES

Biomedical Applications

• Biosensors and analysis

• Optical Coherence Tomography

• Laser Doppler Vibrometry

• Spectroscopy

Bogaerts, JSTQE 2020, Nature 2020

blood
analysis
readout

dental OCT
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PROGRAMMABLE PHOTONICS CAN BE USED IN MANY PLACES

Bogaerts, JSTQE 2020, Nature 2020

Quantum Key
Distribution

Optical
Hashing

Security applications

• Optical hashing function

• Proof of work / blockchains

• Quantum Key Distribution
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Lead time for custom designed PIC: >1 year

Lead time for off-the-shelf PICs: <1 week

SHORTENING THE LEAD TIME

shiny new 
product

Wafer-scale
fabrication

Supply of 
programmable

PICs

Packaging
Services

Routing and
Synthesis IP

Programming
Services

lead time: 
5 months

lead time: 
3 days
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SUMMARY

Photonic Integrated Circuits:

manipulating light on a chip

benefits in performance, SWaP

Silicon: Rapidly maturing chip technology

(using industrial fabs)

Wide range of applications

• communications

• sensing

• computing

• …
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@PhotonicsUGent

www.photonics.intec.ugent.be

E

T

Wim Bogaerts

Professor in Silicon Photonics

wim.bogaerts@ugent.be

+32 9 264 3324 @WimBogaerts


